Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.797
Filtrar
1.
PeerJ ; 12: e17450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860210

RESUMO

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Assuntos
Microbioma Gastrointestinal , Larva , RNA Ribossômico 16S , Spodoptera , Animais , Microbioma Gastrointestinal/genética , Spodoptera/microbiologia , Spodoptera/genética , Larva/microbiologia , RNA Ribossômico 16S/genética , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Enterococcus/genética , Bacteroides/genética , Simbiose
2.
PLoS One ; 19(5): e0302522, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758940

RESUMO

Paddlefish has high economic and ecological value. In this study, microbial diversity and community structure in intestine, stomach, and mouth of paddlefish were detected using high-throughput sequencing. The results showed that the diversity and richness indices decreased along the digestive tract, and significantly lower proportion of those were observed in intestine. Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla. In top 10 phyla, there was no significant difference in mouth and stomach. But compared with intestine, there were significant differences in 8 of the 10 phyla, and Firmicutes and Bacteroidetes increased significantly, while Proteobacteria decreased significantly. There was no dominant genus in mouth and stomach, but Clostridium_sensu_stricto_1 and uncultured_bacterium_o_Bacteroidales was predominant in intestine. In conclusion, the species and abundance of microbiota in the mouth and stomach of paddlefish were mostly the same, but significantly different from those in intestine. Moreover, there was enrichment of the dominant bacteria in intestine.


Assuntos
Peixes , Microbioma Gastrointestinal , Animais , Peixes/microbiologia , Trato Gastrointestinal/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Boca/microbiologia , Estômago/microbiologia , Proteobactérias/isolamento & purificação , Proteobactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Intestinos/microbiologia , Bacteroidetes/isolamento & purificação , Bacteroidetes/genética , Firmicutes/isolamento & purificação , Firmicutes/genética , Firmicutes/classificação , RNA Ribossômico 16S/genética , Biodiversidade
3.
Mol Biol Rep ; 51(1): 504, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616219

RESUMO

BACKGROUND: Mycobacterium leprae causes leprosy that is highly stigmatized and chronic infectious skin disease. Only some diagnostic tools are being used for the identification M. leprae in clinical samples, such as bacillary detection, and histopathological tests. These methods are invasive and often have low sensitivity. Currently, the PCR technique has been used as an effective tool fordetecting M. leprae DNA across different clinical samples. The current study aims to detect M. leprae DNA in urine samples of untreated and treated leprosy patients using the Rlep gene (129 bp) and compared the detection among Ridley-Jopling Classification. METHODS: Clinical samples (Blood, Urine, and Slit Skin Smears (SSS)) were collected from leprosy and Non-leprosy patients. DNA extraction was performed using standard laboratory protocol and Conventional PCR was carried out for all samples using Rlep gene target and the amplicons of urine samples were sequenced by Sanger sequencing to confirm the Rlep gene target. RESULTS: The M. leprae DNA was successfully detected in all clinical samples across all types of leprosy among all the study groups using RLEP-PCR. Rlep gene target was able to detect the presence of M. leprae DNA in 79.17% of urine, 58.33% of blood, and 50% of SSS samples of untreated Smear-Negative leprosy patients. The statistical significant difference (p = 0.004) was observed between BI Negative (Slit Skin Smear test) and RLEP PCR positivity in urine samples of untreated leprosy group. CONCLUSION: The PCR positivity using Rlep gene target (129 bp) was highest in all clinical samples among the study groups, across all types of leprosy. Untreated tuberculoid and PNL leprosy patients showed the highest PCR positivity in urine samples, indicating its potential as a non-invasive diagnostic tool for leprosy and even for contact screening.


Assuntos
Bacillus , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Pele , Firmicutes , Reação em Cadeia da Polimerase
4.
Nutrients ; 16(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612976

RESUMO

The gut microbiota is a dynamic ecosystem that plays a pivotal role in maintaining host health. The perturbation of these microbes has been linked to several health conditions. Hence, they have emerged as promising targets for understanding and promoting good health. Despite the growing body of research on the role of sodium in health, its effects on the human gut microbiome remain under-explored. Here, using nutrition and metagenomics methods, we investigate the influence of dietary sodium intake and alterations of the human gut microbiota. We found that a high-sodium diet (HSD) altered the gut microbiota composition with a significant reduction in Bacteroides and inverse increase in Prevotella compared to a low-sodium diet (LSD). However, there is no clear distinction in the Firmicutes/Bacteroidetes (F/B) ratio between the two diet types. Metabolic pathway reconstruction revealed the presence of sodium reabsorption genes in the HSD, but not LSD. Since it is currently difficult in microbiome studies to confidently associate the F/B ratio with what is considered healthy (e.g., low sodium) or unhealthy (e.g., high sodium), we suggest that the use of a genus-based ratio such as the Bacteroides/Prevotella (B/P) ratio may be more beneficial for the application of microbiome studies in health.


Assuntos
Microbiota , Cloreto de Sódio na Dieta , Humanos , Bacteroides , Bacteroidetes , Firmicutes , Prevotella , Sódio
5.
BMC Microbiol ; 24(1): 124, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622529

RESUMO

BACKGROUND: Severe burns may alter the stability of the intestinal flora and affect the patient's recovery process. Understanding the characteristics of the gut microbiota in the acute phase of burns and their association with phenotype can help to accurately assess the progression of the disease and identify potential microbiota markers. METHODS: We established mouse models of partial thickness deep III degree burns and collected faecal samples for 16 S rRNA amplification and high throughput sequencing at two time points in the acute phase for independent bioinformatic analysis. RESULTS: We analysed the sequencing results using alpha diversity, beta diversity and machine learning methods. At both time points, 4 and 6 h after burning, the Firmicutes phylum content decreased and the content of the Bacteroidetes phylum content increased, showing a significant decrease in the Firmicutes/Bacteroidetes ratio compared to the control group. Nine bacterial genera changed significantly during the acute phase and occupied the top six positions in the Random Forest significance ranking. Clustering results also clearly showed that there was a clear boundary between the communities of burned and control mice. Functional analyses showed that during the acute phase of burn, gut bacteria increased lipoic acid metabolism, seleno-compound metabolism, TCA cycling, and carbon fixation, while decreasing galactose metabolism and triglyceride metabolism. Based on the abundance characteristics of the six significantly different bacterial genera, both the XGboost and Random Forest models were able to discriminate between the burn and control groups with 100% accuracy, while both the Random Forest and Support Vector Machine models were able to classify samples from the 4-hour and 6-hour burn groups with 86.7% accuracy. CONCLUSIONS: Our study shows an increase in gut microbiota diversity in the acute phase of deep burn injury, rather than a decrease as is commonly believed. Severe burns result in a severe imbalance of the gut flora, with a decrease in probiotics and an increase in microorganisms that trigger inflammation and cognitive deficits, and multiple pathways of metabolism and substance synthesis are affected. Simple machine learning model testing suggests several bacterial genera as potential biomarkers of severe burn phenotypes.


Assuntos
Queimaduras , Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Bactérias/genética , Firmicutes/genética , RNA Ribossômico 16S/genética
6.
PLoS One ; 19(4): e0301110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568936

RESUMO

The present study was undertaken to profile and compare the cecal microbial communities in conventionally (CONV) grown and raised without antibiotics (RWA) broiler chickens. Three hundred chickens were collected from five CONV and five RWA chicken farms on days 10, 24, and 35 of age. Microbial genomic DNA was extracted from cecal contents, and the V4-V5 hypervariable regions of the 16S rRNA gene were amplified and sequenced. Analysis of 16S rRNA sequence data indicated significant differences in the cecal microbial diversity and composition between CONV and RWA chickens on days 10, 24, and 35 days of age. On days 10 and 24, CONV chickens had higher richness and diversity of the cecal microbiome relative to RWA chickens. However, on day 35, this pattern reversed such that RWA chickens had higher richness and diversity of the cecal microbiome than the CONV groups. On days 10 and 24, the microbiomes of both CONV and RWA chickens were dominated by members of the phylum Firmicutes. On day 35, while Firmicutes remained dominant in the RWA chickens, the microbiome of CONV chickens exhibited am abundance of Bacteroidetes. The cecal microbiome of CONV chickens was enriched with the genus Faecalibacterium, Pseudoflavonifractor, unclassified Clostridium_IV, Bacteroides, Alistipes, and Butyricimonas, whereas the cecal microbiome of RWA chickens was enriched with genus Anaerofilum, Butyricicoccu, Clostridium_XlVb and unclassified Lachnospiraceae. Overall, the cecal microbiome richness, diversity, and composition were greatly influenced by the management program applied in these farms. These findings provide a foundation for further research on tailoring feed formulation or developing a consortium to modify the gut microbiome composition of RWA chickens.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbioma Gastrointestinal/genética , Galinhas/microbiologia , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Ceco/microbiologia , Firmicutes/genética , Bacteroidetes/genética
7.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612823

RESUMO

Western diets are rich in gluten-containing products, which are frequently poorly digested. The human large intestine harbors microorganisms able to metabolize undigested gluten fragments that have escaped digestion by human enzymatic activities. The aim of this work was obtaining and culturing complex human gut microbial communities derived from gluten metabolism to model the dynamics of healthy human large intestine microbiota associated with different gluten forms. For this purpose, stool samples from six healthy volunteers were inoculated in media containing predigested gluten or predigested gluten plus non-digested gluten. Passages were carried out every 24 h for 15 days in the same medium and community composition along time was studied via V3-V4 16S rDNA sequencing. Diverse microbial communities were successfully obtained. Moreover, communities were shown to be maintained in culture with stable composition for 14 days. Under non-digested gluten presence, communities were enriched in members of Bacillota, such as Lachnospiraceae, Clostridiaceae, Streptococcaceae, Peptoniphilaceae, Selenomonadaceae or Erysipelotrichaceae, and members of Actinomycetota, such as Bifidobacteriaceae and Eggerthellaceae. Contrarily, communities exposed to digested gluten were enriched in Pseudomonadota. Hence, this study shows a method for culture and stable maintenance of gut communities derived from gluten metabolism. This method enables the analysis of microbial metabolism of gluten in the gut from a community perspective.


Assuntos
Actinobacteria , Microbioma Gastrointestinal , Microbiota , Humanos , Firmicutes , Clostridiales , Glutens
8.
Front Cell Infect Microbiol ; 14: 1331521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440790

RESUMO

Introduction: The link between gut microbiota and host immunity motivated numerous studies of the gut microbiome in tuberculosis (TB) patients. However, these studies did not explore the metabolic capacity of the gut community, which is a key axis of impact on the host's immunity. Methods: We used deep sequencing of fecal samples from 23 treatment-naive TB patients and 48 healthy donors to reconstruct the gut microbiome's metabolic capacity and strain/species-level content. Results: We show that the systematic depletion of the commensal flora of the large intestine, Bacteroidetes, and an increase in Actinobacteria, Firmicutes, and Proteobacteria such as Streptococcaceae, Erysipelotrichaceae, Lachnospiraceae, and Enterobacteriaceae explains the strong taxonomic divergence of the gut community in TB patients. The cumulative expansion of diverse disease-associated pathobionts in patients reached 1/4 of the total gut microbiota, suggesting a heavy toll on host immunity along with MTB infection. Reconstruction of metabolic pathways showed that the microbial community in patients shifted toward rapid growth using glycolysis and excess fermentation to produce acetate and lactate. Higher glucose availability in the intestine likely drives fermentation to lactate and growth, causing acidosis and endotoxemia. Discussion: Excessive fermentation and lactic acidosis likely characterize TB patients' disturbed gut microbiomes. Since lactic acidosis strongly suppresses the normal gut flora, directly interferes with macrophage function, and is linked to mortality in TB patients, our findings highlight gut lactate acidosis as a novel research focus. If confirmed, gut acidosis may be a novel potential host-directed treatment target to augment traditional TB treatment.


Assuntos
Acidose Láctica , Microbioma Gastrointestinal , Humanos , Fermentação , Ácido Láctico , Glicólise , Firmicutes
9.
Appl Microbiol Biotechnol ; 108(1): 247, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427084

RESUMO

Host and tissue-specificity of endophytes are important attributes that limit the endophyte application on multiple crops. Therefore, understanding the endophytic composition of the targeted crop is essential, especially for the dioecious plants where the male and female plants are different. Here, efforts were made to understand the endophytic bacterial composition of the dioecious Siraitia grosvenorii plant using 16S rRNA amplicon sequencing. The present study revealed the association of distinct endophytic bacterial communities with different parts of male and female plants. Roots of male and female plants had a higher bacterial diversity than other parts of plants, and the roots of male plants had more bacterial diversity than the roots of female plants. Endophytes belonging to the phylum Proteobacteria were abundant in all parts of male and female plants except male stems and fruit pulp, where the Firmicutes were most abundant. Class Gammaproteobacteria predominated in both male and female plants, with the genus Acinetobacter as the most dominant and part of the core microbiome of the plant (present in all parts of both, male and female plants). The presence of distinct taxa specific to male and female plants was also identified. Macrococcus, Facklamia, and Propionibacterium were the distinct genera found only in fruit pulp, the edible part of S. grosvenorii. Predictive functional analysis revealed the abundance of enzymes of secondary metabolite (especially mogroside) biosynthesis in the associated endophytic community with predominance in roots. The present study revealed bacterial endophytic communities of male and female S. grosvenorii plants that can be further explored for monk fruit cultivation, mogroside production, and early-stage identification of male and female plants. KEY POINTS: • Male and female Siraitia grosvenorii plants had distinct endophytic communities • The diversity of endophytic communities was specific to different parts of plants • S. grosvenorii-associated endophytes may be valuable for mogroside biosynthesis and monk fruit cultivation.


Assuntos
Microbiota , RNA Ribossômico 16S/genética , Bactérias/genética , Firmicutes/genética , Endófitos/genética , Produtos Agrícolas/genética
10.
Medicine (Baltimore) ; 103(9): e37284, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428908

RESUMO

There is increasing evidence that alterations in gut microbiota (GM) composition are associated with autism spectrum disorder (ASD), but no reliable causal relationship has been established. Therefore, a 2-sample Mendelian randomization (MR) study was conducted to reveal a potential causal relationship between GM and ASD. Instrumental variables for 211 GM taxa were obtained from genome-wide association studies (GWAS) and Mendelian randomization studies to estimate their impact on ASD risk in the iPSYCH-PGC GWAS dataset (18,382 ASD cases and 27,969 controls). Inverse variance weighted (IVW) is the primary method for causality analysis, and several sensitivity analyses validate MR results. Among 211 GM taxa, IVW results confirmed that Tenericutes (P value = .0369), Mollicutes (P value = .0369), Negativicutes (P value = .0374), Bifidobacteriales (P value = .0389), Selenomonadales (P value = .0374), Bifidobacteriaceae (P value = .0389), Family XIII (P value = .0149), Prevotella7 (P value = .0215), Ruminococcaceae NK4A214 group (P value = .0205) were potential protective factors for ASD. Eisenbergiella (P value = .0159) was a possible risk factor for ASD. No evidence of heterogeneous, pleiotropic, or outlier single-nucleotide polymorphism was detected. Additionally, further sensitivity analysis verified the robustness of the above results. We confirm a potential causal relationship between certain gut microbes and ASD, providing new insights into how gut microbes mediate ASD. The association between them needs to be further explored and will provide new ideas for the prevention and treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Causalidade , Clostridiales , Firmicutes
11.
Gut Microbes ; 16(1): 2323234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436093

RESUMO

Childhood obesity is linked to maternal smoking during pregnancy. Gut microbiota may partially mediate this association and could be potential targets for intervention; however, its role is understudied. We included 1,592 infants from the Canadian Healthy Infants Longitudinal Development Cohort. Data on environmental exposure and lifestyle factors were collected prenatally and throughout the first three years. Weight outcomes were measured at one and three years of age. Stool samples collected at 3 and 12 months were analyzed by sequencing the V4 region of 16S rRNA to profile microbial compositions and magnetic resonance spectroscopy to quantify the metabolites. We showed that quitting smoking during pregnancy did not lower the risk of offspring being overweight. However, exclusive breastfeeding until the third month of age may alleviate these risks. We also reported that maternal smoking during pregnancy significantly increased Firmicutes abundance and diversity. We further revealed that Firmicutes diversity mediates the elevated risk of childhood overweight and obesity linked to maternal prenatal smoking. This effect possibly occurs through excessive microbial butyrate production. These findings add to the evidence that women should quit smoking before their pregnancies to prevent microbiome-mediated childhood overweight and obesity risk, and indicate the potential obesogenic role of excessive butyrate production in early life.


Assuntos
Microbioma Gastrointestinal , Obesidade Infantil , Criança , Lactente , Gravidez , Feminino , Humanos , Obesidade Infantil/etiologia , RNA Ribossômico 16S/genética , Canadá/epidemiologia , Fumar/efeitos adversos , Butiratos , Firmicutes
12.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473813

RESUMO

Due to their potential application as an alternative to antibiotics, bacteriocins, which are ribosomally synthesized antimicrobial peptides produced by bacteria, have received much attention in recent years. To identify bacteriocins within marine bacteria, most of the studies employed a culture-based method, which is more time-consuming than the in silico approach. For that, the aim of this study was to identify potential bacteriocin gene clusters and their potential producers in 51 marine Bacillota (formerly Firmicutes) genomes, using BAGEL4, a bacteriocin genome mining tool. As a result, we found out that a majority of selected Bacillota (60.78%) are potential bacteriocin producers, and we identified 77 bacteriocin gene clusters, most of which belong to class I bacteriocins known as RiPPs (ribosomally synthesized and post-translationally modified peptides). The identified putative bacteriocin gene clusters are an attractive target for further in vitro research, such as the production of bacteriocins using a heterologous expression system.


Assuntos
Bacteriocinas , Firmicutes , Família Multigênica , Antibacterianos , Peptídeos Antimicrobianos
13.
Nutrients ; 16(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474787

RESUMO

This systematic review aimed to identify different gut microbiome profiles across the human lifespan and to correlate such profiles with the body composition. PubMed, Scopus, and Cochrane were searched from inception to March 2022. Sixty studies were included in this systematic review. Overall, the gut microbiome composition in overweight participants exhibited decreased α-diversity, decreased levels of the phylum Bacteroidetes and its taxa, and increased levels of the phylum Firmicutes, its taxa, and the Firmicutes/Bacteroidetes ratio, in comparison to normal-weight participants. Other body composition parameters showed similar correlations. Fat mass and waist circumference were found to correlate positively with the Firmicutes taxa and negatively with the Bacteroidetes taxa. In contrast, lean body mass and muscle mass demonstrated a positive correlation with the Bacteroidetes taxa. Notably, these correlations were more pronounced in athletes than in obese and normal-weight individuals. The composition of the gut microbiome is evidently different in overweight individuals or athletes of all age groups, with the former tending towards decreased Bacteroidetes taxa and increased Firmicutes taxa, while a reversed relationship is observed concerning athletes. Further studies are needed to explore the dynamic relationship between energy intake, body composition, and the gut microbiome across the human lifespan.


Assuntos
Microbioma Gastrointestinal , Humanos , Sobrepeso , Longevidade , Obesidade , Firmicutes , Bacteroidetes , Composição Corporal
14.
Sci Rep ; 14(1): 6195, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486098

RESUMO

Increasing evidence suggests that gut microbiota alterations are related to development and phenotypes of many neuropsychiatric diseases. Here, we evaluated the fecal microbiota and its clinical correlates in patients with hereditary transthyretin amyloidosis (ATTRv) and polyneuropathy. Fecal microbiota from 38 ATTRv patients and 39 age-matched controls was analyzed by sequencing 16S V3-V4 ribosomal RNA, and its relationships with clinical characteristics of polyneuropathy and cardiomyopathy were explored. The familial amyloidotic polyneuropathy stage was stage I, II, and III in 13, 18, and 7 patients. 99mTc-PYP SPECT showed a visual score of 2 in 15 and 3 in 21 patients. The gut microbiota of ATTRv patients showed higher alpha diversity (ASV richness and Shannon effective numbers) and dissimilar beta diversity compared to controls. Relative abundance of microbiota was dominated by Firmicutes and decreased in Bacteroidetes in ATTRv patients than in controls. Patients with more myocardial amyloid deposition were associated with increased alpha diversity, and the abundance of Clostridia was significantly correlated with pathophysiology of polyneuropathy in ATTRv patients. These findings demonstrated alterations in the gut microbiota, especially Firmicutes, in ATTRv. The association between altered microbiota and phenotypes of cardiomyopathy and polyneuropathy might suggest potential contributions of gut microbiota to ATTRv pathogenesis.


Assuntos
Neuropatias Amiloides Familiares , Cardiomiopatias , Microbioma Gastrointestinal , Polineuropatias , Humanos , Firmicutes , RNA Ribossômico 16S/genética
15.
Sci Rep ; 14(1): 5703, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459054

RESUMO

This study examined the interplay between bacterial and fungal communities in the human gut microbiota, impacting on nutritional status and body weight. Cohorts of 10 participants of healthy weight, 10 overweight, and 10 obese individuals, underwent comprehensive analysis, including dietary, anthropometric, and biochemical evaluations. Microbial composition was studied via gene sequencing of 16S and ITS rDNA regions, revealing bacterial (bacteriota) and fungal (mycobiota) profiles. Bacterial diversity exceeded fungal diversity. Statistically significant differences in bacterial communities were found within healthy-weight, overweight, and obese groups. The Bacillota/Bacteroidota ratio (previously known as the Firmicutes/Bacteroidetes ratio) correlated positively with body mass index. The predominant fungal phyla were Ascomycota and Basidiomycota, with the genera Nakaseomyces, Kazachstania, Kluyveromyces, and Hanseniaspora, inversely correlating with weight gain; while Saccharomyces, Debaryomyces, and Pichia correlated positively with body mass index. Overweight and obese individuals who harbored a higher abundance of Akkermansia muciniphila, demonstrated a favorable lipid and glucose profiles in contrast to those with lower abundance. The overweight group had elevated Candida, positively linked to simple carbohydrate consumption. The study underscores the role of microbial taxa in body mass index and metabolic health. An imbalanced gut bacteriota/mycobiota may contribute to obesity/metabolic disorders, highlighting the significance of investigating both communities.


Assuntos
Microbioma Gastrointestinal , Micobioma , Saccharomycetales , Humanos , Microbioma Gastrointestinal/genética , Sobrepeso/microbiologia , Estado Nutricional , Bactérias/genética , Obesidade/microbiologia , Bacteroidetes , Firmicutes
16.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542312

RESUMO

Radiation therapy for abdominopelvic malignancies often results in damage to the gastrointestinal tract (GIT) and permanent changes in bowel function. An overlooked component of the pathophysiology of radiation-induced bowel injury is the role of the gut microbiome. The goal of this research was to identify the impacts of acute radiation exposure on the GIT and gut microbiome. C57BL/6 mice exposed to whole-body X-rays (0.1-3 Gy) were assessed for histological and microbiome changes 48 h post-radiation exposure. Within the ileum, a dose of 3 Gy significantly decreased crypt depth as well as the number of goblet cells, but increased overall goblet cell size. Overall, radiation altered the microbial distribution within each of the main phyla in a dose- and tissue-dependent manner. Within the Firmicutes phylum, high dose irradiation resulted in significant alterations in bacteria from the class Bacilli within the small bowels, and from the class Clostridia in the large bowels. The 3 Gy radiation also significantly increased the abundance of bacterial families from the Bacteroidetes phylum in the colon and feces. Overall, we identified various alterations in microbiome composition following acute radiation exposure, which could potentially lead to novel biomarkers for tracking patient toxicities or could be used as targets for mitigation strategies against radiation damage.


Assuntos
Microbioma Gastrointestinal , Exposição à Radiação , Lesões por Radiação , Humanos , Animais , Camundongos , Microbioma Gastrointestinal/fisiologia , Camundongos Endogâmicos C57BL , Trato Gastrointestinal/microbiologia , Bactérias/efeitos da radiação , Firmicutes , Raios X
17.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542485

RESUMO

The integrated dysbiosis of gut microbiota and altered host transcriptomics in irritable bowel syndrome (IBS) is yet to be known. This study investigated the associations among gut microbiota and host transcriptomics in young adults with IBS. Stool and peripheral blood samples from 20 IBS subjects and 21 healthy controls (HCs) collected at the baseline visit of an RCT were sequenced to depict the gut microbiota and transcriptomic profiles, respectively. The diversities, composition, and predicted metabolic pathways of gut microbiota significantly differed between IBS subjects and HCs. Nine genera were significantly abundant in IBS stool samples, including Akkermansia, Blautia, Coprococcus, Granulicatella, Holdemania, Oribacterium, Oscillospira, Parabacteroides, and Sutterella. There were 2264 DEGs found between IBS subjects and HCs; 768 were upregulated, and 1496 were downregulated in IBS participants compared with HCs. The enriched gene ontology included the immune system process and immune response. The pathway of antigen processing and presentation (hsa04612) in gut microbiota was also significantly different in the RNA-seq data. Akkermansia, Blautia, Holdemania, and Sutterella were significantly correlated with ANXA2P2 (upregulated, positive correlations), PCSK1N (downregulated, negative correlations), and GLTPD2 (downregulated, negative correlations). This study identified the dysregulated immune response and metabolism in IBS participants revealed by the altered gut microbiota and transcriptomic profiles.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Adulto Jovem , Síndrome do Intestino Irritável/metabolismo , Multiômica , Microbioma Gastrointestinal/fisiologia , Fezes/microbiologia , Firmicutes/genética , Imunidade , Perfilação da Expressão Gênica
18.
Front Cell Infect Microbiol ; 14: 1279218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500501

RESUMO

Background: Changes in the gut microbiota are closely related to insomnia, but the causal relationship between them is not yet clear. Objective: To clarify the relationship between the gut microbiota and insomnia and provide genetic evidence for them, we conducted a two-sample Mendelian randomization study. Methods: We used a Mendelian randomized two-way validation method to discuss the causal relationship. First, we downloaded the data of 462,341 participants relating to insomnia, and the data of 18,340 participants relating to the gut microbiota from a genome-wide association study (GWAS). Then, we used two regression models, inverse-variance weighted (IVW) and MR-Egger regression, to evaluate the relationship between exposure factors and outcomes. Finally, we took a reverse MR analysis to assess the possibility of reverse causality. Results: The combined results show 19 gut microbiotas to have a causal relationship with insomnia (odds ratio (OR): 1.03; 95% confidence interval (CI): 1.01, 1.05; p=0.000 for class. Negativicutes; OR: 1.03; 95% CI: 1.01, 1.05; p=0.000 for order.Selenomonadales; OR: 1.01; 95% CI: 1.00, 1.02; p=0.003 for genus.RikenellaceaeRC9gutgroup). The results were consistent with sensitivity analyses for these bacterial traits. In reverse MR analysis, we found no statistical difference between insomnia and these gut microbiotas. Conclusion: This study can provide a new direction for the causal relationship between the gut microbiota (class.Negativicutes, order.Selenomonadales, genus.Lactococcus) and insomnia and the treatment or prevention strategies of insomnia.


Assuntos
Microbioma Gastrointestinal , Distúrbios do Início e da Manutenção do Sono , Humanos , Microbioma Gastrointestinal/genética , Distúrbios do Início e da Manutenção do Sono/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Causalidade , Firmicutes
19.
Chemosphere ; 353: 141657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452978

RESUMO

In order to explore the effects of micro-nano bubble water (MNBW) on compost maturation and the microbial community in cow manure and straw during aerobic composting, we conducted composting tests using tap water with 12 mg/L (O12), 15 mg/L (O15), 18 mg/L (O18), and 21 mg/L (O21) dissolved oxygen in MNBW, as well as tap water with 9 mg/L dissolved oxygen as a control (CK). The results showed that O21 increased the maximum compost temperature to 64 °C, which was higher than the other treatments. All treatments met the harmless standards for compost. The seed germination index (GI) was largest under O21 and 15.1% higher than that under CK, and the non-toxic compost degree was higher. Redundancy analysis showed that the temperature, C/N, pH, and GI were important factors that affected the microbial community composition. The temperature, C/N, and pH were significantly positively correlated with Firmicutes and Actinobacteria (p < 0.05). Firmicutes was the dominant phylum in the mesophilic stage (2-6 days) and it accounted for a large proportion under O21, where the strong thermophilic metabolism increased the production of heat and prolonged the high temperature period. The bacterial genus Ammoniibacillus in Firmicutes accounted for a large proportion under O21 and it accelerated the decomposition of substrates. Therefore, the addition of MNBW changed the microbial community to affect the maturation of the compost, and the quality of the compost was higher under O21.


Assuntos
Compostagem , Microbiota , Animais , Bovinos , Feminino , Nitrogênio/análise , Bactérias/metabolismo , Firmicutes , Esterco/microbiologia , Oxigênio , Solo
20.
Proc Natl Acad Sci U S A ; 121(12): e2314813121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470917

RESUMO

Potential Mycobacterium tuberculosis (Mtb) transmission during different pulmonary tuberculosis (TB) disease states is poorly understood. We quantified viable aerosolized Mtb from TB clinic attendees following diagnosis and through six months' follow-up thereafter. Presumptive TB patients (n=102) were classified by laboratory, radiological, and clinical features into Group A: Sputum-Xpert Ultra-positive TB (n=52), Group B: Sputum-Xpert Ultra-negative TB (n=20), or Group C: TB undiagnosed (n=30). All groups were assessed for Mtb bioaerosol release at baseline, and subsequently at 2 wk, 2 mo, and 6 mo. Groups A and B were notified to the national TB program and received standard anti-TB chemotherapy; Mtb was isolated from 92% and 90% at presentation, 87% and 74% at 2 wk, 54% and 44% at 2 mo and 32% and 20% at 6 mo, respectively. Surprisingly, similar numbers were detected in Group C not initiating TB treatment: 93%, 70%, 48% and 22% at the same timepoints. A temporal association was observed between Mtb bioaerosol release and TB symptoms in all three groups. Persistence of Mtb bioaerosol positivity was observed in ~30% of participants irrespective of TB chemotherapy. Captured Mtb bacilli were predominantly acid-fast stain-negative and poorly culturable; however, three bioaerosol samples yielded sufficient biomass following culture for whole-genome sequencing, revealing two different Mtb lineages. Detection of viable aerosolized Mtb in clinic attendees, independent of TB diagnosis, suggests that unidentified Mtb transmitters might contribute a significant attributable proportion of community exposure. Additional longitudinal studies with sputum culture-positive and -negative control participants are required to investigate this possibility.


Assuntos
Bacillus , Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Escarro/microbiologia , Tuberculose Pulmonar/diagnóstico , Tuberculose/microbiologia , Firmicutes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA