Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 757
Filtrar
1.
Microbiome ; 12(1): 161, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39223641

RESUMO

BACKGROUND: Many studies have demonstrated the association between intestinal microbiota and joint diseases. The "gut-joint axis" also has potential roles in chikungunya virus (CHIKV) infection. Pro-inflammatory arthritis after CHIKV infection might disrupt host homeostasis and lead to dysbacteriosis. This study investigated the characteristics of fecal and gut microbiota, intestinal metabolites, and the changes in gene regulation of intestinal tissues after CHIKV infection using multi-omics analysis to explore the involvement of gut microbiota in the pathogenesis of CHIKV infection. RESULTS: CHIKV infection increases the systemic burden of inflammation in the GI system of infected animals. Moreover, infection-induced alterations in GI microbiota and metabolites may be indirectly involved in the modulation of GI and bone inflammation after CHIKV infection, including the modulation of inflammasomes and interleukin-17 inflammatory cytokine levels. CONCLUSION: Our results suggest that the GI tract and its microbes are involved in the modulation of CHIKV infection, which could serve as an indicator for the adjuvant treatment of CHIKV infection. Video Abstract.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Fezes , Microbioma Gastrointestinal , Macaca mulatta , Animais , Fezes/microbiologia , Febre de Chikungunya/virologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Disbiose/microbiologia , Inflamação , Inflamassomos/metabolismo , Modelos Animais de Doenças , Interleucina-17/metabolismo , Trato Gastrointestinal/microbiologia , Citocinas/metabolismo
2.
Sci Rep ; 14(1): 21546, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39278957

RESUMO

The current detection method for Chikungunya Virus (CHIKV) involves an invasive and costly molecular biology procedure as the gold standard diagnostic method. Consequently, the search for a non-invasive, more cost-effective, reagent-free, and sustainable method for the detection of CHIKV infection is imperative for public health. The portable Fourier-transform infrared coupled with Attenuated Total Reflection (ATR-FTIR) platform was applied to discriminate systemic diseases using saliva, however, the salivary diagnostic application in viral diseases is less explored. The study aimed to identify unique vibrational modes of salivary infrared profiles to detect CHIKV infection using chemometrics and artificial intelligence algorithms. Thus, we intradermally challenged interferon-gamma gene knockout C57/BL6 mice with CHIKV (20 µl, 1 X 105 PFU/ml, n = 6) or vehicle (20 µl, n = 7). Saliva and serum samples were collected on day 3 (due to the peak of viremia). CHIKV infection was confirmed by Real-time PCR in the serum of CHIKV-infected mice. The best pattern classification showed a sensitivity of 83%, specificity of 86%, and accuracy of 85% using support vector machine (SVM) algorithms. Our results suggest that the salivary ATR-FTIR platform can discriminate CHIKV infection with the potential to be applied as a non-invasive, sustainable, and cost-effective detection tool for this emerging disease.


Assuntos
Algoritmos , Inteligência Artificial , Febre de Chikungunya , Vírus Chikungunya , Saliva , Animais , Saliva/virologia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/virologia , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/genética , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Curr Microbiol ; 81(10): 343, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227496

RESUMO

Chikungunya fever is a mosquito-borne disease caused by Chikungunya virus (CHIKV). Treatment of CHIKV infections is currently supportive and does not limit viral replication or symptoms of persistent chronic arthritis. Although there are multiple compounds reported as antivirals active against CHIKV in vitro, there are still no effective and safe antivirals. Thus, active research aims at the identification of new chemical structures with antiviral activity. Here, we report the screen of the Pandemic Response Box library of small molecules against a fully infectious CHIKV reporter virus. Our screening approach successfully identified previously reported CHIKV antiviral compounds within this library and further expanded potentially active hits, supporting the use of reporter-virus-based assays in high-throughput screening format as a reliable tool for antiviral drug discovery. Four molecules were identified as potential drug candidates against CHIKV: MMV1634402 (Brilacidin) and MMV102270 (Diphyllin), which were previously shown to present broad-spectrum antiviral activities, in addition to MMV1578574 (Eravacycline), and the antifungal MMV689401 (Fluopicolide), for which their antiviral potential is uncovered here.


Assuntos
Antivirais , Febre de Chikungunya , Vírus Chikungunya , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Vírus Chikungunya/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Humanos , Animais , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos , Replicação Viral/efeitos dos fármacos , Descoberta de Drogas , Chlorocebus aethiops , Células Vero
4.
Virulence ; 15(1): 2401985, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39263937

RESUMO

Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF), and its primary vectors are the mosquitoes Aedes aegypti and Aedes albopictus. CHIKV was initially endemic to Africa but has spread globally in recent years and affected millions of people. According to a risk assessment by the World Health Organization, CHIKV has the potential seriously impact public health. A growing body of research suggests that mutations in the CHIKV gene that enhance viral fitness in the host are contributing to the expansion of the global CHIKF epidemic. In this article, we review the host-adapted gene mutations in CHIKV under natural evolution and laboratory transmission conditions, which can help improve our understanding of the adaptive evolution of CHIKV and provide a basis for monitoring and early warning of future CHIKV outbreaks.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Genoma Viral , Mutação , Vírus Chikungunya/genética , Febre de Chikungunya/virologia , Febre de Chikungunya/transmissão , Animais , Humanos , Aedes/virologia , Aedes/genética , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Adaptação ao Hospedeiro/genética
5.
Virulence ; 15(1): 2396484, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39193780

RESUMO

Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Vírus Chikungunya/patogenicidade , Vírus Chikungunya/genética , Febre de Chikungunya/virologia , Febre de Chikungunya/epidemiologia , Animais , Virulência , Mosquitos Vetores/virologia , Interações Hospedeiro-Patógeno
6.
Pharmacol Rep ; 76(5): 1147-1159, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39150661

RESUMO

BACKGROUND: Currently, there is no antiviral licensed to treat chikungunya fever, a disease caused by the infection with Alphavirus chikungunya (CHIKV). Treatment is based on analgesic and anti-inflammatory drugs to relieve symptoms. Our study aimed to evaluate the antiviral activity of sulfadoxine (SFX), an FDA-approved drug, and its derivatives complexed with silver(I) (AgSFX), salicylaldehyde Schiff base (SFX-SL), and with both Ag and SL (AgSFX-SL) against CHIKV. METHODS: The anti-CHIKV activity of SFX and its derivatives was investigated using BHK-21 cells infected with CHIKV-nanoluc, a marker virus-carrying nanoluciferase reporter. Dose-response and time of drug-addition assays were performed in order to assess the antiviral effects of the compounds, as well as in silico data and ATR-FTIR analysis for insights on their mechanisms of action. RESULTS: The SFX inhibited 34% of CHIKV replication, while AgSFX, SFX-SL, and AgSFX-SL enhanced anti-CHIKV activity to 84%, 89%, and 95%, respectively. AgSFX, SFX-SL, and AgSFX-SL significantly decreased viral entry and post-entry to host cells, and the latter also protected cells against infection. Additionally, molecular docking calculations and ATR-FTIR analysis demonstrated interactions of SFX-SL, AgSFX, and AgSFX-SL with CHIKV. CONCLUSIONS: Collectively, our findings suggest that the addition of metal ions and/or Schiff base to SFX improved its antiviral activity against CHIKV.


Assuntos
Antivirais , Febre de Chikungunya , Vírus Chikungunya , Sulfadoxina , Vírus Chikungunya/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Animais , Linhagem Celular , Sulfadoxina/farmacologia , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Cricetinae , Bases de Schiff/farmacologia , Prata/farmacologia , Prata/química , Replicação Viral/efeitos dos fármacos , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Humanos , Aldeídos
7.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39201595

RESUMO

Chikungunya (CHIKV) and Mayaro (MAYV) viruses are arthritogenic alphaviruses that promote an incapacitating and long-lasting inflammatory muscle-articular disease. Despite studies pointing out the importance of skeletal muscle (SkM) in viral pathogenesis, the long-term consequences on its physiology and the mechanism of persistence of symptoms are still poorly understood. Combining molecular, morphological, nuclear magnetic resonance imaging, and histological analysis, we conduct a temporal investigation of CHIKV and MAYV replication in a wild-type mice model, focusing on the impact on SkM composition, structure, and repair in the acute and late phases of infection. We found that viral replication and induced inflammation promote a rapid loss of muscle mass and reduction in fiber cross-sectional area by upregulation of muscle-specific E3 ubiquitin ligases MuRF1 and Atrogin-1 expression, both key regulators of SkM fibers atrophy. Despite a reduction in inflammation and clearance of infectious viral particles, SkM atrophy persists until 30 days post-infection. The genomic CHIKV and MAYV RNAs were still detected in SkM in the late phase, along with the upregulation of chemokines and anti-inflammatory cytokine expression. In agreement with the involvement of inflammatory mediators on induced atrophy, the neutralization of TNF and a reduction in oxidative stress using monomethyl fumarate, an agonist of Nrf2, decreases atrogen expression and atrophic fibers while increasing weight gain in treated mice. These data indicate that arthritogenic alphavirus infection could chronically impact body SkM composition and also harm repair machinery, contributing to a better understanding of mechanisms of arthritogenic alphavirus pathogenesis and with a description of potentially new targets of therapeutic intervention.


Assuntos
Vírus Chikungunya , Músculo Esquelético , Atrofia Muscular , Estresse Oxidativo , Animais , Atrofia Muscular/virologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Camundongos , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/virologia , Febre de Chikungunya/patologia , Febre de Chikungunya/virologia , Febre de Chikungunya/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Inflamação/virologia , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Replicação Viral , Camundongos Endogâmicos C57BL , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Infecções por Alphavirus/virologia , Infecções por Alphavirus/patologia , Infecções por Alphavirus/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Modelos Animais de Doenças , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
8.
Sci Rep ; 14(1): 18614, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127786

RESUMO

Chikungunya virus (CHIKV) is a single-stranded RNA virus belonging to the genus Alphavirus and is responsible for causing Chikungunya fever, a type of arboviral fever. Despite extensive research, the pathogenic mechanism of CHIKV within host cells remains unclear. In this study, an in-silico approach was used to predict that CHIKV produces micro-RNAs that target host-specific genes associated with host cellular regulatory pathways. Putative micro-RNAs of CHIKV were predicted using the miRNAFold and Vmir RNA structure web servers, and secondary structure prediction was performed using RNAfold. Host-specific target genes were then predicted, and hub genes were identified using CytoHubba and module selection through MCODE. Functional annotations of hub genes revealed their association with various pathways, including osteoclast differentiation, neuroactive ligand-receptor interaction, and mRNA surveillance. We used the freely available dataset GSE49985 to determine the level of expression of host-specific target genes and found that two genes, F-box and leucine-rich repeat protein 16 (FBXL16) and retinoic acid receptor alpha (RARA), were down-regulated, while four genes, RNA binding protein with serine-rich domain 1 (RNPS1), RNA helicase and ATPase (UPF1), neuropeptide S receptor 1 (NPSR1), and vasoactive intestinal peptide receptor 1 (VIPR1), were up-regulated. These findings provide insight into novel miRNAs and hub genes associated with CHIKV infection and suggest potential targets for therapeutic intervention. Further experimental validation of these targets could lead to the development of effective treatments for CHIKV-mediated diseases.


Assuntos
Vírus Chikungunya , Biologia Computacional , MicroRNAs , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , MicroRNAs/genética , Biologia Computacional/métodos , Humanos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Febre de Chikungunya/virologia , Febre de Chikungunya/imunologia , Febre de Chikungunya/genética , RNA Viral/genética , Redes Reguladoras de Genes
9.
Viruses ; 16(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39205296

RESUMO

Chikungunya virus (CHIKV) is a reemerging arbovirus causing disease on a global scale, and the potential for its epidemics remains high. CHIKV has caused millions of cases and heavy economic burdens around the world, while there are no available approved antiviral therapies to date. In this study, nifuroxazide, an FDA-approved antibiotic for acute diarrhea or colitis, was found to significantly inhibit a variety of arboviruses, although its antiviral activity varied among different target cell types. Nifuroxazide exhibited relatively high inhibitory efficiency in yellow fever virus (YFV) infection of the hepatoma cell line Huh7, tick-borne encephalitis virus (TBEV) and west nile virus (WNV) infection of the vascular endothelial cell line HUVEC, and CHIKV infection of both Huh7 cells and HUVECs, while it barely affected the viral invasion of neurons. Further systematic studies on the action stage of nifuroxazide showed that nifuroxazide mainly inhibited in the viral replication stage. In vivo, nifuroxazide significantly reduced the viral load in muscles and protected mice from CHIKV-induced footpad swelling, an inflammation injury within the arthrosis of infected mice. These results suggest that nifuroxazide has a potential clinical application as an antiviral drug, such as in the treatment of CHIKV infection.


Assuntos
Antivirais , Febre de Chikungunya , Vírus Chikungunya , Hidroxibenzoatos , Nitrofuranos , Replicação Viral , Animais , Camundongos , Humanos , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral/efeitos dos fármacos , Nitrofuranos/farmacologia , Nitrofuranos/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/uso terapêutico , Linhagem Celular , Carga Viral/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana
10.
Mol Biol Rep ; 51(1): 906, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141163

RESUMO

BACKGROUND: Dengue virus (DENV) and Chikungunya virus (CHIKV) are major arboviruses that are transmitted to humans by Aedes aegypti (A. aegypti) and Aedes Albopictus (A. Albopictus) mosquitoes. In absence of specific antivirals and vaccine against these two viruses, prompt diagnosis of acute infections and robust surveillance for outbreak identification remain crucial. Therefore, rapid, robust, high-throughput, accessible, and low-cost assays are essential for endemic countries. This study evaluated our recently developed multiplex RT-PCR and RT-qPCR assays to screen for DENV1-4 and CHIKV circulation in Burkina Faso. METHODS AND RESULTS: This study, conducted between June to August 2023, enrolled patients with suspected arbovirus infection presenting at healthcare facilities in three Burkina Faso cities (Bobo-Dioulasso, Houndé, and Ouagadougou). Serum samples were collected and screened for DENV serotypes and CHIKV using our newly multiplex RT-PCR and RT-q PCR techniques recently developed. A total of 408 patients (age median = 33, range from 3 to 84 years) participated in this study. Of these, 13.7% (56/408) had DENV infection; DENV-1 was 32.1% (18/56) and DENV-3 was 67.9% (38/56). DENV-2, DENV-4 and CHIKV were not detected. CONCLUSIONS: This study demonstrates the effectiveness of our molecular methods for DENV detection and serotyping in Burkina Faso. The affordability of our methods makes them valuable for implementing widespread routine clinical diagnostics or arbovirus surveillance in resource-limited settings.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Humanos , Burkina Faso/epidemiologia , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Pessoa de Meia-Idade , Dengue/epidemiologia , Dengue/virologia , Dengue/diagnóstico , Dengue/sangue , Feminino , Adulto , Adolescente , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/sangue , Idoso , Masculino , Pré-Escolar , Criança , Sorogrupo , Idoso de 80 Anos ou mais , Reação em Cadeia da Polimerase Multiplex/métodos , Adulto Jovem , Monitoramento Epidemiológico , Animais , Aedes/virologia
11.
J Virol ; 98(8): e0077524, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39007616

RESUMO

T-cell immunoglobin and mucin domain protein-1 (TIM-1) mediates entry of chikungunya virus (CHIKV) into some mammalian cells through the interaction with envelope phospholipids. While this interaction enhances entry, TIM-1 has been shown to tether newly formed HIV and Ebola virus particles, limiting their efficient release. In this study, we investigate the ability of surface receptors such as TIM-1 to sequester newly budded virions on the surface of infected cells. We established a luminescence reporter system to produce chikungunya viral particles that integrate nano-luciferase and easily quantify viral particles. We found that TIM-1 on the surface of host cells significantly reduced CHIKV release efficiency in comparison to other entry factors. Removal of cell surface TIM-1 through direct cellular knock-out or altering the cellular lipid distribution enhanced CHIKV release. Over the course of infection, CHIKV was able to counteract the tethering effect by gradually decreasing the surface levels of TIM-1 in a process mediated by the nonstructural protein 2. This study highlights the importance of phosphatidylserine receptors in mediating not only the entry of CHIKV but also its release and could aid in developing cell lines capable of enhanced vaccine production. IMPORTANCE: Chikungunya virus (CHIKV) is an enveloped alphavirus transmitted by the bites of infectious mosquitoes. Infection with CHIKV results in the development of fever, joint pain, and arthralgia that can become chronic and last for months after infection. Prevention of this disease is still highly focused on vector control strategies. In December 2023, a new live attenuated vaccine against CHIKV was approved by the FDA. We aimed to study the cellular factors involved in CHIKV release, to better understand CHIKV's ability to efficiently infect and spread among a wide variety of cell lines. We found that TIM-1 receptors can significantly abrogate CHIKV's ability to efficiently exit infected cells. This information can be beneficial for maximizing viral particle production in laboratory settings and during vaccine manufacturing.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Receptor Celular 1 do Vírus da Hepatite A , Fosfatidilserinas , Liberação de Vírus , Vírus Chikungunya/fisiologia , Vírus Chikungunya/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Fosfatidilserinas/metabolismo , Febre de Chikungunya/virologia , Febre de Chikungunya/metabolismo , Células HEK293 , Internalização do Vírus , Animais , Envelope Viral/metabolismo , Linhagem Celular , Vírion/metabolismo , Receptores Virais/metabolismo
12.
PLoS Negl Trop Dis ; 18(7): e0012349, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39058744

RESUMO

In 2018-2019, Thailand experienced a nationwide spread of chikungunya virus (CHIKV), with approximately 15,000 confirmed cases of disease reported. Here, we investigated the evolutionary and molecular history of the East/Central/South African (ECSA) genotype to determine the origins of the 2018-2019 CHIKV outbreak in Thailand. This was done using newly sequenced clinical samples from travellers returning to Sweden from Thailand in late 2018 and early 2019 and previously published genome sequences. Our phylogeographic analysis showed that before the outbreak in Thailand, the Indian Ocean lineage (IOL) found within the ESCA, had evolved and circulated in East Africa, South Asia, and Southeast Asia for about 15 years. In the first half of 2017, an introduction occurred into Thailand from another South Asian country, most likely Bangladesh, which subsequently developed into a large outbreak in Thailand with export to neighbouring countries. Based on comparative phylogenetic analyses of the complete CHIKV genome and protein modelling, we identified several mutations in the E1/E2 spike complex, such as E1 K211E and E2 V264A, which are highly relevant as they may lead to changes in vector competence, transmission efficiency and pathogenicity of the virus. A number of mutations (E2 G205S, Nsp3 D372E, Nsp2 V793A), that emerged shortly before the outbreak of the virus in Thailand in 2018 may have altered antibody binding and recognition due to their position. This study not only improves our understanding of the factors contributing to the epidemic in Southeast Asia, but also has implications for the development of effective response strategies and the potential development of new vaccines.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Surtos de Doenças , Evolução Molecular , Genótipo , Filogenia , Vírus Chikungunya/genética , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação , Humanos , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Tailândia/epidemiologia , Genoma Viral , Suécia/epidemiologia , Filogeografia , Mutação , Proteínas do Envelope Viral/genética
13.
J Med Virol ; 96(7): e29788, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38982767

RESUMO

Molecular surveillance is vital for monitoring arboviruses, often employing genus-specific quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Despite this, an overlooked chikungunya fever outbreak occurred in Yunnan province, China, in 2019 and false negatives are commonly encountered during alphaviruses screening practice, highlighting the need for improved detection methods. In this study, we developed an improved alphaviruses-specific RT-qPCR capable of detecting chikungunya virus, eastern equine encephalitis virus, western equine encephalitis virus, Venezuelan equine encephalitis virus, Sindbis virus, Mayaro virus, and Ross River virus with high sensitivity and specificity. The assay identified three chikungunya virus-positive cases out of 188 sera retrospectively. Later genetic characterization suggested that imported cases from neighboring countries may be responsible for the neglected chikungunya fever outbreak of 2019 in Yunnan. Our findings underscore the value of improved alphaviruses-specific RT-qPCR in bolstering alphaviruses surveillance and informing preventive strategies.


Assuntos
Infecções por Alphavirus , Alphavirus , Vírus Chikungunya , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Humanos , Alphavirus/genética , Alphavirus/isolamento & purificação , Infecções por Alphavirus/diagnóstico , Infecções por Alphavirus/virologia , Infecções por Alphavirus/prevenção & controle , Infecções por Alphavirus/epidemiologia , China/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Estudos Retrospectivos , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Febre de Chikungunya/epidemiologia , Vírus da Encefalite Equina do Leste/genética , Surtos de Doenças/prevenção & controle , Sindbis virus/genética , Vírus da Encefalite Equina do Oeste/genética , Ross River virus/genética , Ross River virus/isolamento & purificação , Vírus da Encefalite Equina Venezuelana/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , RNA Viral/genética
14.
Nucleic Acids Res ; 52(16): 9727-9744, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39051569

RESUMO

Chikungunya virus (CHIKV) is a rapidly spreading re-emergent virus transmitted from mosquitoes to humans. The emergence of epidemic variants has been associated with changes in the viral genome, such as the duplication of repeated sequences in the 3' untranslated region (UTR). Indeed, blocks of repeated sequences seemingly favor RNA recombination, providing the virus with a unique ability to continuously change the 3'UTR architecture during host switching. In this work, we provide experimental data on the molecular mechanism of RNA recombination and describe specific sequence and structural elements in the viral 3'UTR that favor template switching of the viral RNA-dependent RNA polymerase on the 3'UTR. Furthermore, we found that a 3'UTR deletion mutant that exhibits markedly delayed replication in mosquito cells and impaired transmission in vivo, recombines in reference laboratory strains of mosquitoes. Altogether, our data provide novel experimental evidence indicating that RNA recombination can act as a nucleic acid repair mechanism to add repeated sequences that are associated to high viral fitness in mosquito during chikungunya virus replication.


Assuntos
Regiões 3' não Traduzidas , Vírus Chikungunya , Genoma Viral , RNA Viral , Recombinação Genética , Replicação Viral , Vírus Chikungunya/genética , Regiões 3' não Traduzidas/genética , RNA Viral/genética , RNA Viral/metabolismo , Animais , Replicação Viral/genética , Febre de Chikungunya/virologia , Febre de Chikungunya/genética , Febre de Chikungunya/transmissão , Humanos , Aedes/virologia , Aedes/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Linhagem Celular
15.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063216

RESUMO

Although the disease caused by chikungunya virus (CHIKV) is of great interest to public health organizations around the world, there are still no authorized antivirals for its treatment. Previously, dihalogenated anti-CHIKV compounds derived from L-tyrosine (dH-Y) were identified as being effective against in vitro infection by this virus, so the objective of this study was to determine the mechanisms of its antiviral action. Six dH-Y compounds (C1 to C6) dihalogenated with bromine or chlorine and modified in their amino groups were evaluated by different in vitro antiviral strategies and in silico tools. When the cells were exposed before infection, all compounds decreased the expression of viral proteins; only C4, C5 and C6 inhibited the genome; and C1, C2 and C3 inhibited infectious viral particles (IVPs). Furthermore, C1 and C3 reduce adhesion, while C2 and C3 reduce internalization, which could be related to the in silico interaction with the fusion peptide of the E1 viral protein. Only C3, C4, C5 and C6 inhibited IVPs when the cells were exposed after infection, and their effect occurred in late stages after viral translation and replication, such as assembly, and not during budding. In summary, the structural changes of these compounds determine their mechanism of action. Additionally, C3 was the only compound that inhibited CHIKV infection at different stages of the replicative cycle, making it a compound of interest for conversion as a potential drug.


Assuntos
Antivirais , Febre de Chikungunya , Vírus Chikungunya , Tirosina , Replicação Viral , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/fisiologia , Tirosina/farmacologia , Tirosina/análogos & derivados , Tirosina/metabolismo , Tirosina/química , Antivirais/farmacologia , Antivirais/química , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Animais , Replicação Viral/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Humanos , Internalização do Vírus/efeitos dos fármacos , Proteínas Virais/metabolismo
16.
Viruses ; 16(7)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39066251

RESUMO

Arboviruses such as dengue, Zika, and chikungunya present similar symptoms in the early stages, which complicates their differential and timely diagnosis. In 2022, the PAHO published a guide to address this challenge. This study proposes a methodological framework that transforms qualitative information into quantitative information, establishing differential weights in relation to symptoms according to the medical evidence and the GRADE scale based on recommendation 1 of the said guide. To achieve this, common variables from the dataset were identified using the PAHO guide, and quality rules were established. A linear interpolation function was then parameterised to assign weights to the symptoms according to the evidence. Machine learning was used to compare the different models, achieving 99% accuracy compared with 79% without the methodology. This proposal represents a significant advancement, allowing the direct application of the PAHO recommendations to the dataset and improving the differential classification of arboviruses.


Assuntos
Febre de Chikungunya , Dengue , Aprendizado de Máquina , Dengue/diagnóstico , Dengue/virologia , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/virologia , Humanos , Diagnóstico Diferencial , Vírus da Dengue/classificação , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação
17.
Viruses ; 16(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39066260

RESUMO

Dengue (DENV) and Chikungunya (CHIKV) viruses can be transmitted simultaneously by Aedes mosquitoes, and there may be co-infections in humans. However, how the adaptive immune response is modified in the host has yet to be known entirely. In this study, we analyzed the cross-reactivity and neutralizing activity of IgG antibodies against DENV and CHIKV in sera of patients from the Mexican Institute of Social Security in Veracruz, Mexico, collected in 2013 and 2015 and using IgG antibodies of BALB/c mice inoculated with DENV and/or CHIKV. Mice first inoculated with DENV and then with CHIKV produced IgG antibodies that neutralized both viruses. Mice were inoculated with CHIKV, and then with DENV; they had IgG antibodies with more significant anti-CHIKV IgG antibody neutralizing activity. However, the inoculation only with CHIKV resulted in better neutralization of DENV2. In sera obtained from patients in 2013, significant cross-reactivity and low anti-CHIKV IgG antibody neutralizing activity were observed. In CHIKV-positive 2015 sera, the anti-DENV IgG antibody neutralizing activity was high. These results suggest that CHIKV stimulates DENV2-induced memory responses and vice versa. Furthermore, cross-reactivity between the two viruses generated neutralizing antibodies, but exchanging CHIKV for DENV2 generated a better anti-CHIKV neutralizing response.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Febre de Chikungunya , Vírus Chikungunya , Reações Cruzadas , Vírus da Dengue , Dengue , Imunoglobulina G , Camundongos Endogâmicos BALB C , Animais , Vírus Chikungunya/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Humanos , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Reações Cruzadas/imunologia , Camundongos , México , Feminino , Testes de Neutralização , Masculino , Coinfecção/imunologia , Coinfecção/virologia , Adulto
18.
PLoS Negl Trop Dis ; 18(6): e0011712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38870214

RESUMO

BACKGROUND: Chikungunya virus (CHIKV) and O'nyong nyong virus (ONNV) are phylogenetically related alphaviruses in the Semliki Forest Virus (SFV) antigenic complex of the Togaviridae family. There are limited data on the circulation of these two viruses in Burkina Faso. The aim of our study was to assess their circulation in the country by determining seroprevalence to each of the viruses in blood donor samples and by retrospective molecular and serological testing of samples collected as part of national measles and rubella surveillance. METHODOLOGY/PRINCIPAL FINDINGS: All blood donor samples were analyzed on the Luminex platform using CHIKV and ONNV E2 antigens. Patient samples collected during national measles-rubella surveillance were screened by an initial ELISA for CHIKV IgM (CHIKjj Detect IgM ELISA) at the national laboratory. The positive samples were then analyzed by a second ELISA test for CHIKV IgM (CDC MAC-ELISA) at the reference laboratory. Finally, samples that had IgM positive results for both ELISA tests and had sufficient residual volume were tested by plaque reduction neutralization testing (PRNT) for CHIKV and ONNV. These same patient samples were also analyzed by rRT-PCR for CHIKV. Among the blood donor specimens, 55.49% of the samples were positive for alphaviruses including both CHIKV and ONNV positive samples. Among patient samples collected as part of national measles and rubella surveillance, 3.09% were IgM positive for CHIKV, including 2.5% confirmed by PRNT. PRNT failed to demonstrate any ONNV infections in these samples. No samples tested by RT-qPCR. had detectable CHIKV RNA. CONCLUSIONS/SIGNIFICANCE: Our results suggest that CHIKV and ONNV have been circulating in the population of Burkina Faso and may have been confused with malaria, dengue fever or other febrile diseases such as measles or rubella. Our study underscores the necessity to enhance arbovirus surveillance systems in Burkina Faso.


Assuntos
Infecções por Alphavirus , Anticorpos Antivirais , Vírus Chikungunya , Ensaio de Imunoadsorção Enzimática , Imunoglobulina M , Vírus O'nyong-nyong , Humanos , Burkina Faso/epidemiologia , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Vírus Chikungunya/isolamento & purificação , Anticorpos Antivirais/sangue , Estudos Soroepidemiológicos , Imunoglobulina M/sangue , Masculino , Feminino , Adulto , Vírus O'nyong-nyong/genética , Vírus O'nyong-nyong/isolamento & purificação , Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Infecções por Alphavirus/diagnóstico , Infecções por Alphavirus/sangue , Adulto Jovem , Adolescente , Estudos Retrospectivos , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Febre de Chikungunya/sangue , Febre de Chikungunya/diagnóstico , Pessoa de Meia-Idade , Doadores de Sangue , Criança , Pré-Escolar , Coinfecção/epidemiologia , Coinfecção/virologia
19.
Front Cell Infect Microbiol ; 14: 1335189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895735

RESUMO

Background: Chikungunya virus (CHIKV), which causes chikungunya fever, is an arbovirus of public health concern with no approved antiviral therapies. A significant proportion of patients develop chronic arthritis after an infection. Zinc and magnesium salts help the immune system respond effectively against viral infections. This study explored the antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV infection. Methods: The highest non-toxic concentration of the salts (100 µM) was used to assess the prophylactic, virucidal, and therapeutic anti-CHIKV activities. Dose-dependent antiviral effects were investigated to find out the 50% inhibitory concentration of the salts. Entry bypass assay was conducted to find out whether the salts affect virus entry or post entry stages. Virus output in all these experiments was estimated using a focus-forming unit assay, real-time RT-PCR, and immunofluorescence assay. Results: Different time- and temperature-dependent assays revealed the therapeutic antiviral activity of zinc and magnesium salts against CHIKV. A minimum exposure of 4 hours and treatment initiation within 1 to 2 hours of infection are required for inhibition of CHIKV. Entry assays revealed that zinc salt affected virus-entry. Entry bypass assays suggested that both salts affected post-entry stages of CHIKV. In infected C57BL6 mice orally fed with zinc and magnesium salts, a reduction in viral RNA copy number was observed. Conclusion: The study results suggest zinc salts exert anti-CHIKV activity at entry and post entry stages of the virus life cycle, while magnesium salt affect CHIKV at post entry stages. Overall, the study highlights the significant antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV, which can be exploited in designing potential therapeutic strategies for early treatment of chikungunya patients, thereby reducing the virus-associated persistent arthritis.


Assuntos
Antivirais , Febre de Chikungunya , Vírus Chikungunya , Acetato de Zinco , Sulfato de Zinco , Vírus Chikungunya/efeitos dos fármacos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Febre de Chikungunya/virologia , Acetato de Zinco/farmacologia , Acetato de Zinco/uso terapêutico , Sulfato de Zinco/farmacologia , Chlorocebus aethiops , Células Vero , Internalização do Vírus/efeitos dos fármacos , Camundongos , Zinco/farmacologia , Zinco/uso terapêutico , Humanos , Sulfato de Magnésio/farmacologia , Magnésio/farmacologia , Replicação Viral/efeitos dos fármacos , Concentração Inibidora 50 , Sais/farmacologia , Linhagem Celular
20.
Virol J ; 21(1): 141, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902719

RESUMO

BACKGROUND: Despite dengue virus (DENV) outbreak in Gabon a decade ago, less is known on the potential circulation of DENV serotypes in the country. Previous studies conducted in some areas of the country, are limited to hospital-based surveys which reported the presence of some cases of serotype 2 and 3 seven years ago and more recently the serotype 1. As further investigation, we extend the survey to the community of Moyen Ogooué region with the aim to assess the presence of the dengue virus serotypes, additionally to characterize chikungunya (CHIKV) infection and describe the symptomatology associated with infections. METHOD: A cross-sectional survey was conducted from April 2020 to March 2021. The study included participants of both sexes and any age one year and above, with fever or history of fever in the past seven days until blood collection. Eligible volunteers were clinically examined, and blood sample was collected for the detection of DENV and CHIKV using RT-qPCR. Positive samples were selected for the target sequencing. RESULTS: A total of 579 volunteers were included. Their mean age (SD) was 20 (20) years with 55% of them being female. Four cases of DENV infection were diagnosed giving a prevalence of 0.7% (95%CI: 0.2-1.8) in our cohort while no case of CHIKV was detected. The common symptoms and signs presented by the DENV cases included fatigue, arthralgia myalgia, cough, and loss of appetite. DENV-1was the only virus detected by RT-qPCR. CONCLUSION: Our results confirm the presence of active dengue infection in the region, particularly DENV-1, and could suggest the decline of DENV-2 and DENV-3. Continuous surveillance remains paramount to comprehensively describe the extent of dengue serotypes distribution in the Moyen-Ogooué region of Gabon.


Assuntos
Vírus da Dengue , Dengue , Sorogrupo , Humanos , Gabão/epidemiologia , Vírus da Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Feminino , Masculino , Dengue/epidemiologia , Dengue/virologia , Estudos Transversais , Adulto , Adulto Jovem , Adolescente , Pré-Escolar , Criança , Pessoa de Meia-Idade , Lactente , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Idoso , Prevalência , Vírus Chikungunya/genética , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...