Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.291
Filtrar
1.
Environ Microbiol ; 26(7): e16675, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022885

RESUMO

Heterotrophic microbial communities play a significant role in driving carbon fluxes in marine ecosystems. Despite their importance, these communities remain understudied in remote polar oceans, which are known for their substantial contribution to the biological drawdown of atmospheric carbon dioxide. Our research focused on understanding the environmental factors and genetic makeup of key bacterial players involved in carbon remineralization in the Weddell Sea, including its coastal polynyas. Our experiments demonstrated that the combination of labile organic matter supply and temperature increase synergistically boosted bacterial growth. This suggests that, besides low seawater temperature, carbon limitation also hinders heterotrophic bacterial activity. Through the analysis of metagenome-assembled genomes, we discovered distinct genomic adaptation strategies in Bacteroidia and Gammaproteobacteria, both of which respond to organic matter. Both natural phytoplankton blooms and experimental addition of organic matter favoured Bacteroidia, which possess a large number of gene copies and a wide range of functional membrane transporters, glycoside hydrolases, and aminopeptidases. In contrast, the genomes of organic-matter-responsive Gammaproteobacteria were characterized by high densities of transcriptional regulators and transporters. Our findings suggest that bacterioplankton in the Weddell Sea, which respond to organic matter, employ metabolic strategies similar to those of their counterparts in temperate oceans. These strategies enable efficient growth at extremely low seawater temperatures, provided that organic carbon limitation is alleviated.


Assuntos
Gammaproteobacteria , Fitoplâncton , Água do Mar , Água do Mar/microbiologia , Regiões Antárticas , Gammaproteobacteria/metabolismo , Gammaproteobacteria/genética , Fitoplâncton/metabolismo , Fitoplâncton/genética , Carbono/metabolismo , Microbiota , Plâncton/metabolismo , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Metagenoma , Ecossistema , Bacteroidetes/genética , Bacteroidetes/metabolismo , Bacteroidetes/crescimento & desenvolvimento , Temperatura
2.
Sci Rep ; 14(1): 14984, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951587

RESUMO

Sea-ice microalgae are a key source of energy and nutrient supply to polar marine food webs, particularly during spring, prior to open-water phytoplankton blooms. The nutritional quality of microalgae as a food source depends on their biomolecular (lipid:protein:carbohydrate) composition. In this study, we used synchrotron-based Fourier transform infra-red microspectroscopy (s-FTIR) to measure the biomolecular content of a dominant sea-ice taxa, Nitzschia frigida, from natural land-fast ice communities throughout the Arctic spring season. Repeated sampling over six weeks from an inner (relatively stable) and an outer (relatively dynamic) fjord site revealed high intra-specific variability in biomolecular content, elucidating the plasticity of N. frigida to adjust to the dynamic sea ice and water conditions. Environmental triggers indicating the end of productivity in the ice and onset of ice melt, including nitrogen limitation and increased water temperature, drove an increase in lipid and fatty acids stores, and a decline in protein and carbohydrate content. In the context of climate change and the predicted Atlantification of the Arctic, dynamic mixing and abrupt warmer water advection could truncate these important end-of-season environmental shifts, causing the algae to be released from the ice prior to adequate lipid storage, influencing carbon transfer through the polar marine system.


Assuntos
Camada de Gelo , Estações do Ano , Regiões Árticas , Mudança Climática , Microalgas/metabolismo , Diatomáceas/metabolismo , Diatomáceas/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fitoplâncton/metabolismo , Fitoplâncton/fisiologia
3.
Sci Adv ; 10(27): eadn8356, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968348

RESUMO

Eukaryotic phytoplankton, also known as algae, form the basis of marine food webs and drive marine carbon sequestration. Algae must regulate their motility and gravitational sinking to balance access to light at the surface and nutrients in deeper layers. However, the regulation of gravitational sinking remains largely unknown, especially in motile species. Here, we quantify gravitational sinking velocities according to Stokes' law in diverse clades of unicellular marine microalgae to reveal the cell size, density, and nutrient dependency of sinking velocities. We identify a motile algal species, Tetraselmis sp., that sinks faster when starved due to a photosynthesis-driven accumulation of carbohydrates and a loss of intracellular water, both of which increase cell density. Moreover, the regulation of cell sinking velocities is connected to proliferation and can respond to multiple nutrients. Overall, our work elucidates how cell size and density respond to environmental conditions to drive the vertical migration of motile algae.


Assuntos
Tamanho Celular , Nutrientes , Nutrientes/metabolismo , Gravitação , Fitoplâncton/fisiologia , Fitoplâncton/metabolismo , Fotossíntese , Microalgas/metabolismo
4.
J Hazard Mater ; 475: 134890, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876023

RESUMO

There is considerable inconsistency in results pertaining to the biomagnification of PAHs in aquatic systems. Zooplankton specifically play an important role controlling the fate and distribution of organic contaminants up the food chain, particularly in large plateau reservoirs. However, it remains largely unknown how secondary factors affect the magnification of organic compounds in zooplankton. The present study assessed plankton species and nutrients affecting the trophic transfer of PAHs through the micro-food chain in plateau reservoirs, Guizhou Province China. Results show soluble ∑PAHs range from 99.9 - 147.3 ng L-1, and concentrations of ∑PAHs in zooplankton range from 1003.2 - 22441.3, with a mean of 4460.7 ng g-1 dw. Trophic magnification factors (TMFs) > 1 show biomagnifications of PAHs from phytoplankton to zooplankton. The main mechanisms for trophic magnification > 1 are 1) small Copepoda, Cladocera and Rotifera are prey for larger N. schmackeri and P. tunguidus, and 2) the δ15N and TLs of zooplankton are increasing with the increasing nutrients TN, NO3- and CODMn. As a result, log PAHs concentrations in zooplankton are positively correlated with the trophic levels (TLs) of zooplankton, and log BAFs of the PAHs in zooplankton are increasing with increasing TLs and log Kow. Temperature further enhances TMFs and biomagnifications of PAHs as noted by temperature related reductions in δ15N. There are also available soluble PAHs in the water column which are assimilated with increasing phytoplankton biomass within the taxa groups, diatoms, dinoflagellates and chlorophytes. Notable TMFs of PAHs in zooplankton in Guizhou plateau reservoirs are not significantly affected by phytoplankton and zooplankton biomass dilutions. The present study demonstrates the important roles of species selection, nutrients and temperature in the environmental fate of PAHs in freshwaters.


Assuntos
Cadeia Alimentar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Zooplâncton , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , China , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Zooplâncton/metabolismo , Monitoramento Ambiental , Fitoplâncton/metabolismo , Nutrientes/análise , Nutrientes/metabolismo , Plâncton/metabolismo
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38861418

RESUMO

Molecular observational tools are useful for characterizing the composition and genetic endowment of microbial communities but cannot measure fluxes, which are critical for the understanding of ecosystems. To overcome these limitations, we used a mechanistic inference approach to estimate dissolved organic carbon (DOC) production and consumption by phytoplankton operational taxonomic units and heterotrophic prokaryotic amplicon sequence variants and inferred carbon fluxes between members of this microbial community from Western English Channel time-series data. Our analyses focused on phytoplankton spring and summer blooms, as well as bacteria summer blooms. In spring blooms, phytoplankton DOC production exceeds heterotrophic prokaryotic consumption, but in bacterial summer blooms heterotrophic prokaryotes consume three times more DOC than produced by the phytoplankton. This mismatch is compensated by heterotrophic prokaryotic DOC release by death, presumably from viral lysis. In both types of summer blooms, large amounts of the DOC liberated by heterotrophic prokaryotes are reused through internal recycling, with fluxes between different heterotrophic prokaryotes being at the same level as those between phytoplankton and heterotrophic prokaryotes. In context, internal recycling accounts for approximately 75% and 30% of the estimated net primary production (0.16 vs 0.22 and 0.08 vs 0.29 µmol l-1 d-1) in bacteria and phytoplankton summer blooms, respectively, and thus represents a major component of the Western English Channel carbon cycle. We have concluded that internal recycling compensates for mismatches between phytoplankton DOC production and heterotrophic prokaryotic consumption, and we encourage future analyses on aquatic carbon cycles to investigate fluxes between heterotrophic prokaryotes, specifically internal recycling.


Assuntos
Bactérias , Carbono , Processos Heterotróficos , Fitoplâncton , Estações do Ano , Fitoplâncton/metabolismo , Carbono/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Ciclo do Carbono , Células Procarióticas/metabolismo , Ecossistema
6.
Environ Microbiol Rep ; 16(3): e13285, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778545

RESUMO

Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.


Assuntos
Fotossíntese , Transcriptoma , Fitoplâncton/genética , Fitoplâncton/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clorófitas/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Processos Heterotróficos , Água do Mar/microbiologia
7.
J Math Biol ; 89(1): 8, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801565

RESUMO

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Assuntos
Simulação por Computador , Modelos Biológicos , Oxigênio , Fitoplâncton , Zooplâncton , Animais , Oxigênio/metabolismo , Zooplâncton/metabolismo , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia , Fitoplâncton/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Oceanos e Mares , Plâncton/metabolismo , Plâncton/crescimento & desenvolvimento , Conceitos Matemáticos , Ecossistema , Água do Mar/química , Cadeia Alimentar , Anaerobiose
9.
PeerJ ; 12: e17393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799067

RESUMO

Inland waters are crucial in the carbon cycle, contributing significantly to the global CO2 fluxes. Carbonate lakes may act as both sources and sinks of CO2 depending on the interactions between the amount of dissolved inorganic carbon (DIC) inputs, lake metabolisms, and geochemical processes. It is often difficult to distinguish the dominant mechanisms driving CO2 dynamics and their effects on CO2 emissions. This study was undertaken in three groundwater-fed carbonate-rich lakes in central Spain (Ruidera Lakes), severely polluted with nitrates from agricultural overfertilization. Diel and seasonal (summer and winter) changes in CO2 concentration (CCO2) DIC, and CO2 emissions-(FCO2)-, as well as physical and chemical variables, including primary production and phytoplanktonic chlorophyll-a were measured. In addition, δ13C-DIC, δ13C-CO2 in lake waters, and δ13C of the sedimentary organic matter were measured seasonally to identify the primary CO2 sources and processes. While the lakes were consistently CCO2 supersaturated and FCO2 was released to the atmosphere during both seasons, the highest CCO2 and DIC were in summer (0.36-2.26 µmol L-1). Our results support a strong phosphorus limitation for primary production in these lakes, which impinges on CO2 dynamics. External DIC inputs to the lake waters primarily drive the CCO2 and, therefore, the FCO2. The δ13C-DIC signatures below -12‰  confirmed the primary geogenic influence on DIC. As also suggested by the high values on the calcite saturation index, the Miller-Tans plot revealed that the CO2 source in the lakes was close to the signature provided by the fractionation of δ13C-CO2 from calcite precipitation. Therefore, the main contribution behind the CCO2 values found in these karst lakes should be attributed to the calcite precipitation process, which is temperature-dependent according to the seasonal change observed in δ13C-DIC values. Finally, co-precipitation of phosphate with calcite could partly explain the observed low phytoplankton production in these lakes and the impact on the contribution to increasing greenhouse gas emissions. However, as eutrophication increases and the soluble reactive phosphorus (SRP) content increases, the co-precipitation of phosphate is expected to be progressively inhibited. These thresholds must be assessed to understand how the CO32- ions drive lake co-precipitation dynamics. Carbonate regions extend over 15% of the Earth's surface but seem essential in the CO2 dynamics at a global scale.


Assuntos
Dióxido de Carbono , Lagos , Estações do Ano , Lagos/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Espanha , Monitoramento Ambiental/métodos , Ciclo do Carbono , Fitoplâncton/metabolismo
10.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38709871

RESUMO

Chirality, a fundamental property of matter, is often overlooked in the studies of marine organic matter cycles. Dihydroxypropanesulfonate (DHPS), a globally abundant organosulfur compound, serves as an ecologically important currency for nutrient and energy transfer from phytoplankton to bacteria in the ocean. However, the chirality of DHPS in nature and its transformation remain unclear. Here, we developed a novel approach using chiral phosphorus-reagent labeling to separate DHPS enantiomers. Our findings demonstrated that at least one enantiomer of DHPS is present in marine diatoms and coccolithophores, and that both enantiomers are widespread in marine environments. A novel chiral-selective DHPS catabolic pathway was identified in marine Roseobacteraceae strains, where HpsO and HpsP dehydrogenases at the gateway to DHPS catabolism act specifically on R-DHPS and S-DHPS, respectively. R-DHPS is also a substrate for the dehydrogenase HpsN. All three dehydrogenases generate stable hydrogen bonds between the chirality-center hydroxyls of DHPS and highly conserved residues, and HpsP also form coordinate-covalent bonds between the chirality-center hydroxyls and Zn2+, which determines the mechanistic basis of strict stereoselectivity. We further illustrated the role of enzymatic promiscuity in the evolution of DHPS metabolism in Roseobacteraceae and SAR11. This study provides the first evidence of chirality's involvement in phytoplankton-bacteria metabolic currencies, opening a new avenue for understanding the ocean organosulfur cycle.


Assuntos
Diatomáceas , Fitoplâncton , Rhodobacteraceae , Fitoplâncton/metabolismo , Estereoisomerismo , Diatomáceas/metabolismo , Rhodobacteraceae/metabolismo , Rhodobacteraceae/genética , Haptófitas/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Biotransformação , Redes e Vias Metabólicas , Alcanossulfonatos
11.
Environ Res ; 252(Pt 4): 119090, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719063

RESUMO

The distribution and mechanisms of photosynthetically dissolved organic carbon (PDOC) released by marine phytoplankton are frequently neglected and inadequately understood because most studies on carbon sequestration capacity have focused on photosynthetic particulate organic carbon. In this study, percentage extracellular release (PER) and its environmental influencing factors were investigated for 10 cruises in the Taiwan Strait during 2006-2023. The results indicated that the PER increased horizontally from the nearshore to the off-shelf and vertically from the surface to the bottom within the euphotic zone. PER tends to be low in eutrophic waters such as upwellings and estuaries and high in oligotrophic waters. The study revealed that the average contribution of PDOC to total primary productivity (TPP) in the Taiwan Strait could reach 18.2 ± 11.7%, which is similar to the previously estimated global oceanic values. PDOC production satisfied approximately 25% the carbon requirements of heterotropic bacteria (HB). A detailed analysis of the PER combined with model simulations proved that the distribution of the PER in the Taiwan Strait was caused by the joint contribution of irradiance, size-fractionated phytoplankton, and nutrient stoichiometry. Our results contradict the view that the PER is a constant factor that is unaffected by TPP. However, there was a significant negative correlation between the PER and TPP. The PDOC was always lower than the bacterial carbon demand for a broad range of bacterial growth efficiencies, suggesting a weak coupling between phytoplankton exudation and bacterial metabolism. This challenges the idea that there is a well-coupled relationship between bacteria and phytoplankton present on the continental shelf. These findings indicate significant discrepancies in PDOC mechanisms and the quantitative importance of nearshore eutrophic and off-shelf oligotrophic environments. Consequently, it is unwise to use uniform PERs without differentiation under trophic conditions when reevaluating and appraising marine carbon fixation.


Assuntos
Carbono , Fotossíntese , Fitoplâncton , Fitoplâncton/metabolismo , Carbono/metabolismo , Carbono/análise , Taiwan , Água do Mar/química , Água do Mar/microbiologia
12.
Proc Natl Acad Sci U S A ; 121(19): e2319937121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696469

RESUMO

Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.


Assuntos
Bactérias , Oceanos e Mares , Água do Mar , Água do Mar/microbiologia , Água do Mar/química , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Clorofila/metabolismo , Ecossistema , Fitoplâncton/metabolismo , Estações do Ano , Biomassa , Microbiota/fisiologia , Oxigênio/metabolismo
13.
Nat Commun ; 15(1): 3715, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698041

RESUMO

Phages play an essential role in controlling bacterial populations. Those infecting Pelagibacterales (SAR11), the dominant bacteria in surface oceans, have been studied in silico and by cultivation attempts. However, little is known about the quantity of phage-infected cells in the environment. Using fluorescence in situ hybridization techniques, we here show pelagiphage-infected SAR11 cells across multiple global ecosystems and present evidence for tight community control of pelagiphages on the SAR11 hosts in a case study. Up to 19% of SAR11 cells were phage-infected during a phytoplankton bloom, coinciding with a ~90% reduction in SAR11 cell abundance within 5 days. Frequently, a fraction of the infected SAR11 cells were devoid of detectable ribosomes, which appear to be a yet undescribed possible stage during pelagiphage infection. We dubbed such cells zombies and propose, among other possible explanations, a mechanism in which ribosomal RNA is used as a resource for the synthesis of new phage genomes. On a global scale, we detected phage-infected SAR11 and zombie cells in the Atlantic, Pacific, and Southern Oceans. Our findings illuminate the important impact of pelagiphages on SAR11 populations and unveil the presence of ribosome-deprived zombie cells as part of the infection cycle.


Assuntos
Bacteriófagos , Ribossomos , Ribossomos/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiologia , Fitoplâncton/virologia , Fitoplâncton/genética , Fitoplâncton/metabolismo , Hibridização in Situ Fluorescente , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Ecossistema , Água do Mar/microbiologia , Água do Mar/virologia , Oceanos e Mares
14.
Environ Microbiol ; 26(5): e16624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757353

RESUMO

Laminarin, a ß(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.


Assuntos
Proteínas de Bactérias , Glucanos , Fitoplâncton , Glucanos/metabolismo , Fitoplâncton/metabolismo , Fitoplâncton/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bacteroidetes/metabolismo , Bacteroidetes/genética , Eutrofização , Diatomáceas/metabolismo , Diatomáceas/genética , Receptores de Superfície Celular
15.
Nat Commun ; 15(1): 4048, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744821

RESUMO

Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is well-studied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.


Assuntos
Bactérias , Ciclo do Carbono , Glucanos , Glucanos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Fitoplâncton/metabolismo , Biomassa , Diatomáceas/metabolismo , Eutrofização , Carbono/metabolismo , Zooplâncton/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/química , Proteínas de Bactérias/metabolismo
16.
Microbiome ; 12(1): 77, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664737

RESUMO

BACKGROUND: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes. RESULTS: In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench. CONCLUSIONS: Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.


Assuntos
Bactérias , Metagenômica , Nutrientes , Peptidoglicano , Fitoplâncton , Polissacarídeos , Água do Mar , Polissacarídeos/metabolismo , Água do Mar/microbiologia , Fitoplâncton/metabolismo , Fitoplâncton/genética , Nutrientes/metabolismo , Peptidoglicano/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiota
17.
Chemosphere ; 358: 142104, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653399

RESUMO

Uptake of methylmercury (MeHg), a potent neurotoxin, by phytoplankton is a major concern due to its role as the primary pathway for MeHg entry into aquatic food webs, thereby posing a significant risk to human health. While it is widely believed that the MeHg uptake by plankton is negatively correlated with the concentrations of dissolved organic matter (DOM) in the water, ongoing debates continue regarding the specific components of DOM that exerts the dominant influence on this process. In this study, we employed a widely-used resin fractionation approach to separate and classify DOM derived from algae (AOM) and natural rivers (NOM) into distinct components: strongly hydrophobic, weakly hydrophobic, and hydrophilic fractions. We conduct a comparative analysis of different DOM components using a combination of spectroscopy and mass spectrometry techniques, aiming to identify their impact on MeHg uptake by Microcystis elabens, a prevalent alga in freshwater environments. We found that the hydrophobic components had exhibited more pronounced spectral characteristics associated with the protein structures while protein-like compounds between hydrophobic and hydrophilic components displayed significant variations in both distributions and the values of m/z (mass-to-charge ratio) of the molecules. Regardless of DOM sources, the low-proportion hydrophobic components usually dominated inhibition of MeHg uptake by Microcystis elabens. Results inferred from the correlation analysis suggest that the uptake of MeHg by the phytoplankton was most strongly and negatively correlated with the presence of protein-like components. Our findings underscore the importance of considering the diverse impacts of different DOM fractions on inhibition of phytoplankton MeHg uptake. This information should be considered in future assessments and modeling endeavors aimed at understanding and predicting risks associated with aquatic Hg contamination.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Compostos de Metilmercúrio , Fitoplâncton , Poluentes Químicos da Água , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/metabolismo , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Poluentes Químicos da Água/metabolismo , Microcystis/efeitos dos fármacos , Microcystis/metabolismo , Rios/química , Cadeia Alimentar
18.
NPJ Biofilms Microbiomes ; 10(1): 36, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561371

RESUMO

Marine ecosystems are influenced by phytoplankton aggregation, which affects processes like marine snow formation and harmful events such as marine mucilage outbreaks. Phytoplankton secrete exopolymers, creating an extracellular matrix (ECM) that promotes particle aggregation. This ECM attracts heterotrophic bacteria, providing a nutrient-rich and protective environment. In terrestrial environments, bacterial colonization near primary producers relies on attachment and the formation of multidimensional structures like biofilms. Bacteria were observed attaching and aggregating within algal-derived exopolymers, but it is unclear if bacteria produce an ECM that contributes to this colonization. This study, using Emiliania huxleyi algae and Phaeobacter inhibens bacteria in an environmentally relevant model system, reveals a shared algal-bacterial ECM scaffold that promotes algal-bacterial aggregation. Algal exudates play a pivotal role in promoting bacterial colonization, stimulating bacterial exopolysaccharide (EPS) production, and facilitating a joint ECM formation. A bacterial biosynthetic pathway responsible for producing a specific EPS contributing to bacterial ECM formation is identified. Genes from this pathway show increased expression in algal-rich environments. These findings highlight the underestimated role of bacteria in aggregate-mediated processes in marine environments, offering insights into algal-bacterial interactions and ECM formation, with implications for understanding and managing natural and perturbed aggregation events.


Assuntos
Ecossistema , Fitoplâncton , Fitoplâncton/metabolismo , Fitoplâncton/microbiologia , Matriz Extracelular , Matriz Extracelular de Substâncias Poliméricas
19.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621717

RESUMO

The hydrographic variability in the fjords of Svalbard significantly influences water mass properties, causing distinct patterns of microbial diversity and community composition between surface and subsurface layers. However, surveys on the phytoplankton-associated bacterial communities, pivotal to ecosystem functioning in Arctic fjords, are limited. This study investigated the interactions between phytoplankton and heterotrophic bacterial communities in Svalbard fjord waters through comprehensive eDNA metabarcoding with 16S and 18S rRNA genes. The 16S rRNA sequencing results revealed a homogenous community composition including a few dominant heterotrophic bacteria across fjord waters, whereas 18S rRNA results suggested a spatially diverse eukaryotic plankton distribution. The relative abundances of heterotrophic bacteria showed a depth-wise distribution. By contrast, the dominant phytoplankton populations exhibited variable distributions in surface waters. In the network model, the linkage of phytoplankton (Prasinophytae and Dinophyceae) to heterotrophic bacteria, particularly Actinobacteria, suggested the direct or indirect influence of bacterial contributions on the fate of phytoplankton-derived organic matter. Our prediction of the metabolic pathways for bacterial activity related to phytoplankton-derived organic matter suggested competitive advantages and symbiotic relationships between phytoplankton and heterotrophic bacteria. Our findings provide valuable insights into the response of phytoplankton-bacterial interactions to environmental changes in Arctic fjords.


Assuntos
Bactérias , Processos Heterotróficos , Fitoplâncton , RNA Ribossômico 16S , RNA Ribossômico 18S , Estações do Ano , Fitoplâncton/genética , Fitoplâncton/metabolismo , Regiões Árticas , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Código de Barras de DNA Taxonômico , Estuários , Svalbard , Camada de Gelo/microbiologia , Ecossistema , DNA Bacteriano/genética , Biodiversidade , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...