RESUMO
Telomeres in most somatic cells shorten with each cell division, and critically short telomeres lead to cellular dysfunction, cell cycle arrest, and senescence. Thus, telomere shortening is an important hallmark of human cellular senescence. Quantitative fluorescence in situ hybridization (Q-FISH) using formalin-fixed paraffin-embedded (FFPE) tissue sections allows the estimation of telomere lengths in individual cells in histological sections. In our Q-FISH method, fluorescently labelled peptide nucleic acid (PNA) probes are hybridized to telomeric and centromeric sequences in FFPE human tissue sections, and relative telomere lengths (telomere signal intensities relative to centromere signal intensities) are measured. This chapter describes our Q-FISH protocols for assessing relative telomere lengths in FFPE human tissue sections.
Assuntos
Hibridização in Situ Fluorescente , Inclusão em Parafina , Ácidos Nucleicos Peptídicos , Telômero , Humanos , Hibridização in Situ Fluorescente/métodos , Telômero/genética , Telômero/metabolismo , Ácidos Nucleicos Peptídicos/metabolismo , Ácidos Nucleicos Peptídicos/genética , Inclusão em Parafina/métodos , Fixação de Tecidos/métodos , Homeostase do Telômero , Centrômero/metabolismo , Centrômero/genéticaRESUMO
Crosslinking mass spectrometry (XL-MS) has the potential to map the interactome of the cell with high resolution and depth of coverage. However, current in vivo XL-MS methods are hampered by crosslinkers that demonstrate low cell permeability and require long reaction times. Consequently, interactome sampling is not high and long incubation times can distort the cell, bringing into question the validity any protein interactions identified by the method. We address these issues with a fast formaldehyde-based fixation method applied prior to the introduction of secondary crosslinkers. Using human A549 cells and a range of reagents, we show that 4% formaldehyde fixation with membrane permeabilization preserves cellular ultrastructure and simultaneously improves reaction conditions for in situ XL-MS. Protein labeling yields can be increased even for nominally membrane-permeable reagents, and surprisingly, high-concentration formaldehyde does not compete with conventional amine-reactive crosslinking reagents. Prefixation with permeabilization uncouples cellular dynamics from crosslinker dynamics, enhancing control over crosslinking yield and permitting the use of any chemical crosslinker.
Assuntos
Reagentes de Ligações Cruzadas , Formaldeído , Espectrometria de Massas , Humanos , Formaldeído/química , Reagentes de Ligações Cruzadas/química , Células A549 , Espectrometria de Massas/métodos , Fixação de Tecidos/métodosRESUMO
We evaluated the Xpert MTB/Rif Ultra assay performance for Mycobacterium tuberculosis (MTB) detection in formalin-fixed paraffin-embedded tissue (FFPET) compared to mycobacterial culture or laboratory-developed MTB PCR test (LDT). FFPET samples with histological features suggestive of tuberculosis from 2018 to 2023 were selected. Five hundred microlitres of tissue lysis buffer was added to FFPET scrolls and incubated at 75 °C for 5 min. After adding 50 µl of proteinase K and overnight incubation at 56 °C, sample aliquots were processed as per the manufacturer's instructions. MTB culture or LDT assay results were used as a reference for sensitivity and specificity calculations. Of 51 eligible FFPET, 32 were positive for MTB either by culture or LDT PCR on FFPET. Xpert MTB/Rif Ultra detected MTB in 23/32 positive specimens [71.9%, 95% confidence interval (CI) 54.6-84.4%]. Of nine discordant specimens, seven were MTB positive by culture and two were identified by LDT MTB PCR only, as no specimen was submitted for MTB culture. Of 19 negative samples, 100% specificity (95% CI 83.2-100.0%) was attained via Xpert MTB/Rif Ultra. Implementation of Xpert MTB/Rif Ultra on FFPET within clinical laboratories is promising, given its improved turnaround time compared to MTB culture and ability to detect MTB in cases where no tissue is available for culture.
Assuntos
Formaldeído , Mycobacterium tuberculosis , Inclusão em Parafina , Sensibilidade e Especificidade , Mycobacterium tuberculosis/isolamento & purificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Humanos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Técnicas de Diagnóstico Molecular/métodos , Fixação de Tecidos , Reação em Cadeia da Polimerase/métodosRESUMO
BACKGROUND: Archived samples, including frozen and formalin fixed paraffin embedded (FFPE) tissues, are a vast resource of clinically annotated materials for the application of high-definition genomics to improve patient management and provide a molecular basis for the delivery of personalized cancer therapeutics. Notably, FFPE tissues are stable, provide repeat sampling of tissues of interest, and can be stored indefinitely at ambient temperature. The development of single cell DNA sequencing (scDNA-seq) technologies provides an unparalleled opportunity for the study of tumor heterogeneity and the identification of often rare subclonal cell populations that drive tumor evolution and progression to advanced therapy resistant disease. However, major limitations to the use of archived tissues for scDNA-seq include the low yields of intact cells in the presence of high levels of subcellular debris in biopsies, and the highly variable quantity and quality of the DNA extracted from samples of interest. The latter is of high significance for the use of FFPE tissues due to the presence of DNA-protein crosslinks. In addition, many samples, notably tumors arising in solid tissues, contain admixtures of reactive stroma, inflammatory cells, and necrosis in immediate contact with tumor cells. RESULTS: To expand their use for translational studies, we optimized flow sorting and sequencing of single nuclei from archived fresh frozen (FF) and FFPE tumor tissues. Our methods, which include isolation of intact nuclei suitable for library preparations, quality control (QC) metrics for each step, and a single cell sequencing bioinformatic processing and analysis pipeline, were validated with flow sorted nuclei from matching FF and FFPE ovarian cancer surgical samples and a sequencing panel of 553 amplicons targeting single nucleotide and copy number variants in genes of interest. CONCLUSIONS: Our flow sorting based protocol provides intact nuclei suitable for snDNA-seq from archival FF and FFPE tissues. Furthermore, we have developed QC steps that optimize the preparation and selection of samples for deep single cell clonal profiling. Our data processing pipeline captures rare subclones in tumors with highly variable genomes based on variants in genes of interest.
Assuntos
Formaldeído , Inclusão em Parafina , Análise de Sequência de DNA , Análise de Célula Única , Fixação de Tecidos , Humanos , Análise de Célula Única/métodos , Análise de Sequência de DNA/métodos , Neoplasias/genética , Neoplasias/patologia , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Núcleo Celular/genética , FemininoRESUMO
Formalin-fixed paraffin-embedded (FFPE) samples are valuable but underutilized in single-cell omics research due to their low RNA quality. In this study, leveraging a recent advance in single-cell genomic technology, we introduce snPATHO-seq, a versatile method to derive high-quality single-nucleus transcriptomic data from FFPE samples. We benchmarked the performance of the snPATHO-seq workflow against existing 10x 3' and Flex assays designed for frozen or fresh samples and highlighted the consistency in snRNA-seq data produced by all workflows. The snPATHO-seq workflow also demonstrated high robustness when tested across a wide range of healthy and diseased FFPE tissue samples. When combined with FFPE spatial transcriptomic technologies such as FFPE Visium, the snPATHO-seq provides a multi-modal sampling approach for FFPE samples, allowing more comprehensive transcriptomic characterization.
Assuntos
Inclusão em Parafina , Análise de Sequência de RNA , Análise de Célula Única , Fixação de Tecidos , Inclusão em Parafina/métodos , Humanos , Análise de Sequência de RNA/métodos , Fixação de Tecidos/métodos , Análise de Célula Única/métodos , Formaldeído/química , Transcriptoma , Perfilação da Expressão Gênica/métodos , Fluxo de TrabalhoRESUMO
Microsatellite instability (MSI) occurs across a number of cancers and is associated with different clinical characteristics when compared to microsatellite stable (MSS) cancers. As MSI cancers have different characteristics, routine MSI testing is now recommended for a number of cancer types including colorectal cancer (CRC). Using gene panels for sequencing of known cancer mutations is routinely performed to guide treatment decisions. By adding a number of MSI regions to a small gene panel, the efficacy of simultaneous MSI detection in a series of CRCs was tested. Tumour DNA from formalin-fixed, paraffin-embedded (FFPE) tumours was sequenced using a 23-gene panel kit (ATOM-Seq) provided by GeneFirst. The mismatch repair (MMR) status was obtained for each patient from their routine pathology reports, and compared to MSI predictions from the sequencing data. By testing 29 microsatellite regions in 335 samples the MSI status was correctly classified in 314/319 samples (98.4% concordance), with sixteen failures. By reducing the number of regions in silico, comparable performance could be reached with as few as eight MSI marker positions. This test represents a quick, and accurate means of determining MSI status in FFPE CRC samples, as part of a routine gene mutation assay, and can easily be incorporated into a research or diagnostic setting. This could replace separate mutation and MSI tests with no loss of accuracy, thus improving testing efficiency.
Assuntos
Neoplasias Colorretais , Formaldeído , Instabilidade de Microssatélites , Mutação , Fixação de Tecidos , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Formaldeído/química , Inclusão em Parafina , Feminino , Masculino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reparo de Erro de Pareamento de DNA/genética , Análise Mutacional de DNA/métodos , Idoso , Pessoa de Meia-IdadeRESUMO
Whole genome sequencing (WGS) provides comprehensive, individualised cancer genomic information. However, routine tumour biopsies are formalin-fixed and paraffin-embedded (FFPE), damaging DNA, historically limiting their use in WGS. Here we analyse FFPE cancer WGS datasets from England's 100,000 Genomes Project, comparing 578 FFPE samples with 11,014 fresh frozen (FF) samples across multiple tumour types. We use an approach that characterises rather than discards artefacts. We identify three artefactual signatures, including one known (SBS57) and two previously uncharacterised (SBS FFPE, ID FFPE), and develop an "FFPEImpact" score that quantifies sample artefacts. Despite inferior sequencing quality, FFPE-derived data identifies clinically-actionable variants, mutational signatures and permits algorithmic stratification. Matched FF/FFPE validation cohorts shows good concordance while acknowledging SBS, ID and copy-number artefacts. While FF-derived WGS data remains the gold standard, FFPE-samples can be used for WGS if required, using analytical advancements developed here, potentially democratising whole cancer genomics to many.
Assuntos
Formaldeído , Neoplasias , Inclusão em Parafina , Fixação de Tecidos , Sequenciamento Completo do Genoma , Humanos , Inclusão em Parafina/métodos , Neoplasias/genética , Neoplasias/patologia , Sequenciamento Completo do Genoma/métodos , Fixação de Tecidos/métodos , Genômica/métodos , Mutação , Genoma Humano , ArtefatosRESUMO
OBJECTIVE: The goal of the research presented here is to determine if methods previously developed for the aqueous extraction of PrPSc from formalin-fixed paraffin-embedded tissue (FFPET) are applicable to the detection PrPSc by real-time quaking induced conversion (RT-QuIC). Previous work has utilized aqueous extraction of FFPET for detection of transmissible spongiform encephalopathies (TSEs) utilizing western blot and ELISA. This research extends the range of suitable methods for detection of TSEs in FFPET to RT-QuIC, which is arguably the most sensitive method to detect TSEs. RESULTS: We found complete agreement between the TSE status and the results from RT-QuIC seeded with the aqueous extract of FFPET samples. The method affords the diagnostic assessment TSE status by RT-QuIC of FFPET without the use of organic solvents that would otherwise create a mixed chemical-biological waste for disposal.
Assuntos
Formaldeído , Inclusão em Parafina , Proteínas PrPSc , Doenças Priônicas , Fixação de Tecidos , Formaldeído/química , Inclusão em Parafina/métodos , Doenças Priônicas/diagnóstico , Proteínas PrPSc/isolamento & purificação , Proteínas PrPSc/metabolismo , Proteínas PrPSc/análise , Animais , Fixação de Tecidos/métodos , Camundongos , HumanosRESUMO
The use of cold formalin fixation (CFF; i.e., fixating tissue samples with 4 °C precooled formalin) recently attracted further attention owing to its putative improved ability to preserve nucleic acid compared with standard room temperature formalin (SFF). In this study, we aimed to assess the effect of four formalin-based fixation protocols (SFF, CFF, delayed formalin fixation-DFF, and cold formalin hyperfixation; CFH) on both DNA and RNA quality. We collected 97 colorectal cancer (CRC) and analyzed 23 metrics of nucleic acid quantity and quality yield using a multiplatform approach by combining spectrophotometric, fluorimetric, electrophoretic, and polymerase chain reaction (PCR) assays. Following confirmation of fixation-protocol-related different effects via clustering analysis, CFF presented best metrics compared with all protocols, specifically positive coefficients of DV1000-60000, DV2/DV1, DNA λ ratio 260/230, and ABL gene expression absolute copies, and negative coefficient of DV150-1000. The SFF subgroup presented a positive coefficient of DV150-1000 and negative coefficients for DV1000-60000, DV2/DV1, RNA λ ratio 260/230, RNA QuBit concentration, DV100/200, RNA electrophoresis concentration and absolute quantity, and ABL copies. Overall, we confirmed the superior yield performances of CFF preservation for both DNA and RNA compared with the other protocols in our series of CRC samples. Pending further validations and clarification of the specific mechanisms behind these findings, our study supports the implementation of CFF in the pathology unit routine specimen management for tumor tissue molecular profiling.
Assuntos
Neoplasias Colorretais , Formaldeído , Fixação de Tecidos , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/diagnóstico , Formaldeído/química , DNA/análise , RNA/análise , Temperatura BaixaRESUMO
Spatial transcriptomics enables a single-cell resolution view of gene expression patterns in tissues, providing insight into their biological functions. However, applying this approach to the skin presents inherent challenges. Here, we present a protocol for preparing mammalian skin samples encompassing hair follicles for spatial transcriptomics. We describe steps for sample preparation, embedding, acquisition of frozen slices, RNA quality control, tissue mounting, fixation, staining, and imaging. We then detail procedures for permeabilization, reverse transcription, and cDNA collection. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Assuntos
Perfilação da Expressão Gênica , Folículo Piloso , Pele , Transcriptoma , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Animais , Transcriptoma/genética , Pele/metabolismo , Perfilação da Expressão Gênica/métodos , Camundongos , Mamíferos/genética , Humanos , Fixação de Tecidos/métodosRESUMO
Human papillomavirus (HPV) infections are an increasing cause of oropharyngeal squamous cell carcinomas (OPSCC). Integration of the viral genome into the host genome is suggested to affect carcinogenesis, however, the correlation with OPSCC patient prognosis is still unclear. Research on HPV integration is hampered by current integration detection technologies and their unsuitability for formalin-fixed paraffin-embedded (FFPE) tissues. This study aims to develop and validate a novel targeted proximity-ligation based sequencing method (targeted locus amplification/capture [TLA/TLC]) for HPV integration detection in cell lines and FFPE OPSCCs. For the identification of HPV integrations, TLA/TLC was applied to 7 cell lines and 27 FFPE OPSCCs. Following preprocessing steps, a polymerase chain reaction (PCR)-based HPV enrichment was performed on the cell lines and a capture-based HPV enrichment was performed on the FFPE tissues before paired-end sequencing. TLA was able to sequence up to hundreds of kb around the target, detecting exact HPV integration loci, structural variants, and chromosomal rearrangements. In all cell lines, one or more integration sites were identified, in accordance with detection of integrated papillomavirus sequences PCR data and the literature. TLC detected integrated HPV in 15/27 FFPE OPSCCs and identified simple and complex integration patterns. In general, TLA/TLC confirmed PCR data and detected additional integration sites. In conclusion TLA/TLC reliably and robustly detects HPV integration in cell lines and FFPE OPSCCs, enabling large, population-based studies on the clinical relevance of HPV integration. Furthermore, this approach might be valuable for clonality assessment of HPV-related tumors in clinical diagnostics.
Assuntos
Carcinoma de Células Escamosas , Papillomavirus Humano , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Integração Viral , Feminino , Humanos , Masculino , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , DNA Viral/genética , Formaldeído , Papillomavirus Humano/classificação , Papillomavirus Humano/genética , Papillomavirus Humano/isolamento & purificação , Neoplasias Orofaríngeas/virologia , Neoplasias Orofaríngeas/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/diagnóstico , Inclusão em Parafina , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Fixação de Tecidos , Integração Viral/genéticaRESUMO
Formalin-fixed paraffin-embedded (FFPE) tissues are suitable for proteomic and phosphoproteomic biomarker studies by data-independent acquisition mass spectrometry. The choice of the sample preparation method influences the number, intensity, and reproducibility of identifications. By comparing four deparaffinization and rehydration methods, including heptane, histolene, SubX, and xylene, we found that heptane and methanol produced the lowest coefficients of variation (CVs). Using this, five extraction methods from the literature were modified and evaluated for their performance using kidney, leg muscle, lung, and testicular rat organs. All methods performed well, except for SP3 due to insufficient tissue lysis. Heat n' Beat was the fastest and most reproducible method with the highest digestion efficiency and lowest CVs. S-Trap produced the highest peptide yield, while TFE produced the best phosphopeptide enrichment efficiency. The quantitation of FFPE-derived peptides remains an ongoing challenge with bias in UV and fluorescence assays across methods, most notably in SPEED. Functional enrichment analysis demonstrated that each method favored extracting some gene ontology cellular components over others including chromosome, cytoplasmic, cytoskeleton, endoplasmic reticulum, membrane, mitochondrion, and nucleoplasm protein groups. The outcome is a set of recommendations for choosing the most appropriate method for different settings.
Assuntos
Inclusão em Parafina , Proteômica , Proteômica/métodos , Animais , Ratos , Formaldeído/química , Masculino , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Fosfoproteínas/isolamento & purificação , Fixação de Tecidos , Rim/metabolismo , Rim/químicaRESUMO
Collagen is the most abundant protein in mammals and a major structural component of the extracellular matrix (ECM). Changes to ECM composition occur as a result of numerous physiological and pathophysiological causes, and a common means to evaluate these changes is the collagen 3 (Col3) to collagen 1 (Col1) ratio. Current methods to measure the Col3/1 ratio suffer from a lack of specificity and often under- or over-estimate collagen composition and quantity. This manuscript presents a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) method for quantification of Col3 and Col1 in FFPE tissues. Using surrogate peptides to generate calibration curves, Col3 and Col1 are readily quantified in FFPE tissue sections with high accuracy and precision. The method is applied to several tissue types from both human and reindeer sources, demonstrating its generalizability. In addition, the targeted LC-MS/MS method permits quantitation of the hydroxyprolinated form of Col3, which has significant implications for understanding not only the quantity of Col3 in tissue, but also understanding of the pathophysiology underlying many causes of ECM changes. This manuscript presents a straightforward, accurate, precise, and generalizable method for quantifying the Col3/1 ratio in a variety of tissue types and organisms.
Assuntos
Colágeno Tipo III , Colágeno Tipo I , Proteômica , Animais , Humanos , Cromatografia Líquida/métodos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/análise , Colágeno Tipo III/metabolismo , Colágeno Tipo III/análise , Formaldeído , Inclusão em Parafina/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Fixação de Tecidos/métodosRESUMO
BACKGROUND: Pathologists commonly employ the Ki67 immunohistochemistry labelling index (LI) when deciding appropriate therapeutic strategies for patients with breast cancer. However, despite several attempts at standardizing the Ki67 LI, inter-observer and inter-laboratory bias remain problematic. We developed a flow cytometric assay that employed tissue dissociation, enzymatic treatment and a gating process to analyse Ki67 in formalin-fixed paraffin-embedded (FFPE) breast cancer tissue. RESULTS: We demonstrated that mechanical homogenizations combined with thrombin treatment can be used to recover efficiently intact single-cell nuclei from FFPE breast cancer tissue. Ki67 in the recovered cell nuclei retained reactivity against the MIB-1 antibody, which has been widely used in clinical settings. Additionally, since the method did not alter the nucleoskeletal structure of tissues, the nuclei of cancer cells can be enriched in data analysis based on differences in size and complexity of nuclei of lymphocytes and normal mammary cells. In a clinical study using the developed protocol, Ki67 positivity was correlated with the Ki67 LI obtained by hot spot analysis by a pathologist in Japan (rho = 0.756, P < 0.0001). The number of cancer cell nuclei subjected to the analysis in our assay was more than twice the number routinely checked by pathologists in clinical settings. CONCLUSIONS: The findings of this study showed the application of this new flow cytometry method could potentially be used to standardize Ki67 assessments in breast cancer.
Assuntos
Neoplasias da Mama , Citometria de Fluxo , Antígeno Ki-67 , Inclusão em Parafina , Antígeno Ki-67/metabolismo , Antígeno Ki-67/análise , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Humanos , Citometria de Fluxo/métodos , Feminino , Inclusão em Parafina/métodos , Formaldeído , Fixação de Tecidos/métodosRESUMO
Expression profiling in spatially defined regions is crucial for systematically understanding tissue complexity. Here, we report a method of photo-irradiation for in-situ barcoding hybridization and ligation sequencing, named PBHL-seq, which allows targeted expression profiling from the photo-irradiated region of interest in intact fresh frozen and formalin fixation and paraffin embedding (FFPE) tissue samples. PBHL-seq uses photo-caged oligodeoxynucleotides for in situ reverse transcription followed by spatially targeted barcoding of cDNAs to create spatially indexed transcriptomes of photo-illuminated regions. We recover thousands of differentially enriched transcripts from different regions by applying PBHL-seq to OCT-embedded tissue (E14.5 mouse embryo and mouse brain) and FFPE mouse embryo (E15.5). We also apply PBHL-seq to the subcellular microstructures (cytoplasm and nucleus, respectively) and detect thousands of differential expression genes. Thus, PBHL-seq provides an accessible workflow for expression profiles from the region of interest in frozen and FFPE tissue at subcellular resolution with areas expandable to centimeter scale, while preserving the sample intact for downstream analysis to promote the development of transcriptomics.
Assuntos
Perfilação da Expressão Gênica , Fixação de Tecidos , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Fixação de Tecidos/métodos , Inclusão em Parafina , Encéfalo/metabolismo , Embrião de Mamíferos/metabolismoRESUMO
Formalin-fixed paraffin-embedded (FFPE) tissue represents a valuable source for translational cancer research. However, the widespread application of various downstream methods remains challenging. Here, we aimed to assess the feasibility of a genomic and gene expression analysis workflow using FFPE breast cancer (BC) tissue. We conducted a systematic literature review for the assessment of concordance between FFPE and fresh-frozen matched tissue samples derived from patients with BC for DNA and RNA downstream applications. The analytical performance of three different nucleic acid extraction kits on FFPE BC clinical samples was compared. We also applied a newly developed targeted DNA Next-Generation Sequencing (NGS) 370-gene panel and the nCounter BC360® platform on simultaneously extracted DNA and RNA, respectively, using FFPE tissue from a phase II clinical trial. Of the 3701 initial search results, 40 articles were included in the systematic review. High degree of concordance was observed in various downstream application platforms. Moreover, the performance of simultaneous DNA/RNA extraction kit was demonstrated with targeted DNA NGS and gene expression profiling. Exclusion of variants below 5% variant allele frequency was essential to overcome FFPE-induced artefacts. Targeted genomic analyses were feasible in simultaneously extracted DNA/RNA from FFPE material, providing insights for their implementation in clinical trials/cohorts.
Assuntos
Neoplasias da Mama , Estudos de Viabilidade , Formaldeído , Genômica , Inclusão em Parafina , Fixação de Tecidos , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Inclusão em Parafina/métodos , Feminino , Formaldeído/química , Fixação de Tecidos/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Perfilação da Expressão Gênica/métodosRESUMO
The detection of disialoganglioside GD2 on tumor biopsies, especially in paraffin-embedded tissues, has been challenging due to the glycolipid structure of GD2 and its membrane anchorage. Here, we present an immunofluorescence protocol for the reliable assessment of GD2 on formalin-fixed paraffin-embedded (FFPE) tissues. We describe steps for antigen retrieval with Tris-EDTA buffer and staining with unconjugated anti-GD2 antibody (clone 14.G2a) and horse radish peroxidase (HRP)-conjugated secondary antibody. We then detail procedures for signal amplification using the tyramide signal amplification technique. For complete details on the use and execution of this protocol, please refer to Fischer-Riepe et al.1.
Assuntos
Imunofluorescência , Formaldeído , Inclusão em Parafina , Inclusão em Parafina/métodos , Humanos , Formaldeído/química , Imunofluorescência/métodos , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Gangliosídeos/análise , Gangliosídeos/química , Fixação de Tecidos/métodos , Coloração e Rotulagem/métodosRESUMO
Focal gene amplification, such as extrachromosomal DNA (ecDNA), plays an important role in cancer development and therapy resistance. While sequencing-based methodologies enable an unbiased identification of ecDNA, cytogenetic-based techniques, such as fluorescence in situ hybridization (FISH), remain time and cost-effective for identifying ecDNA in clinical specimens. The application of FISH in formalin-fixed paraffin-embedded (FFPE) tissue samples offers a unique avenue for detecting amplified genes, particularly when viable specimens are not available for karyotype examination. However, there is a lack of consensus procedures for this technique. This protocol provides comprehensive, fully optimized, step-by-step instructions for conducting FISH to detect gene amplification, including ecDNA, in FFPE tissue samples which present unique challenges that this protocol aims to overcome and standardize. By following this protocol, researchers can reproducibly acquire high-quality imaging data to assess gene amplification.
Assuntos
Formaldeído , Amplificação de Genes , Hibridização in Situ Fluorescente , Inclusão em Parafina , Hibridização in Situ Fluorescente/métodos , Inclusão em Parafina/métodos , Humanos , Formaldeído/química , Fixação de Tecidos/métodosRESUMO
Osteosarcoma is a form of bone cancer that predominantly impacts osteoblasts, the cells responsible for creating fresh bone tissue. Typical indications include bone pain, inflammation, sensitivity, mobility constraints, and fractures. Utilising imaging techniques such as X-rays, MRI scans, and CT scans can provide insights into the size and location of the tumour. Additionally, a biopsy is employed to confirm the diagnosis. Analysing genes with distinct expression patterns unique to osteosarcoma can be valuable for early detection and the development of effective treatment approaches. In this research, we comprehensively examined the entire transcriptome and pinpointed genes with altered expression profiles specific to osteosarcoma. The study mainly aimed to identify the molecular fingerprint of osteosarcoma. In this study, we processed 90 FFPE samples from PathWest with an almost equal number of osteosarcoma and healthy tissues. RNA was extracted from Paraffin-embedded tissue; RNA was sequenced, the sequencing data was analysed, and gene expression was compared to the healthy samples of the same patients. Differentially expressed genes in osteosarcoma-derived samples were identified, and the functions of those genes were explored. This result was combined with our previous studies based on FFPE and fresh samples to perform a meta-analysis. We identified 1,500 identical differentially expressed genes in PathWest osteosarcoma samples compared to normal tissue samples of the same patients. Meta-analysis with combined fresh tissue samples identified 530 differentially expressed genes. IFITM5, MMP13, PANX3, and MAGEA6 were some of the most overexpressed genes in osteosarcoma samples, while SLC4A1, HBA1, HBB, AQP7 genes were some of the top downregulated genes. Through the meta-analysis, 530 differentially expressed genes were identified to be identical among FFPE (105 FFPE samples) and 36 fresh bone samples. Deconvolution analysis with single-cell RNAseq data confirmed the presence of specific cell clusters in FFPE samples. We propose these 530 DEGs as a molecular fingerprint of osteosarcoma.