Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.565
Filtrar
1.
Protein Sci ; 33(9): e5145, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39150070

RESUMO

The red macroalgae Porphyra, commonly known as Nori, is widely used as food around the world due to its high nutrient content, including the significant abundance of colored phycobiliproteins (PBPs). Among these, R-phycocyanin (R-PC) stands out for its vibrant purple color and numerous bioactive properties, making it a valuable protein for the food industry. However, R-PC's limited thermal stability necessitates alternative processing methods to preserve its color and bioactive properties. Our study aimed to investigate the in-situ stability of oligomeric R-PC under high pressure (HP) conditions (up to 4000 bar) using a combination of absorption, fluorescence, and small-angle X-ray scattering (SAXS) techniques. The unfolding of R-PC is a multiphase process. Initially, low pressure induces conformational changes in the R-PC oligomeric form (trimers). As pressure increases above 1600 bar, these trimers dissociate into monomers, and at pressures above 3000 bar, the subunits begin to unfold. When returned to atmospheric pressure, R-PC partially refolds, retaining 50% of its original color absorbance. In contrast, heat treatment causes irreversible and detrimental effects on R-PC color, highlighting the advantages of HP treatment in preserving both the color and bioactive properties of R-PC compared to heat treatment.


Assuntos
Ficocianina , Pressão , Estabilidade Proteica , Ficocianina/química , Espalhamento a Baixo Ângulo , Porphyra/química , Difração de Raios X , Conformação Proteica
2.
An Acad Bras Cienc ; 96(3): e20230348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39166650

RESUMO

Cyanobacterial phycocyanin and phycoerythrin are gaining commercial interest due to their nutrition and healthcare values. This research analyzed the biomass accumulation and pigment production of two strains of Leptolyngbya under different combinations of light colors and intensities. The results showed that while Leptolyngbya sp.4 B1 (B1) produced all phycobiliproteins, Leptolyngbya sp.5 F2 (F2) only had phycocyanin and allophycocyanin. Both the color of the light and its light intensity affect the biomass accumulation and phycoerythrin concentration in strain B1. Although white light at medium intensity (50 µmol m-2 s-1) causes greater biomass accumulation (1.66 ± 0.13 gDW L-1), low-intensity (25 µmol m-2 s-1) green light induces lower biomass accumulation with twice the pigment content (87.70 ± 2.46 mg gDW -1), culminating in 71% greater productivity. In contrast, for the F2 strain, light intensity positively influenced biomass and pigment accumulation, being observed 2.25 ± 0.10 gDW L-1 under white light at 100 µmol m-2 s-1 and higher phycocyanin concentration (138.38 ± 3.46 mg gDW -1) under red light at 100 µmol m-2 s-1. These findings provide insights into optimizing the growth conditions by altering the intensity and wavelength of light for future production of phycocyanin and phycoerythrin from local cyanobacteria.


Assuntos
Biomassa , Cianobactérias , Luz , Ficobiliproteínas , Ficobiliproteínas/metabolismo , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Cianobactérias/classificação , Florestas , Ficocianina/metabolismo , Ficocianina/biossíntese , Ficoeritrina/metabolismo , Ficoeritrina/biossíntese
3.
Microb Cell Fact ; 23(1): 211, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061030

RESUMO

BACKGROUND: Beet filter cake (BFC) is a food-grade solid waste produced by the sugar industry, constituting a permanent source of pollution. Cyanobacteria are considered a sustainable resource for various bioactive compounds such as phycocyanin pigment with valuable applications. This study aimed to use beet filter cake extract (BFCE) as an alternative medium for the economic cultivation of cyanobacterium Leptolyngbya sp. SSI24 PP723083, then biorefined the bioactive component such as phycocyanin pigment that could be used in the production of selenium nanoparticles. RESULTS: The results of the batch experiment displayed that the highest protein content was in BG11medium (47.9%); however, the maximum carbohydrate and lipid content were in 25% BFCE (15.25 and 10.23%, respectively). In addition, 75% BFCE medium stimulated the phycocyanin content (25.29 mg/g) with an insignificant variation compared to BG11 (22.8 mg/g). Moreover, crude phycocyanin extract from Leptolyngbya sp SSI24 cultivated on BG11 and 75% BFCE successfully produced spherical-shaped selenium nanoparticles (Se-NPs) with mean sizes of 95 and 96 nm in both extracts, respectively. Moreover, XRD results demonstrated that the biosynthesized Se-NPs have a crystalline nature. In addition, the Zeta potential of the biosynthesized Se-NPs equals - 17 mV and - 15.03 mV in the control and 75% BFCE treatment, respectively, indicating their stability. The biosynthesized Se-NPs exhibited higher effectiveness against Gram-positive bacteria than Gram-negative bacteria. Moreover, the biosynthesized Se-NPs from BG11 had higher antioxidant activity with IC50 of 60 ± 0.7 compared to 75% BFCE medium. Further, Se-NPs biosynthesized from phycocyanin extracted from Leptolyngbya sp cultivated on 75% BFCE exhibited strong anticancer activity with IC50 of 17.31 ± 0.63 µg/ml against the human breast cancer cell line. CONCLUSIONS: The BFCE-supplemented medium can be used for the cultivation of cyanobacterial strain for the phycocyanin accumulation that is used for the green synthesis of selenium nanoparticles that have biological applications.


Assuntos
Ficocianina , Selênio , Ficocianina/biossíntese , Ficocianina/metabolismo , Selênio/metabolismo , Selênio/química , Cianobactérias/metabolismo , Humanos , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Antibacterianos/química , Nanopartículas Metálicas/química , Beta vulgaris/química , Nanopartículas/química , Resíduos Industriais/análise
4.
Bioresour Technol ; 407: 131142, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043277

RESUMO

In this study, a sustainable and environmentally friendly method was developed for the enrichment and purification of phycocyanin from Spirulina platensis. This was achieved by utilizing a temperature-sensitive polymer, Pluronic F68, in an aqueous two-phase solvent system. The phase behavior of the temperature-sensitive polymer-based biphasic system was evaluated. The extraction conditions were optimized by both single-factor experiments and response surface methodology. Under the optimal conditions, the upper polymer-rich phase was recycled for sustainable phycocyanin extraction, resulting in a grade of 3.23 during the third extraction cycle. Pluronic F68 could be efficiently recovered and reused during the extraction process. The interaction mechanism between Pluronic F68 and phycocyanin was systematically studied using FT-IR and fluorescence analysis. This was further complemented by static and dynamic calculation of molecular motion through molecular docking and molecular dynamics simulation, indicating that hydrophobic segment of Pluronic F68 played a key role in the binding process with phycocyanin.


Assuntos
Química Verde , Ficocianina , Poloxâmero , Spirulina , Temperatura , Ficocianina/química , Ficocianina/isolamento & purificação , Spirulina/química , Poloxâmero/química , Química Verde/métodos , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Polímeros/química , Simulação de Dinâmica Molecular
5.
Arch Pharm Res ; 47(7): 659-674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39039254

RESUMO

Pulmonary fibrosis is a chronic and irreversible progressive lung disease caused by various factors, such as age and environmental pollution. With countries stepping into an aging society and the seriousness of environmental pollution caused by global industrialization, the incidence of pulmonary fibrosis is annually increasing. However, no effective drug is available for pulmonary fibrosis treatment. C-phycocyanin (C-PC), extracted from blue-green algae, has good water solubility and antioxidation. This study elucidated that C-PC reinforces autophagy to block pulmonary fibrogenesis by inhibiting long noncoding RNA (lncRNA) biogenesis in vivo and in vitro. Cleavage under targets and release using nuclease (CUT & RUN)-PCR, co-immunoprecipitation (Co-IP), and nuclear-cytoplasmic separation experiments clarified that C-PC blocked the nuclear translocation of activating transcription factor 3 (ATF3) to prevent the binding between ATF3 and transcription factor Smad3, thereby hindering lncIAPF transcription. Human antigen R (HuR) truncation experiment and RNA binding protein immunoprecipitation (RIP) were then performed to identify the binding domain with lncIAPF in the 244-322 aa of HuR. lncIAPF exerted its profibrogenic function through the binding protein HuR, a negative regulator of autophagy. In summary, C-PC promoted autophagy via down-regulating the lncIAPF-HuR-mediated signal pathway to alleviate pulmonary fibrosis, showing its potential as a drug for treating pulmonary fibrosis. Exploring how C-PC interacts with biological molecules will help us understand the mechanism of this drug and provide valuable target genes to design new drugs.


Assuntos
Autofagia , Ficocianina , Fibrose Pulmonar , RNA Longo não Codificante , Autofagia/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ficocianina/farmacologia , Ficocianina/química , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Humanos , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL
6.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000141

RESUMO

Asthma is a chronic immunological disease related to oxidative stress and chronic inflammation; both processes promote airway remodeling with collagen deposition and matrix thickening, causing pulmonary damage and lost function. This study investigates the immunomodulation of C-phycocyanin (CPC), a natural blue pigment purified from cyanobacteria, as a potential alternative treatment to prevent the remodeling process against asthma. We conducted experiments using ovalbumin (OVA) to induce asthma in Sprague Dawley rats. Animals were divided into five groups: (1) sham + vehicle, (2) sham + CPC, (3) asthma + vehicle, (4) asthma + CPC, and (5) asthma + methylprednisolone (MP). Our findings reveal that asthma promotes hypoxemia, leukocytosis, and pulmonary myeloperoxidase (MPO) activity by increasing lipid peroxidation, reactive oxygen and nitrogen species, inflammation associated with Th2 response, and airway remodeling in the lungs. CPC and MP treatment partially prevented these physiological processes with similar action on the biomarkers evaluated. In conclusion, CPC treatment enhanced the antioxidant defense system, thereby preventing oxidative stress and reducing airway inflammation by regulating pro-inflammatory and anti-inflammatory cytokines, consequently avoiding asthma-induced airway remodeling.


Assuntos
Remodelação das Vias Aéreas , Asma , Modelos Animais de Doenças , Ovalbumina , Estresse Oxidativo , Ficocianina , Ratos Sprague-Dawley , Animais , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Asma/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Ovalbumina/efeitos adversos , Ratos , Remodelação das Vias Aéreas/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Masculino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Citocinas/metabolismo
7.
ACS Synth Biol ; 13(8): 2391-2401, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39038807

RESUMO

Phycobilisomes (PBSs) are light-harvesting antenna complexes in cyanobacteria that adapt to diverse light environments through the use of phycobiliproteins within the PBS structures. Freshwater cyanobacteria, such as Synechococcus elongatus PCC 7942, thrive under red light because of the presence of phycocyanin (PC) and its chromophore, phycocyanobilin (PCB), in the PBS. Cyanobacteria in shorter-wavelength light environments such as green light, employ phycoerythrin paired with phycoerythrobilin (PEB) along with PC in the PBS. Synthetic biology studies have shown that PEB production can be achieved by expression of the heterologous PEB synthases 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA) and PEB:ferredoxin oxidoreductase (PebB), leading to PEB accumulation and cellular browning. This approach is genetically unstable, and the properties of the resulting PEB-bound PBS complexes remain uncharacterized. In this study, we engineered a novel strain of Synechococcus 7942 PEB1 with finely tuned control of PEB biosynthesis. PEB1 exhibited a reversible change in the color of the culture from green to brown and pink based on PebA and PebB induction levels. High induction led to complete PCB-to-PEB substitution, causing the disassembly of the PBS rod complex. In contrast, low induction levels of PebA and PebB resulted in the formation of a stable chimeric PBS complex with partial PCB-to-PEB substitution. This acclimation enabled efficient light harvesting in the green spectrum and energy transfer to the photosynthetic reaction center. These findings, which improve our understanding of PBS and highlight the structural importance of the bilin composition, provide a foundation for future studies on PBS adaptation in bioengineering, synthetic biology, and renewable energy.


Assuntos
Proteínas de Bactérias , Ficobiliproteínas , Ficobilissomas , Ficocianina , Synechococcus , Synechococcus/metabolismo , Synechococcus/genética , Ficobilissomas/metabolismo , Ficobiliproteínas/metabolismo , Ficobiliproteínas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ficocianina/metabolismo , Ficocianina/genética , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Ficoeritrina/química , Pigmentos Biliares/metabolismo , Luz , Biologia Sintética/métodos , Cianobactérias/metabolismo , Cianobactérias/genética
8.
Protein Sci ; 33(8): e5132, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39072823

RESUMO

Cyanobacteriochromes (CBCRs) are unique cyanobacteria-specific photoreceptors that share a distant relation with phytochromes. Most CBCRs contain conserved cysteine residues known as canonical Cys, while some CBCRs have additional cysteine residues called second Cys within the DXCF motif, leading to their classification as DXCF CBCRs. They typically undergo a process where they incorporate phycocyanobilin (PCB) and subsequently isomerize it to phycoviolobilin (PVB). Conversely, CBCRs with conserved Trp residues and without the second Cys are called extended red/green (XRG) CBCRs. Typical XRG CBCRs bind PCB without undergoing PCB-to-PVB isomerization, displaying red/green reversible photoconversion, and there are also atypical CBCRs that exhibit diverse photoconversions. We discovered novel XRG CBCRs with Cys residue instead of the conserved Trp residue. These novel XRG CBCRs exhibited the ability to isomerize PCB to PVB, displaying green/teal reversible photoconversion. Through sequence- and structure-based comparisons coupled with mutagenesis experiments, we identified three amino acid residues, including the Cys residue, crucial for facilitating PCB-to-PVB isomerization. This research expands our understanding of the diversity of XRG CBCRs, highlighting the remarkable molecular plasticity of CBCRs.


Assuntos
Proteínas de Bactérias , Cianobactérias , Ficobilinas , Ficocianina , Ficobilinas/química , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Cianobactérias/metabolismo , Cianobactérias/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Isomerismo , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/metabolismo , Fotorreceptores Microbianos/genética
9.
Nutrients ; 16(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892686

RESUMO

Arthrospira platensis, commonly known as Spirulina, is a photosynthetic filamentous cyanobacterium (blue-green microalga) that has been utilized as a food source since ancient times. More recently, it has gained significant popularity as a dietary supplement due to its rich content of micro- and macro-nutrients. Of particular interest is a water soluble phycobiliprotein derived from Spirulina known as phycocyanin C (C-PC), which stands out as the most abundant protein in this cyanobacterium. C-PC is a fluorescent protein, with its chromophore represented by the tetrapyrrole molecule phycocyanobilin B (PCB-B). While C-PC is commonly employed in food for its coloring properties, it also serves as the molecular basis for numerous nutraceutical features associated with Spirulina. Indeed, the comprehensive C-PC, and to some extent, the isolated PCB-B, has been linked to various health-promoting effects. These benefits encompass conditions triggered by oxidative stress, inflammation, and other pathological conditions. The present review focuses on the bio-pharmacological properties of these molecules, positioning them as promising agents for potential new applications in the expanding nutraceutical market.


Assuntos
Suplementos Nutricionais , Ficocianina , Spirulina , Spirulina/química , Ficocianina/farmacologia , Humanos , Ficobilinas/farmacologia , Ficobiliproteínas , Estresse Oxidativo/efeitos dos fármacos
10.
Mar Drugs ; 22(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38921557

RESUMO

Cyanobacterial phycocyanin pigment is widely utilized for its properties in various industries, including food, cosmetics, and pharmaceuticals. Despite its potential, challenges exist, such as extraction methods impacting yield, stability, and purity. This study investigates the impact of the number of freeze-thaw (FT) cycles on the extraction of phycocyanin from the wet biomass of four cyanobacteria species (Arthrospira platensis, Chlorogloeopsis fritschii, Phormidium sp., and Synechocystis sp.), along with the impact of five extraction solutions (Tris-HCl buffer, phosphate buffer, CaCl2, deionized water, and tap water) at various pH values. Synechocystis sp. exhibited the highest phycocyanin content among the studied species. For A. platensis, Tris-HCl buffer yielded maximum phycocyanin concentration from the first FT cycle, while phosphate buffer provided satisfactory results from the second cycle. Similarly, Tris-HCl buffer showed promising results for C. fritschii (68.5% of the maximum from the first cycle), with the highest concentration (~12% w/w) achieved during the seventh cycle, using phosphate buffer. Phormidium sp. yielded the maximum pigment concentration from the first cycle using tap water. Among species-specific optimal extraction solutions, Tris-HCl buffer demonstrated sufficient extraction efficacy for all species, from the first cycle. This study represents an initial step toward establishing a universal extraction method for phycocyanin from diverse cyanobacteria species.


Assuntos
Biomassa , Cianobactérias , Ficocianina , Solventes , Ficocianina/isolamento & purificação , Ficocianina/química , Cianobactérias/química , Solventes/química , Congelamento , Concentração de Íons de Hidrogênio
11.
Bioresour Technol ; 406: 131052, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944314

RESUMO

Cyanobacteria hold promise for simultaneous carbon capture and chemicals production, but the regulation and effect of nitrogen (N) and phosphorus (P) remains unclear. This study investigates major productions of glycogen, protein, and C-phycocyanin (C-PC) in Cyanobacterium aponinum PCC10605 under different N/P levels, alongside changes in light and CO2. Increasing nitrate (NO3-) from 2 to 6 mM resulted in a 9.7-fold increase in C-PC and reduced glycogen to 8.9 %. On the other hand, elevating phosphorus from 0.1 to 2 mM under limited nitrogen enhanced biomass and glycogen through the upregulation of carbonic anhydrase, ADP-glucose pyrophosphorylase, and glycogen phosphorylase. Changes in phosphorus levels and CO2 inlet concentrations affected metabolites accumulation and carbon capture efficiency, leading to the best condition of 76 % uptake capacity in direct air capture (DAC). All findings underscore the trade-off between glycogen and protein, representing the importance of N/P levels in nutrient modulation of PCC10605.


Assuntos
Cianobactérias , Glicogênio , Nitrogênio , Fósforo , Glicogênio/metabolismo , Nitrogênio/metabolismo , Cianobactérias/metabolismo , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Biomassa , Ficocianina/metabolismo , Anidrases Carbônicas/metabolismo , Nitratos/metabolismo
12.
Int J Biol Macromol ; 274(Pt 2): 133407, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925190

RESUMO

Cyanobacteriochromes (CBCRs) are distinctive tetrapyrrole (bilin)-binding photoreceptors exclusively found in cyanobacteria. Unlike canonical phytochromes, CBCRs require only a GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domain for autolyase activity to form a bilin adduct via a Cys residue and cis-trans photoisomerization. Apart from the canonical Cys, which attaches covalently to C31 in the A-ring of the bilin, some GAF domains of CBCRs contain a second-Cys in the Asp-Xaa-Cys-Phe (DXCF) motif, responsible for isomerization of phycocyanobilin (PCB) to phycoviolobilin (PVB) and/or for the formation of a reversible 2nd thioether linkage to the C10. Unlike green/teal-absorbing GAF proteins lacking ligation activity, the second-Cys in another teal-absorbing lineage (DXCF blue/teal group) exhibits both isomerization and ligation activity due to the presence of the Tyr instead of His next to the canonical Cys. Herein, we discovered an atypical CBCR GAF protein, Tpl7205g1, belonging to the DXCF blue/teal group, but having His instead of Tyr next to the first-Cys. Consistent with its subfamily, the second-Cys of Tpl7205g1 did not form a thioether linkage at C10 of PCB, showing only isomerization activity. Instead of forming 2nd thioether linkage, this novel GAF protein exhibits a pH-dependent photocycle between protonated 15Z and deprotonated 15E. Site-directed mutagenesis to the GAF scaffolds revealed its combined characteristics, including properties of teal-DXCF CBCRs and red/green-absorbing CBCRs (XRG CBCRs), suggesting itself as the evolutionary bridge between the two CBCR groups. Our study thus sheds light on the expanded spectral tuning characteristics of teal-light absorbing CBCRs and enhances feasibility of engineering these photoreceptors.


Assuntos
Proteínas de Bactérias , Cianobactérias , Optogenética , Fotorreceptores Microbianos , Fitocromo , Fitocromo/química , Fitocromo/metabolismo , Fitocromo/genética , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Cianobactérias/metabolismo , Cianobactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Optogenética/métodos , Luz , Ficocianina/química , Ficocianina/metabolismo , Engenharia de Proteínas/métodos , Ficobilinas/química , Ficobilinas/metabolismo , Sequência de Aminoácidos
13.
Int J Biol Macromol ; 274(Pt 1): 133327, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908620

RESUMO

Adding natural bioactive ingredients to yogurt can improve the nutritional and physiological benefits. In this study, we used ultrasonic-assisted phlorotannin from Ascophyllum nodosum (A. nodosum) modified phycocyanin (PC) to form a complex (UPP) to produce a fortified fermented yogurt. The effects of PC and UPP on the structure, stability, and function of fermented yogurt within 7 days were assessed using physicochemical properties, texture analysis, rheological testing, 16S rDNA sequencing analysis, and lipidomics analysis. Molecular docking indicated that PC might bind to phlorotannin via ARG-77, ARG-84, LEU-120, ALA-81, CYS-82, and ASP-85 sites.When the mass ratio of the complex is 1:1, the ability of UPP1:1 to remove DPPH· scavenging ability in an acid environment increased by about 50 %. UPP1:1 with more acid stability changed the microstructure of the yogurt, enhanced the stability of the yogurt, improved the antioxidant properties, and inhibited the growth of harmful bacteria within 7 days. This work encouraged the extraction and use of phlorotannin from edible brown algae and offered a straightforward method for making yogurt supplemented with PC.


Assuntos
Antioxidantes , Ficocianina , Taninos , Iogurte , Iogurte/microbiologia , Ficocianina/química , Taninos/química , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Fermentação , Ascophyllum/química , Reologia
14.
Mol Biol Rep ; 51(1): 741, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874869

RESUMO

Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/ß-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.


Assuntos
Neoplasias Gastrointestinais , Ficocianina , Humanos , Ficocianina/farmacologia , Ficocianina/uso terapêutico , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/metabolismo
15.
J Biotechnol ; 391: 64-71, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38844247

RESUMO

We investigated suitable culture conditions for the production of the blue pigment phycocyanin (PC) from the unique filamentous cyanobacteria Pseudanabaena sp. ABRG5-3 and Limnothrix sp. SK1-2-1. White, green, or red LED irradiation at 30 µmol photons/m2/s was effective for phycocyanin production when compared with Arthrospira platensis (Spirulina) sp. NIES-39, which is generally grown under high light irradiation. To investigate the safety of the cyanobacteria, ABRG5-3 cells were subjected to Ames (reverse mutation) tests and single oral-dose rat studies, which revealed non-mutagenic and non-toxic properties. When three purified phycocyanins (abPC, skPC, and spPC) were subjected to agarose gel electrophoresis, they showed different mobility, indicating that each phycocyanin has unique properties. abPC exhibited strong antiglycation activities as novel function.


Assuntos
Cianobactérias , Ficocianina , Ficocianina/farmacologia , Cianobactérias/metabolismo , Animais , Ratos , Glicosilação , Masculino , Testes de Mutagenicidade
16.
Adv Mater ; 36(33): e2401974, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889229

RESUMO

Currently, sonodynamic therapy (SDT) has limited therapeutic outcomes and immune responses, highlighting the urgent need for enhanced strategies that can stimulate robust and long-lasting antitumor effects. Microcystis, a notorious microalga, reveals the possibility of mediating SDT owing to the presence of gas vesicles (GVs) and phycocyanin (PC). Herein, a nontoxic strain of Microcystis elabens (labeled Me) is developed as a novel agent for SDT because it generates O2 under red light (RL) illumination, while GVs and PC act as cavitation nuclei and sonosensitizers, respectively. Moreover, algal debris is released after ultrasound (US) irradiation, which primes the Toll-like receptor pathway to initiate a cascade of immune responses. This sono-immune strategy inhibits CT26 colon tumor growth largely by promoting dendritic cell (DC) maturation and cytotoxic T-cell activation. After combination with the immune checkpoint blockade (ICB), the therapeutic outcome is further amplified, accompanied by satisfactory abscopal and immune memory effects; the similar potency is proven in the "cold" 4T1 triple-negative breast tumor. In addition, Me exhibits good biosafety without significant acute or chronic toxicity. Briefly, this study turns waste into wealth by introducing sono-immunotherapy based on Microcystis that achieved encouraging therapeutic effects on cancer, which is expected to be translated into the clinic.


Assuntos
Microcystis , Animais , Camundongos , Linhagem Celular Tumoral , Terapia por Ultrassom/métodos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Ficocianina/química , Ficocianina/farmacologia , Imunoterapia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia
17.
Arch Microbiol ; 206(6): 258, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735006

RESUMO

Phycocyanin, a blue-coloured pigment, predominantly found and derived from Spirulina sp., has gained researchers' interest due to its vibrant hues and other attractive properties like antioxidant and anti-microbial. However, the lack of reliable and sustainable phycocyanin extraction strategies without compromising the quality has hindered the scaling up of its production processes for commercial purposes. Here in this study, phycocyanin was extracted from wet and dry biomass Spirulina sp., using three different physical cell disruption methods (ultrasonication, homogenization, and freeze-thaw cycles) combined with two different buffers (phosphate buffer and acetate buffer) and water (as control). The result showed that the freeze-thaw method combined with acetate buffer produced the highest yield (25.013 ± 2.572 mg/100 mg) with a purity ratio of 0.806 ± 0.079. Furthermore, when subjected to 30% w/v salt stress, 1.9 times higher phycocyanin yield with a purity ratio of 1.402 ± 0.609 was achieved using the previously optimized extraction method.


Assuntos
Ficocianina , Estresse Salino , Spirulina , Ficocianina/metabolismo , Ficocianina/isolamento & purificação , Spirulina/metabolismo , Spirulina/química , Biomassa , Congelamento
18.
Int J Biol Macromol ; 269(Pt 2): 131969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697419

RESUMO

In this study, different concentrations of sodium alginate were compounded with pectin and phycocyanin to co-prepare composite hydrogel spheres (HP-PC-SA 0.2 %, 0.6 %, 1.0 %, 1.4 %) to evaluate the potential of the composite hydrogel spheres for the application as phycocyanin delivery carriers. The hydrogel spheres' physicochemical properties and bioaccessibility were assessed through scanning electron microscopy, textural analysis, drug-carrying properties evaluation, and in vitro and in vivo controlled release analysis in the gastrointestinal environment. Results indicated that higher sodium alginate concentrations led to smaller pore sizes and denser networks on the surface of hydrogel spheres. The textural properties of hydrogel spheres improved, and their water-holding capacity increased from 93.01 % to 97.97 %. The HP-PC-SA (1.0 %) formulation achieved the highest encapsulation rate and drug loading capacity, at 96.87 % and 6.22 %, respectively. Within the gastrointestinal tract, the composite hydrogel's structure significantly enhanced and protected the phycocyanin's digestibility, achieving a bioaccessibility of up to 88.03 %. In conclusion, our findings offer new insights into improving functionality and the effective use of phycocyanin via pectin-based hydrogel spheres.


Assuntos
Alginatos , Portadores de Fármacos , Hidrogéis , Pectinas , Ficocianina , Alginatos/química , Pectinas/química , Ficocianina/química , Hidrogéis/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Disponibilidade Biológica , Animais
19.
J Agric Food Chem ; 72(21): 12219-12228, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747135

RESUMO

Phycocyanobilin, an algae-originated light-harvesting pigment known for its antioxidant properties, has gained attention as it plays important roles in the food and medication industries and has surged in demand owing to its low-yield extraction from natural resources. In this study, engineered Corynebacterium glutamicum was developed to achieve high PCB production, and three strategies were proposed: reinforcement of the heme biosynthesis pathway with the introduction of two PCB-related enzymes, strengthening of the pentose phosphate pathway to generate an efficient cycle of NADPH, and fed-batch fermentation to maximize PCB production. Each approach increased PCB synthesis, and the final engineered strain successfully produced 78.19 mg/L in a flask and 259.63 mg/L in a 5 L bioreactor, representing the highest bacterial production of PCB reported to date, to our knowledge. The strategies applied in this study will be useful for the synthesis of PCB derivatives and can be applied in the food and pharmaceutical industries.


Assuntos
Corynebacterium glutamicum , Engenharia Metabólica , Ficobilinas , Ficocianina , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Ficocianina/metabolismo , Ficocianina/genética , Ficobilinas/metabolismo , Ficobilinas/genética , Fermentação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Via de Pentose Fosfato/genética , Reatores Biológicos/microbiologia
20.
Photodiagnosis Photodyn Ther ; 47: 104108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697450

RESUMO

AIMS: To assess the impact of various cavity disinfectants PC-PDT (Phycocyanin activated by Photodynamic therapy), PC@AgNPs-PDT (Phycocyanin and silver nanoparticles activated by PDT), and Nd: YAG laser on the survival rate of S.mutans and the bond integrity of composite restoration METHODS: Sixty human mandibular molars that scored 4 and 5 based on ICDAS criteria were included. The infected dentin was removed while the CAD was preserved based on visual, tactile, and staining assessment. S.mutans were cultured on the CAD of twenty samples. All the specimens were indiscriminately distributed into four groups based on cavity disinfection (n=20 each includes n = 5 each group incubated with S.mutans) Group 1: CHX, Group 2: Nd:YAG laser, Group 3: PC-PDT and Group 4: PC@AgNPs-PDT. S.mutans survival rate was assessed for each group(n = 5). Forty samples underwent composite bonding for SBS and failure mode assessment using universal testing machine (UTM) and stereomicroscope. The calculations for the mean and standard deviation (SD) and their comparison among different groups were performed using a one-way analysis of variance (ANOVA) and the Tukey post hoc test (p ≤ 0.05) RESULTS: CAD surface treated disinfected with PC@AgNPs-PDT yielded the lowest survival rates (0.13 ± 0.05 CFU/ml) and highest SBS (17.23 ± 1.45 MPa). Group 1 (CHX) unveiled the highest survival rate of S.mutans (0.33 ± 0.12 CFU/ml). However, Group 2 (Nd:YAG Laser) (11.87 ± 0.67 MPa) presented the lowest SBS CONCLUSION: The combination of Phycocyanin loaded with silver nanoparticles and activated with Photodynamic therapy demonstrates the highest antimicrobial potential and bond strength of composite restorations.


Assuntos
Cárie Dentária , Dentina , Lasers de Estado Sólido , Nanopartículas Metálicas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ficocianina , Prata , Streptococcus mutans , Fotoquimioterapia/métodos , Prata/farmacologia , Prata/uso terapêutico , Humanos , Streptococcus mutans/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Ficocianina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Lasers de Estado Sólido/uso terapêutico , Cárie Dentária/microbiologia , Cárie Dentária/tratamento farmacológico , Dentina/efeitos dos fármacos , Dentina/microbiologia , Desinfecção/métodos , Resistência ao Cisalhamento , Dente Molar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...