Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 518
Filtrar
1.
Sci Rep ; 14(1): 15983, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987427

RESUMO

Cornelian cherry fruits contain a wide range of phenolic acids, flavonoids, and other secondary metabolites. Selected flavonoids may inhibit the perceiving of bitterness, however, the full mechanism with all TAS2R bitter taste receptors is not known. The aim of the study was to determine the inhibitory effect of Cornus mas phenolics against the bitterness receptors TAS2R13 and TAS2R3 through functional in vitro assays and coupling studies. The overall effect was validated by analysing the inhibition of the receptors activity in cells treated with tested cornelian cherry extracts. The strength of interaction with both TAS2R receptors varied between studied compounds with different binding affinity. Most compounds bonded with the TAS2R3 receptor through a long-distant hydrophobic interaction with Trp89A and π-π orbital overlapping-between phenolic and tryptophane aromatic rings. For TAS2R13 observed were various mechanisms of interaction with the compounds. Nonetheless, naringin and quercetin had most similar binding affinity to chloroquine and denatonium-the model agonists for the receptor.


Assuntos
Flavonoides , Hidroxibenzoatos , Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/metabolismo , Hidroxibenzoatos/farmacologia , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ligação Proteica , Quercetina/farmacologia , Quercetina/química , Quercetina/metabolismo , Flavanonas/farmacologia , Flavanonas/química , Flavanonas/metabolismo , Células HEK293
2.
J Biosci Bioeng ; 138(2): 144-152, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858130

RESUMO

Flavonoids comprise a group of natural compounds with diverse bioactivities; however, their low water solubility and limited bioavailability often impede their potential health benefits for humans. In this study, five derivatives, namely 2',5'-dihydroxyflavanone (1), 2'-dihydroxyflavanone-5'-O-4″-O-methyl-ß-d-glucoside (2), 2'-dihydroxyflavanone-6-O-4″-O-methyl-ß-d-glucoside (3), 2'-dihydroxyflavanone-3'-O-4″-O-methyl-ß-d-glucoside (4) and hydroxyflavanone-2'-O-4″-O-methyl-ß-d-glucoside (5), were biosynthesized from 2'-hydroxyflavanone through microbial transformation using Beauveria bassiana ATCC 7159. Product 1 was identified as a known compound while 2-5 were structurally characterized as new structures through extensive 1D and 2D NMR analysis. The water solubility of biotransformed products 1-5 was enhanced by 30-280 times compared to the substrate 2'-hydroxyflavanone. Moreover, the antioxidant assay revealed that 1 and 2 exhibited improved 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity relative to the substrate, decreasing the logIC50 from 8.08 ± 0.11 µM to 6.19 ± 0.08 µM and 7.15 ± 0.08 µM, respectively. Compound 5 displayed significantly improved anticancer activity compared to the substrate 2'-hydroxyflavanone against Glioblastoma 33 cancer stem cells, decreasing the IC50 from 25.05 µM to 10.59 µM. Overall, fungal biotransformation represents an effective tool to modify flavonoids for enhanced water solubility and bioactivities.


Assuntos
Beauveria , Biotransformação , Flavanonas , Humanos , Flavanonas/metabolismo , Flavanonas/química , Beauveria/metabolismo , Beauveria/química , Solubilidade , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Flavonoides/metabolismo , Flavonoides/química
3.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891840

RESUMO

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.


Assuntos
Aciltransferases , Liases Intramoleculares , Liases Intramoleculares/metabolismo , Liases Intramoleculares/química , Aciltransferases/metabolismo , Aciltransferases/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Flavonoides/metabolismo , Flavonoides/química , Cinética , Flavanonas/química , Flavanonas/metabolismo , Chalconas/química , Chalconas/metabolismo , Especificidade por Substrato , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Modelos Moleculares , Ligação Proteica , Conformação Proteica
4.
Molecules ; 29(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792058

RESUMO

The 1092 bp F3H gene from Trapa bispinosa Roxb., which was named TbF3H, was cloned and it encodes 363 amino acids. Bioinformatic and phylogenetic tree analyses revealed the high homology of TbF3H with flavanone 3-hydroxylase from other plants. A functional analysis showed that TbF3H of Trapa bispinosa Roxb. encoded a functional flavanone 3-hydroxylase; it catalyzed the formation of dihydrokaempferol (DHK) from naringenin in S. cerevisiae. The promoter strengths were compared by fluorescence microscopy and flow cytometry detection of the fluorescence intensity of the reporter genes initiated by each constitutive promoter (FITC), and DHK production reached 216.7 mg/L by the promoter adjustment strategy and the optimization of fermentation conditions. The results presented in this study will contribute to elucidating DHK biosynthesis in Trapa bispinosa Roxb.


Assuntos
Flavanonas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Flavanonas/biossíntese , Flavanonas/metabolismo , Filogenia , Regiões Promotoras Genéticas , Clonagem Molecular/métodos , Flavonoides/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fermentação
5.
Food Chem ; 452: 139600, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744138

RESUMO

A naringinase complex was chemically aminated prior to its immobilization on glyoxyl-agarose to develop a robust biocatalyst for juice debittering. The effects of amination on the optimal pH and temperature, thermal stability, and debittering performance were analyzed. Concentration of amino groups on catalysts surface increased in 36 %. Amination reduced the ß-glucosidase activity of naringinase complex; however, did not affect optimal pH and temperature of the enzyme and it favored immobilization, obtaining α-l-rhamnosidase and ß-d-glucosidase activities of 1.7 and 4.2 times the values obtained when the unmodified enzymes were immobilized. Amination favored the stability of the immobilized biocatalyst, retaining 100 % of both activities after 190 h at 30 °C and pH 3, while its non-aminated counterpart retained 80 and 52 % of α-rhamnosidase and ß-glucosidase activities, respectively. The immobilized catalyst showed a better performance in grapefruit juice debittering, obtaining a naringin conversion of 7 times the value obtained with the non-aminated catalyst.


Assuntos
Enzimas Imobilizadas , Sucos de Frutas e Vegetais , Glioxilatos , Sefarose , Sucos de Frutas e Vegetais/análise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Aminação , Concentração de Íons de Hidrogênio , Sefarose/química , Glioxilatos/química , Citrus/química , Citrus/enzimologia , Estabilidade Enzimática , Biocatálise , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Temperatura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavanonas/química , Flavanonas/metabolismo , Catálise
6.
Plant Physiol ; 195(3): 1818-1834, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38573326

RESUMO

Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.


Assuntos
Flavanonas , Mutação , Nicotiana , Doenças das Plantas , Raízes de Plantas , Ralstonia solanacearum , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade , Nicotiana/microbiologia , Nicotiana/genética , Nicotiana/efeitos dos fármacos , Flavanonas/farmacologia , Flavanonas/metabolismo , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Mutação/genética , Resistência à Doença/genética , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia
7.
ACS Synth Biol ; 13(5): 1454-1466, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38662928

RESUMO

Chalcone synthase (CHS) catalyzes the rate-limiting step of (2S)-naringenin (the essential flavonoid skeleton) biosynthesis. Improving the activity of the CHS by protein engineering enhances (2S)-naringenin production by microbial fermentation and can facilitate the production of valuable flavonoids. A (2S)-naringenin biosensor based on the TtgR operon was constructed in Escherichia coli and its detection range was expanded by promoter optimization to 0-300 mg/L, the widest range for (2S)-naringenin reported. The high-throughput screening scheme for CHS was established based on this biosensor. A mutant, SjCHS1S208N with a 2.34-fold increase in catalytic activity, was discovered by directed evolution and saturation mutagenesis. A pathway for de novo biosynthesis of (2S)-naringenin by SjCHS1S208N was constructed in Saccharomyces cerevisiae, combined with CHS precursor pathway optimization, increasing the (2S)-naringenin titer by 65.34% compared with the original strain. Fed-batch fermentation increased the titer of (2S)-naringenin to 2513 ± 105 mg/L, the highest reported so far. These findings will facilitate efficient flavonoid biosynthesis and further modification of the CHS in the future.


Assuntos
Aciltransferases , Técnicas Biossensoriais , Evolução Molecular Direcionada , Escherichia coli , Fermentação , Flavanonas , Saccharomyces cerevisiae , Flavanonas/biossíntese , Flavanonas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular Direcionada/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas Biossensoriais/métodos , Engenharia de Proteínas/métodos , Regiões Promotoras Genéticas , Óperon/genética , Engenharia Metabólica/métodos
8.
Food Chem ; 448: 139182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569413

RESUMO

Amylosucrase (ASase) efficiently biosynthesizes α-glucoside using flavonoids as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus wulumuqiensis (DwAS) biosynthesized more naringenin α-glucoside (NαG) with sucrose and naringenin as donor and acceptor molecules, respectively, than other ASases from Deinococcus sp. The biotransformation rate of DwAS to NαG was 21.3% compared to 7.1-16.2% for other ASases. Docking simulations showed that the active site of DwAS was more accessible to naringenin than those of others. The 217th valine in DwAS corresponded to the 221st isoleucine in Deinococcus geothermalis AS (DgAS), and the isoleucine possibly prevented naringenin from accessing the active site. The DwAS-V217I mutant had a significantly lower biosynthetic rate of NαG than DwAS. The kcat/Km value of DwAS with naringenin as the donor was significantly higher than that of DgAS and DwAS-V217I. In addition, NαG inhibited human intestinal α-glucosidase more efficiently than naringenin.


Assuntos
Proteínas de Bactérias , Biotransformação , Deinococcus , Flavanonas , Glucosídeos , Glucosiltransferases , Inibidores de Glicosídeo Hidrolases , Flavanonas/metabolismo , Flavanonas/química , Deinococcus/enzimologia , Deinococcus/metabolismo , Deinococcus/química , Deinococcus/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glucosídeos/metabolismo , Glucosídeos/química , Simulação de Acoplamento Molecular , Cinética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química
9.
Metab Eng ; 83: 1-11, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447910

RESUMO

Flavonoids are a diverse set of natural products with promising bioactivities including anti-inflammatory, anti-cancer, and neuroprotective properties. Previously, the oleaginous host Yarrowia lipolytica has been engineered to produce high titers of the base flavonoid naringenin. Here, we leverage this host along with a set of E. coli bioconversion strains to produce the flavone apigenin and its glycosylated derivative isovitexin, two potential nutraceutical and pharmaceutical candidates. Through downstream strain selection, co-culture optimization, media composition, and mutant isolation, we were able to produce168 mg/L of apigenin, representing a 46% conversion rate of 2-(R/S)-naringenin to apigenin. This apigenin platform was modularly extended to produce isovitexin by addition of a second bioconversion strain. Together, these results demonstrate the promise of microbial production and modular bioconversion to access diversified flavonoids.


Assuntos
Apigenina , Escherichia coli , Flavanonas , Engenharia Metabólica , Yarrowia , Apigenina/metabolismo , Apigenina/biossíntese , Flavanonas/biossíntese , Flavanonas/metabolismo , Yarrowia/metabolismo , Yarrowia/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Glucosídeos/biossíntese , Glucosídeos/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403340

RESUMO

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Assuntos
Dendrobium , Flavanonas , Dendrobium/genética , Dendrobium/química , Flavanonas/metabolismo , Flavonoides , Clonagem Molecular , Glicosídeos/metabolismo
11.
J Agric Food Chem ; 72(9): 4880-4887, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386432

RESUMO

Dihydroquercetin (DHQ), known for its varied physiological benefits, is widely used in the food, chemical, and pharmaceutical industries. However, the efficiency of the DHQ synthesis is significantly limited by the substantial accumulation of intermediates during DHQ biosynthesis. In this study, DHQ production was achieved by integrating genes from various organisms into the yeast chromosome for the expression of flavanone-3-hydroxylase (F3H), flavonoid-3'-hydroxylase, and cytochrome P450 reductase. A computer-aided protein design approach led to the development of optimal F3H mutant P221A, resulting in a 1.67-fold increase in DHQ yield from naringenin (NAR) compared with the control. Subsequently, by analysis of the enzyme reaction and optimization of the culture medium composition, 637.29 ± 20.35 mg/L DHQ was synthesized from 800 mg/L NAR. This corresponds to a remarkable conversion rate of 71.26%, one of the highest reported values for DHQ synthesis from NAR to date.


Assuntos
Flavanonas , Quercetina/análogos & derivados , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Flavanonas/metabolismo , Quercetina/química
12.
Food Funct ; 15(2): 1031-1049, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38193367

RESUMO

Orange juice is an important food source of bioactive compounds, mainly the flavanones hesperidin and narirutin. This study aimed to investigate the underlying molecular mechanisms of action of orange juice's health properties by analyzing changes in the plasma proteome of healthy Brazilian volunteers after consuming juices made from 'Bahia' (BOJ-source of flavanones) and 'Cara Cara' (CCOJ-source of flavanones and carotenoids) oranges cultivated in Brazil. We used an untargeted proteomic approach, with a particular emphasis on the juices' effects on blood coagulant activity. We identified 247 differentially expressed proteins, of which 170 significantly increased or decreased after BOJ consumption and 145 after CCOJ. These proteins are involved in 105 processes that can significantly regulate cell adhesion, cell signaling, cell metabolism, inflammation, or others. Bioinformatic analysis evidenced proteins with major cellular regulatory capacity (e.g., FN1 and GAPDH) and predicted transcription factors (TFs) (e.g., SP1 and CEBPA) and miRNAs (e.g., miR-1-3p and miR-615-3p) that could be involved in the regulation of differentially expressed proteins. In-silico docking analyses between flavanone metabolites and TFs evidenced the higher binding capacity of narirutin phase II metabolites with akt1 and p38, interactions that suggest how the expression of genes of differentially expressed proteins were activated or inhibited. Moreover, the study shed light on proteins of coagulation cascade that presented expression modulated by both juices, proposing the modulation of blood coagulant activity as a potential benefit of OJ (mainly CCOJ) consumption. Taken together, this study revealed that BOJ and CCOJ consumption affected plasma proteome in healthy individuals, suggesting potential molecular targets and mechanisms of OJ bioactive compounds in humans.


Assuntos
Citrus sinensis , Coagulantes , Flavanonas , MicroRNAs , Humanos , Citrus sinensis/química , Brasil , Proteoma/análise , Proteômica , Flavanonas/metabolismo , Sucos de Frutas e Vegetais , Frutas/química , MicroRNAs/metabolismo , Coagulantes/análise , Coagulantes/metabolismo
13.
Food Res Int ; 177: 113718, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225107

RESUMO

Orange peel is an interesting by-product because of its composition, particularly its dietary fibre and flavanones. The aim of this work was to extract different fibre fractions from orange peel to obtain potential added-value ingredients and evaluate how the presence of fibre may interfere with (poly)phenol metabolism. Using an aqueous extraction, as a green extraction method, an insoluble fibre fraction (IFF) and a water-soluble extract (WSE) were obtained. Those fractions were analysed to determine the proximate and dietary fibre composition, hydration properties, (poly)phenol composition and antioxidant capacity, comparing the results with the orange peel (OP). The IFF presented the highest content of insoluble dietary fibre and the WSE showed the highest content of (poly)phenols, these being mainly flavanones. An in vitro faecal fermentation was carried out to evaluate the production of short-chain fatty acids (SCFAs) and lactate as prebiotic indicators; the IFF gave the highest production, derived from the greater presence of dietary fibre. Moreover, catabolites from (poly)phenol metabolism were also analysed, phenylpropanoic acids being the major ones, followed by phenylacetic acids and benzoic acids. These catabolites were found in higher quantities in WSE, because of the greater presence of (poly)phenols in its composition. IFF also showed a significant production of these catabolites, which was delayed by the greater presence of fibre. These results reveal that the new ingredients, obtained by an environmentally friendly water extraction procedure, could be used for the development of new foods with enhanced nutritional and healthy properties.


Assuntos
Citrus sinensis , Flavanonas , Fenóis , Citrus sinensis/metabolismo , Fermentação , Fenol , Fibras na Dieta/metabolismo , Flavanonas/metabolismo , Ácido Láctico , Digestão , Água
14.
Microbiol Spectr ; 12(1): e0337423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38088543

RESUMO

IMPORTANCE: Flavonoids are a group of compounds generally produced by plants with proven biological activity, which have recently beeen recommended for the treatment and prevention of diseases and ailments with diverse causes. In this study, naringenin was produced in adequate amounts in yeast after in silico design. The four genes of the involved enzymes from several organisms (bacteria and plants) were multi-expressed in two vectors carrying each two genes linked by a short viral peptide sequence. The batch kinetic behavior of the product, substrate, and biomass was described at lab scale. The engineered strain might be used in a more affordable and viable bioprocess for industrial naringenin procurement.


Assuntos
Flavanonas , Flavonoides , Flavonoides/metabolismo , Saccharomyces cerevisiae/metabolismo , Flavanonas/metabolismo
15.
BMC Res Notes ; 16(1): 343, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978406

RESUMO

OBJECTIVE: Hesperetin is an important O-methylated flavonoid produced by citrus fruits and of potential pharmaceutical relevance. The microbial biosynthesis of hesperetin could be a viable alternative to plant extraction, as plant extracts often yield complex mixtures of different flavonoids making it challenging to isolate pure compounds. In this study, hesperetin was produced from caffeic acid in the microbial host Escherichia coli. We combined a previously optimised pathway for the biosynthesis of the intermediate flavanone eriodictyol with a combinatorial library of plasmids expressing three candidate flavonoid O-methyltransferases. Moreover, we endeavoured to improve the position specificity of CCoAOMT7, a flavonoid O-methyltransferase from Arabidopsis thaliana that has been demonstrated to O-methylate eriodictyol in both the para- and meta-position, thus leading to a mixture of hesperetin and homoeriodictyol. RESULTS: The best performing flavonoid O-methyltransferase in our screen was found to be CCoAOMT7, which could produce up to 14.6 mg/L hesperetin and 3.8 mg/L homoeriodictyol from 3 mM caffeic acid in E. coli 5-alpha. Using a platform for enzyme engineering that scans the mutational space of selected key positions, predicting their structures using homology modelling and inferring their potential catalytic improvement using docking simulations, we were able to identify a CCoAOMT7 mutant with a two-fold higher position specificity for hesperetin. The mutant's catalytic activity, however, was considerably diminished. Our findings suggest that hesperetin can be created from central carbon metabolism in E. coli following the introduction of a caffeic acid biosynthesis pathway.


Assuntos
Escherichia coli , Flavanonas , Flavanonas/metabolismo , Flavonoides/metabolismo , Metiltransferases/genética
16.
Plant Mol Biol ; 113(4-5): 193-204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37878187

RESUMO

Cymbidium ensifolium is one of the national orchids in China, which has high ornamental value with changeable flower colors. To understand the formation mechanism of different flower colors of C. ensifolium, this research conducted transcriptome and metabolome analyses on four different colored sepals of C. ensifolium. Metabolome analysis detected 204 flavonoid metabolites, including 17 polyphenols, 27 anthocyanins, 75 flavones, 34 flavonols, 25 flavonoids, 18 flavanones, and 8 isoflavones. Among them, purple-red and red sepals contain a lot of anthocyanins, including cyanidin, pelargonin, and paeoniflorin, while yellow-green and white sepals have less anthocyanins detected, and their metabolites are mainly flavonols, flavanones and flavonoids. Transcriptome sequencing analysis showed that the expression levels of the anthocyanin biosynthetic enzyme genes in red and purple-red sepals were significantly higher than those in white and yellow-green sepals of C. ensifolium. The experimental results showed that CeF3'H2, CeDFR, CeANS, CeF3H and CeUFGT1 may be the key genes involved in anthocyanin production in C. ensifolium sepals, and CeMYB104 has been proved to play an important role in the flower color formation of C. ensifolium. The results of transformation showed that the CeMYB104 is involved in the synthesis of anthocyanins and can form a purple-red color in the white perianth of Phalaenopsis. These findings provide a theoretical reference to understand the formation mechanism of flower color in C. ensifolium.


Assuntos
Flavanonas , Orchidaceae , Antocianinas , Transcriptoma , Flavonoides/metabolismo , Flores/genética , Flores/metabolismo , Flavonóis , Orchidaceae/genética , Orchidaceae/metabolismo , Flavanonas/metabolismo , Cor , Regulação da Expressão Gênica de Plantas
17.
Chem Res Toxicol ; 36(11): 1778-1788, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37783573

RESUMO

Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.


Assuntos
Apigenina , Família 1 do Citocromo P450 , Flavanonas , Genisteína , Humanos , Apigenina/metabolismo , Genisteína/metabolismo , Flavanonas/metabolismo , Família 1 do Citocromo P450/metabolismo , Oxirredução , Estrutura Molecular , Simulação de Acoplamento Molecular
18.
Plant Physiol ; 193(3): 1849-1865, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37477940

RESUMO

Fruit color is a very important external commodity factor for consumers. Compared to the most typical red octoploid strawberry (Fragaria × ananassa), the pink strawberry often sells for a more expensive price and has a higher economic benefit due to its outstanding color. However, few studies have examined the molecular basis of pink-colored strawberry fruit. Through an EMS mutagenesis of woodland strawberry (Fragaria vesca), we identified a mutant with pink fruits and green petioles. Bulked-segregant analysis sequencing analysis and gene function verification confirmed that the responsible mutation resides in a gene encoding flavanone-3-hydroxylase (F3H) in the anthocyanin synthesis pathway. This nonsynonymous mutation results in an arginine-to-histidine change at position 130 of F3H. Molecular docking experiments showed that the arginine-to-histidine mutation results in a reduction of intermolecular force-hydrogen bonding between the F3H protein and its substrates. Enzymatic experiments showed a greatly reduced ability of the mutated F3H protein to catalyze the conversion of the substrates and hence a blockage of the anthocyanin synthesis pathway. The discovery of a key residue in the F3H gene controlling anthocyanin synthesis provides a clear target of modification for the molecular breeding of strawberry varieties with pink-colored fruits, which may be of great commercial value.


Assuntos
Flavanonas , Fragaria , Antocianinas/genética , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Histidina/genética , Histidina/metabolismo , Simulação de Acoplamento Molecular , Oxigenases de Função Mista/metabolismo , Mutação/genética , Flavanonas/metabolismo
19.
Plant Physiol Biochem ; 200: 107794, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257409

RESUMO

Scutellaria baicalensis Georgi is an important Chinese medicinal plant that is rich in the flavones baicalin, wogonoside, and wogonin, providing it with anti-cancer, anti-inflammatory, and antibacterial properties. However, although the biosynthetic pathways of baicalin and its derivates have been elucidated, the regulation of flavone biosynthesis in S. baicalensis is poorly understood. Here, we found that the contents of baicalin and its derivates increased and that baicalin biosynthetic pathway genes were induced in response to light, and baicalin and baicalein are not exclusively produced in the roots of S. baicalensis. Based on the fact that MYB transcription factors are known to play important roles in flavone biosynthesis, we identified SbMYB45 and SbMYB86.1 in S. baicalensis and determined that they bind to the promoter of the flavone biosynthesis gene SbCHI to enhance its transcription. Moreover, overexpressing SbMYB45 and SbMYB86.1 enhanced the accumulation of baicalin in S. baicalensis leaves. We demonstrate that SbMYB45 and SbMYB86.1 bind to the cis-acting element MBSII in the promoter of CHI to redundantly induce its expression upon light exposure. These findings indicate that SbMYB45 and SbMYB86.1 transcriptionally activate SbCHI in response to light and enhance flavone contents in S. baicalensis.


Assuntos
Flavanonas , Flavonas , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flavanonas/metabolismo , Flavonoides/genética , Flavonoides/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
20.
Bull Exp Biol Med ; 174(6): 738-740, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37170019

RESUMO

Cytostatic activity of baicalin, baicalein, and neogalenical drug Chlorophyllipt was studied in vitro on HeLa-v cells. Standard samples of Eucalimin, baicalin, and baicalein, as well as Chlorophyllipt and paclitaxel (reference drug Taxacad) were used. The cell deaths were determined by MTT assay in a Multiskan FC microplate reader with incubator. The effective inhibition concentration (IC50) of the tested substances were: paclitaxel (4.0±0.4 µM)-baicalein (10.5±1.1 µM)-baicalin (16.5±1.7 µM)-sum of euglobals in Chlorophyllipt (24.1±2.5 µM). Chlorophyllipt was found to exhibit cytostatic activity. Cytostatic activity of baicalein, baicalin, and Chlorophyllipt was lower than cytostatic activity of the reference drug by 2.6, 4.1, and 6 times, respectively. The prospects of further evaluation of the synergetic effect of baicalin, baicalein, and chlorophyllipt used in combinations with different cytostatic agents for finding the most effective combination have been shown.


Assuntos
Citostáticos , Flavanonas , Humanos , Citostáticos/farmacologia , Flavonoides/farmacologia , Flavanonas/farmacologia , Flavanonas/metabolismo , Células HeLa , Paclitaxel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...