Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Viruses ; 16(10)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39459938

RESUMO

Usutu virus (USUV) is an emerging mosquito-transmitted flavivirus with increasing incidence of human infection and geographic expansion, thus posing a potential threat to public health. In this study, we established a comprehensive spatiotemporal database encompassing USUV infections in vectors, animals, and humans worldwide by an extensive literature search. Based on this database, we characterized the geographic distribution and epidemiological features of USUV infections. By employing boosted regression tree (BRT) models, we projected the distributions of three main vectors (Culex pipiens, Aedes albopictus, and Culiseta longiareolata) and three main hosts (Turdus merula, Passer domesticus, and Ardea cinerea) to obtain the mosquito index and bird index. These indices were further incorporated as predictors into the USUV infection models. Through an ensemble learning model, we achieved a decent model performance, with an area under the curve (AUC) of 0.992. The mosquito index contributed significantly, with relative contributions estimated at 25.51%. Our estimations revealed a potential exposure area for USUV spanning 1.80 million km2 globally with approximately 1.04 billion people at risk. This can guide future surveillance efforts for USUV infections, especially for countries located within high-risk areas and those that have not yet conducted surveillance activities.


Assuntos
Infecções por Flavivirus , Flavivirus , Mosquitos Vetores , Animais , Flavivirus/isolamento & purificação , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/virologia , Humanos , Mosquitos Vetores/virologia , Aedes/virologia , Saúde Global , Culicidae/virologia , Aves/virologia
2.
Emerg Microbes Infect ; 13(1): 2406278, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39295515

RESUMO

West Nile virus (WNV) was first detected in the Netherlands in 2020, with circulation observed in birds, mosquitoes, and humans in two geographical areas. Usutu virus (USUV) has been circulating in the Netherlands since 2016. Following the detection of WNV in the Netherlands, we investigated the possible use of petting zoos as urban sentinel sites to examine the extent of WNV and USUV circulation around the two WNV outbreak locations. Chickens at petting zoos and in backyards were sampled within a 15-kilometer radius of the confirmed WNV circulation areas at three timepoints over one year (2021-2022). Sera were analysed using a protein microarray for binding antibodies to orthoflavivirus NS1 antigens and reactive samples were confirmed through micro-focus reduction neutralization tests (mFRNT). Furthermore, mosquitoes at sampling locations were collected to assess their blood feeding behaviour. This serosurvey detected the circulation of USUV and WNV in petting zoo and backyard chickens in 2021, both within and outside the 2020 outbreak areas. The WNV circulation was not detected by other existing surveillance schemes in mosquitoes, wild birds, horses and humans. In addition, the results show rapid decay of USUV antibodies in approximately 20 weeks. Our findings support the utility and the added value of petting zoo chickens as sentinels for monitoring USUV and WNV circulation compared to other available methods. Seroconversions observed in petting zoos and backyard chickens living in or near densely populated urban areas further highlighted potential public health risks that went undetected.


Assuntos
Anticorpos Antivirais , Galinhas , Doenças das Aves Domésticas , Vigilância de Evento Sentinela , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Vírus do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/isolamento & purificação , Países Baixos/epidemiologia , Galinhas/virologia , Febre do Nilo Ocidental/veterinária , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Anticorpos Antivirais/sangue , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Vigilância de Evento Sentinela/veterinária , Flavivirus/imunologia , Flavivirus/isolamento & purificação , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/virologia , Animais de Zoológico/virologia , Culicidae/virologia , Surtos de Doenças/veterinária
3.
Artigo em Inglês | MEDLINE | ID: mdl-39319955

RESUMO

The genus Flavivirus (Family: Flaviviridae) comprises arboviruses with the capacity to infect humans and animals. It also integrates insect-specific viruses. This study aimed to identify Flavivirus in mosquitoes captured in 17 municipalities in Yucatan State, Mexico. The mosquitoes were caught in households from November 2021 to May 2022. A total of 4,321 adult mosquitoes from five species were caught. The most abundant were Culex quinquefasciatus (n = 3,563) and Aedes aegypti (n = 734). For molecular investigations, 600 female mosquitoes were split into groups of 10, mostly for species and site location. Reverse transcriptase polymerase chain reaction (RT-PCR) amplified a region of the NS5 gene to find the Flavivirus ribonucleic acids (RNA). A total of 24 pools that were positive for Flavivirus were detected in Ae. aegypti specimens and subsequently subjected to sequencing using the Sanger method. A total of 12 sequences matched the established quality criteria and were subsequently employed for sequence homology analysis. We found that one sequence corresponded to the Zika virus (ZIKV), and 11 sequences had sequence similarity with Phlebotomus-associated flavivirus (PAFV), an insect-specific virus (ISF). In conclusion, we found ZIKV in the Merida municipality, Yucatan State, which suggests that the virus is silently circulating. Phlebotomus-associated flavivirus is distributed in five municipalities in Yucatan State, Mexico. Future studies could focus on isolating this virus and studying its biological role within Ae. aegypti.


Assuntos
Culicidae , Flavivirus , Mosquitos Vetores , Animais , México , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Mosquitos Vetores/virologia , Feminino , Culicidae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , RNA Viral/genética , RNA Viral/análise , Culex/virologia
4.
Parasit Vectors ; 17(1): 369, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215365

RESUMO

BACKGROUND: Mosquito host feeding patterns are an important factor of the species-specific vector capacity determining pathogen transmission routes. Culex pipiens s.s./Cx. torrentium are competent vectors of several arboviruses, such as West Nile virus and Usutu virus. However, studies on host feeding patterns rarely differentiate the morphologically indistinguishable females. METHODS: We analyzed the host feeding attraction of Cx. pipiens and Cx. torrentium in host-choice studies for bird, mouse, and a human lure. In addition, we summarized published and unpublished data on host feeding patterns of field-collected specimens from Germany, Iran, and Moldova from 2012 to 2022, genetically identified as Cx. pipiens biotype pipiens, Cx. pipiens biotype molestus, Cx. pipiens hybrid biotype pipiens × molestus, and Cx. torrentium, and finally put the data in context with similar data found in a systematic literature search. RESULTS: In the host-choice experiments, we did not find a significant attraction to bird, mouse, and human lure for Cx. pipiens pipiens and Cx. torrentium. Hosts of 992 field-collected specimens were identified for Germany, Iran, and Moldova, with the majority determined as Cx. pipiens pipiens, increasing the data available from studies known from the literature by two-thirds. All four Culex pipiens s.s./Cx. torrentium taxa had fed with significant proportions on birds, humans, and nonhuman mammals. Merged with the data from the literature from 23 different studies showing a high prevalence of blood meals from birds, more than 50% of the blood meals of Cx. pipiens s.s. were identified as birds, while up to 39% were human and nonhuman mammalian hosts. Culex torrentium fed half on birds and half on mammals. However, there were considerable geographical differences in the host feeding patterns. CONCLUSIONS: In the light of these results, the clear characterization of the Cx. pipiens s.s./Cx. torrentium taxa as ornithophilic/-phagic or mammalophilic/-phagic needs to be reconsidered. Given their broad host ranges, all four Culex taxa could potentially serve as enzootic and bridge vectors.


Assuntos
Aves , Culex , Comportamento Alimentar , Mosquitos Vetores , Animais , Culex/fisiologia , Culex/virologia , Culex/classificação , Camundongos , Humanos , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/classificação , Feminino , Alemanha , Irã (Geográfico) , Especificidade de Hospedeiro , Vírus do Nilo Ocidental/fisiologia , Vírus do Nilo Ocidental/genética , Flavivirus/genética , Flavivirus/fisiologia , Flavivirus/isolamento & purificação , Especificidade da Espécie
5.
Parasitol Res ; 123(8): 304, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162844

RESUMO

The family Cimicidae comprises ectoparasites feeding exclusively on the blood of endothermic animals. Cimicid swallow bugs specifically target swallow birds (Hirundinidae) and their nestlings in infested nests. Bugs of the genus Oeciacus are commonly found in mud nests of swallows and martins, while they rarely visit the homes of humans. Although-unlike other cimicid species-the house martin bug Oeciacus hirundinis has never been reported as a vector of zoonotic pathogens, its possible role in arbovirus circulation in continental Europe is unclear. Samples of O. hirundinis were therefore collected from abandoned house martin (Delichon urbicum) nests in southern Moravia (Czech Republic) during the 2021/2022 winter season and checked for alpha-, flavi- and bunyaviruses by RT-PCR. Of a total of 96 pools consisting of three adult bugs each, one pool tested positive for Usutu virus (USUV)-RNA. Phylogenetic analysis showed that the virus strain was closely related to Italian and some Central European strains and corresponded to USUV lineage 5. The detection of USUV in O. hirundinis during wintertime in the absence of swallows raises the question for a possible role of this avian ectoparasite in virus overwintering in Europe.


Assuntos
Cimicidae , Flavivirus , Filogenia , Estações do Ano , Animais , Cimicidae/virologia , Flavivirus/isolamento & purificação , Flavivirus/genética , Flavivirus/classificação , República Tcheca , RNA Viral/genética , Doenças das Aves/parasitologia , Doenças das Aves/virologia
6.
Sci Rep ; 14(1): 19452, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169115

RESUMO

Bagaza virus (BAGV) is a mosquito-borne flavivirus of the family Flaviviridae, genus Orthoflavivirus, Ntaya serocomplex. Like other viruses of the Ntaya and Japanese encephalitis serocomplexes, it is maintained in nature in transmission cycles involving viremic wild bird reservoirs and Culex spp. mosquitoes. The susceptibility of red-legged partridge, ring-necked pheasant, Himalayan monal and common wood pigeon is well known. Determining whether other species are susceptible to BAGV infection is fundamental to understanding the dynamics of disease transmission and maintenance. In September 2023, seven Eurasian magpies were found dead in a rural area in the Mértola district (southern Portugal) where a BAGV-positive cachectic red-legged partridge had been found two weeks earlier. BAGV had also been detected in several red-legged partridges in the same area in September 2021. Three of the magpies were tested for Bagaza virus, Usutu virus, West Nile virus, Avian influenza virus and Avian paramyxovirus serotype 1, and were positive for BAGV only. Sequencing data confirmed the specificity of the molecular detection. Our results indicate that BAGV is circulating in southern Portugal and confirm that Eurasian magpie is potential susceptible to BAGV infection. The inclusion of the abundant Eurasian magpie in the list of BAGV hosts raises awareness of the potential role of this species as as an amplifying host.


Assuntos
Flavivirus , Animais , Portugal , Flavivirus/genética , Flavivirus/isolamento & purificação , Filogenia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Infecções por Flavivirus/virologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/epidemiologia
7.
Virol J ; 21(1): 163, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044231

RESUMO

Usutu virus (USUV), an arbovirus from the Flaviviridae family, genus Flavivirus, has recently gained increasing attention because of its potential for emergence. After his discovery in South Africa, USUV spread to other African countries, then emerged in Europe where it was responsible for epizootics. The virus has recently been found in Asia. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. However, a few cases of neurological complications such as encephalitis or meningo-encephalitis have been reported in both immunocompromised and immunocompetent patients. USUV natural life cycle involves Culex mosquitoes as its main vector, and multiple bird species as natural viral reservoirs or amplifying hosts, humans and horses can be incidental hosts. Phylogenetic studies carried out showed eight lineages, showing an increasing genetic diversity for USUV. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to Usutu virus. This study was carried out on different strains from Senegal and Italy. The new approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for Usutu virus genomic surveillance to better understand the dynamics of evolution and transmission of the virus.


Assuntos
Infecções por Flavivirus , Flavivirus , Genoma Viral , Filogenia , Flavivirus/genética , Flavivirus/classificação , Flavivirus/isolamento & purificação , Animais , Infecções por Flavivirus/virologia , Infecções por Flavivirus/veterinária , Humanos , Senegal , Itália , Aves/virologia , RNA Viral/genética , Variação Genética , Culex/virologia , Sequenciamento Completo do Genoma , Cavalos/virologia
8.
Acta Trop ; 258: 107330, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39043331

RESUMO

Usutu virus (USUV) is a mosquito-borne flavivirus originating from Africa, that belongs to the Japanese encephalitis virus (JEV) complex. In nature, USUV involves Culex spp. mosquitoes acting as vectors and birds as amplifying hosts. The virus has recently spread in Europe and is considered an emerging human pathogen. This is the first research study performed in Greece revealing the presence and circulation of USUV in Culex spp. mosquito populations. Out of the 1,500 mosquito pools tested with real-time RT-PCR, four (Roesch et al., 2019) were positive for USUV. All four pools were collected from the region of Central Macedonia, Northern Greece.


Assuntos
Culex , Flavivirus , Mosquitos Vetores , Animais , Culex/virologia , Grécia , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Mosquitos Vetores/virologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Flavivirus/virologia , Infecções por Flavivirus/veterinária , Infecções por Flavivirus/transmissão , RNA Viral/genética , RNA Viral/isolamento & purificação
9.
Acta Trop ; 257: 107272, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38885823

RESUMO

The Orthoflavivirus ilheusense (ILHV) is an arbovirus that was first isolated in Brazil in 1944 during an epidemiologic investigation of yellow fever. Is a member of the Flaviviridae family and it belongs to the antigenic complex of the Ntaya virus group. Psorophora ferox is the primary vector of ILHV and this study presents the isolation and phylogenetic analysis of ILHV in a pool of Ps. ferox collected in the state of Goiás in 2021. Viral isolation tests were performed on Vero cells and C6/36 clones. The indirect immunofluorescence test (IFI) was used to confirm the positivity of the sample. The positive sample underwent RT-qPCR, sequencing, and phylogenetic analysis. This is the first report of ILHV circulation in this municipality and presented close relationship between this isolate and another ILHV isolate collected in the city of Belém (PA).


Assuntos
Culicidae , Filogenia , Animais , Brasil , Células Vero , Culicidae/virologia , Chlorocebus aethiops , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Mosquitos Vetores/virologia
10.
An Acad Bras Cienc ; 96(2): e20230452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922274

RESUMO

The genus Flavivirus comprises approximately 80 different viruses. Phylogenetic relationships among its members indicate a clear ecological separation between those viruses transmitted by mosquitoes, ticks, with no known vector, and insect-specific Flaviviruses. The diversity and phylogenetic relationships among insect-specific flaviviruses circulating in the central and northern regions of Argentina were studied by performing molecular detection and characterization of the NS5 protein gene in mosquitoes collected in Córdoba, Chaco and Tucumán provinces. Overall, 68 out of 1776 pools were positive. CxFV, KRV and CFAV circulate in the 3 studied provinces. Several mosquito species (Aedes aegypti, Culex bidens, Cx. dolosus, Cx. interfor, Cx. quinquefasciatus, Cx. saltanensis, Haemagogus spegazzini) were found infected. A wide circulation of CxFV was observed in the central-northern region of Argentina. CxFV strains detected in our study clustered with strains circulating in Santa Fe and Buenos Aires provinces (Argentina), and other countries such as Indonesia, Mexico, Uganda and Taiwan. The presence of these viruses in mosquitoes could play an important role from the public health perspective, because it has been shown that previous CxFV infection can increase or block the infection of the mosquito by other pathogenic flaviviruses.


Assuntos
Culicidae , Flavivirus , Mosquitos Vetores , Filogenia , Animais , Argentina , Flavivirus/classificação , Flavivirus/genética , Flavivirus/isolamento & purificação , Culicidae/virologia , Culicidae/classificação , Mosquitos Vetores/virologia , Mosquitos Vetores/classificação
11.
Euro Surveill ; 29(20)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757289

RESUMO

Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.


Assuntos
Aedes , Vírus Chikungunya , Vírus da Dengue , Zika virus , Animais , Aedes/virologia , Humanos , Zika virus/isolamento & purificação , Vírus da Dengue/isolamento & purificação , Vírus Chikungunya/isolamento & purificação , Paris , Mosquitos Vetores/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Arbovírus/isolamento & purificação , Infecções por Arbovirus/transmissão , Flavivirus/isolamento & purificação , França , Dengue/transmissão , Dengue/epidemiologia , Infecção por Zika virus/transmissão
12.
J Gen Virol ; 105(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38809251

RESUMO

Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.


Assuntos
Flavivirus , Ixodidae , Filogenia , Animais , Flavivirus/genética , Flavivirus/classificação , Flavivirus/isolamento & purificação , China , Ixodidae/virologia , Feminino
13.
Viruses ; 16(4)2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675940

RESUMO

West Nile Virus (WNV) and Usutu Virus (USUV) are both neurotropic mosquito-borne viruses belonging to the Flaviviridae family. These closely related viruses mainly follow an enzootic cycle involving mosquitoes as vectors and birds as amplifying hosts, but humans and other mammals can also be infected through mosquito bites. WNV was first identified in Uganda in 1937 and has since spread globally, notably in Europe, causing periodic outbreaks associated with severe cases of neuroinvasive diseases such as meningitis and encephalitis. USUV was initially isolated in 1959 in Swaziland and has also spread to Europe, primarily affecting birds and having a limited impact on human health. There has been a recent expansion of these viruses' geographic range in Europe, facilitated by factors such as climate change, leading to increased human exposure. While sharing similar biological traits, ecology, and epidemiology, there are significant distinctions in their pathogenicity and their impact on both human and animal health. While WNV has been more extensively studied and is a significant public health concern in many regions, USUV has recently been gaining attention due to its emergence in Europe and the diversity of its circulating lineages. Understanding the pathophysiology, ecology, and transmission dynamics of these viruses is important to the implementation of effective surveillance and control measures. This perspective provides a brief overview of the current situation of these two viruses in Europe and outlines the significant challenges that need to be addressed in the coming years.


Assuntos
Aves , Infecções por Flavivirus , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Europa (Continente)/epidemiologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/fisiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Humanos , Flavivirus/classificação , Flavivirus/genética , Flavivirus/patogenicidade , Flavivirus/isolamento & purificação , Flavivirus/fisiologia , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/virologia , Infecções por Flavivirus/transmissão , Infecções por Flavivirus/veterinária , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/transmissão , Aves/virologia , Culicidae/virologia , Mosquitos Vetores/virologia , Surtos de Doenças
14.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687787

RESUMO

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Assuntos
Cervos , Flavivirus , Metagenômica , Carrapatos , Animais , Metagenômica/métodos , Japão/epidemiologia , Cervos/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Carrapatos/virologia , Filogenia , Viroma/genética , Vírion/genética , Sus scrofa/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Soroepidemiológicos , Genoma Viral
15.
Virol Sin ; 39(2): 228-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461965

RESUMO

Guaico Culex virus (GCXV) is a newly identified segmented Jingmenvirus from Culex spp. mosquitoes in Central and South America. The genome of GCXV is composed of four or five single-stranded positive RNA segments. However, the infection kinetics and transmission capability of GCXV in mosquitoes remain unknown. In this study, we used reverse genetics to rescue two GCXVs (4S and 5S) that contained four and five RNA segments, respectively, in C6/36 â€‹cells. Further in vitro characterization revealed that the two GCXVs exhibited comparable replication kinetics, protein expression and viral titers. Importantly, GCXV RNAs were detected in the bodies, salivary glands, midguts and ovaries of Culex quinquefasciatus at 4-10 days after oral infection. In addition, two GCXVs can colonize Cx. quinquefasciatus eggs, resulting in positive rates of 15%-35% for the second gonotrophic cycle. In conclusion, our results demonstrated that GCXVs with four or five RNA segments can be detected in Cx. quinquefasciatus eggs during the first and second gonotrophic cycles after oral infection.


Assuntos
Culex , Mosquitos Vetores , RNA Viral , Replicação Viral , Animais , Culex/virologia , Mosquitos Vetores/virologia , RNA Viral/genética , Feminino , Linhagem Celular , Flavivirus/genética , Flavivirus/fisiologia , Flavivirus/isolamento & purificação , Cinética , Carga Viral , Genoma Viral , Glândulas Salivares/virologia
16.
J Virol Methods ; 327: 114917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503367

RESUMO

Bagaza virus (BAGV) is a mosquito-borne orthoflavivirus known to occur in regions of southern Europe, Africa, India and the Middle East. The virus has been associated with neurological disease and fatalities in various wild bird species. Association with human disease is not confirmed although limited serological evidence has suggested human infection. Surveillance programs for screening mosquitoes for evidence of arbovirus infection play an important role in providing information regarding the circulation and spread of viruses in specific regions. BAGV was detected in a mosquito pool during surveillance of mosquitoes collected in central South Africa between November 2019 and March 2023. Homogenized mosquito pools were screened for flaviviral RNA using conventional RT-PCR and virus isolation was attempted on positive samples. BAGV was detected and subsequently isolated using cell culture. A multiplex tiling PCR method for targeted enrichment using a PCR based or amplicon sequencing approach of the complete genome of BAGV was developed and optimized. Primers were designed using alignment of complete genome sequence data retrieved from GenBank to identify suitable primer sites that would generate overlapping fragments spanning the complete genome. Six forward primers and eight reverse primers were identified that target the complete genome and amplified nine overlapping fragments, that ranged in length from 1954 to 2039 with an overlap ranging from 71 to 711 base pairs. The design strategy included multiple forward and reverse primer pairs for the 5' and 3' ends. Phylogenetic analysis with other isolates was performed and BAGV isolate VBD 74/23/3 was shown to share high similarity with previous BAGV isolates from all regions, with genetic distance ranging from 0.026 to 0.083. VBD 74/23/3 was most closely related to previous isolates from southern Africa, ZRU96/16/2 isolated from a post-mortem sample from a pheasant in 2016 and MP-314-NA-2018 isolated from mosquitoes in northwestern Namibia with genetic distance 0.0085 and 0.016 respectively. Currently there is limited complete genome sequence data available for many of the arboviruses circulating in Africa. The multiplex tiling method provided a simple and cost-effective method for obtaining complete genome sequence. This method can be readily applied to other viruses using sequence data from publicly available databases and would have important application facilitating genomic surveillance of arboviruses in low resource countries.


Assuntos
Culicidae , Reação em Cadeia da Polimerase Multiplex , Animais , África do Sul , Culicidae/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , RNA Viral/genética , Genoma Viral , Filogenia , Mosquitos Vetores/virologia , Animais Selvagens/virologia
17.
Trends Microbiol ; 32(7): 678-696, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38135616

RESUMO

In recent decades, the presence of flaviviruses of concern for human health in Europe has drastically increased,exacerbated by the effects of climate change - which has allowed the vectors of these viruses to expand into new territories. Co-circulation of West Nile virus (WNV), Usutu virus (USUV), and tick-borne encephalitis virus (TBEV) represents a threat to the European continent, and this is further complicated by the difficulty of obtaining an early and discriminating diagnosis of infection. Moreover, the possibility of introducing non-endemic pathogens, such as Japanese encephalitis virus (JEV), further complicates accurate diagnosis. Current flavivirus diagnosis is based mainly on RT-PCR and detection of virus-specific antibodies. Yet, both techniques suffer from limitations, and the development of new assays that can provide an early, rapid, low-cost, and discriminating diagnosis of viral infection is warranted. In the pursuit of ideal diagnostic assays, flavivirus non-structural protein 1 (NS1) serves as an excellent target for developing diagnostic assays based on both the antigen itself and the antibodies produced against it. This review describes the potential of such NS1-based diagnostic methods, focusing on the application of flaviviruses that co-circulate in Europe.


Assuntos
Biomarcadores , Infecções por Flavivirus , Flavivirus , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética , Flavivirus/isolamento & purificação , Flavivirus/genética , Flavivirus/imunologia , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/virologia , Humanos , Animais , Biomarcadores/análise , Anticorpos Antivirais/imunologia , Europa (Continente) , Artrópodes/virologia
18.
J Virol ; 96(17): e0043922, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35975997

RESUMO

Flaviviruses are positive-sense single-stranded RNA viruses, including some well-known human pathogens such as Zika, dengue, and yellow fever viruses, which are primarily associated with mosquito and tick vectors. The vast majority of flavivirus research has focused on terrestrial environments; however, recent findings indicate that a range of flaviviruses are also present in aquatic environments, both marine and freshwater. These flaviviruses are found in various hosts, including fish, crustaceans, molluscs, and echinoderms. Although the effects of aquatic flaviviruses on the hosts they infect are not all known, some have been detected in farmed species and may have detrimental effects on the aquaculture industry. Exploration of the evolutionary history through the discovery of the Wenzhou shark flavivirus in both a shark and crab host is of particular interest since the potential dual-host nature of this virus may indicate that the invertebrate-vertebrate relationship seen in other flaviviruses may have a more profound evolutionary root than previously expected. Potential endogenous viral elements and the range of novel aquatic flaviviruses discovered thus shed light on virus origins and evolutionary history and may indicate that, like terrestrial life, the origins of flaviviruses may lie in aquatic environments.


Assuntos
Organismos Aquáticos , Infecções por Flavivirus , Flavivirus , Animais , Aquicultura , Organismos Aquáticos/isolamento & purificação , Organismos Aquáticos/virologia , Evolução Biológica , Peixes/virologia , Flavivirus/isolamento & purificação , Infecções por Flavivirus/virologia , Humanos
19.
Emerg Infect Dis ; 28(7): 1504-1506, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35731200

RESUMO

Bagaza virus emerged in Spain in 2010 and was not reported in other countries in Europe until 2021, when the virus was detected by molecular methods in a corn bunting and several red-legged partridges in Portugal. Sequencing revealed high similarity between the 2021 strains from Portugal and the 2010 strains from Spain.


Assuntos
Doenças das Aves , Infecções por Flavivirus , Galliformes , Animais , Animais Selvagens/virologia , Doenças das Aves/epidemiologia , Doenças das Aves/virologia , Flavivirus/classificação , Flavivirus/isolamento & purificação , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Galliformes/virologia , Portugal/epidemiologia , Espanha
20.
PLoS Negl Trop Dis ; 16(4): e0010203, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35427361

RESUMO

In Mauritania, several mosquito-borne viruses have been reported that can cause devastating diseases in animals and humans. However, monitoring data on their occurrence and local distribution are limited. Rift Valley fever virus (RVFV) is an arthropod-borne virus that causes major outbreaks throughout the African continent and the Arabian Peninsula. The first Rift Valley fever (RVF) epidemic in Mauritania occurred in 1987 and since then the country has been affected by recurrent outbreaks of the disease. To gain information on the occurrence of RVFV as well as other mosquito-borne viruses and their vectors in Mauritania, we collected and examined 4,950 mosquitoes, belonging to four genera and 14 species. The mosquitoes were captured during 2018 in the capital Nouakchott and in southern parts of Mauritania. Evidence of RVFV was found in a mosquito pool of female Anopheles pharoensis mosquitoes collected in December on a farm near the Senegal River. At that time, 37.5% of 16 tested Montbéliarde cattle on the farm showed RVFV-specific IgM antibodies. Additionally, we detected IgM antibodies in 10.7% of 28 indigenous cattle that had been sampled on the same farm one month earlier. To obtain information on potential RVFV reservoir hosts, blood meals of captured engorged mosquitoes were analyzed. The mosquitoes mainly fed on humans (urban areas) and cattle (rural areas), but also on small ruminants, donkeys, cats, dogs and straw-colored fruit bats. Results of this study demonstrate the circulation of RVFV in Mauritania and thus the need for further research to investigate the distribution of the virus and its vectors. Furthermore, factors that may contribute to its maintenance should be analyzed more closely. In addition, two mosquito pools containing Aedes aegypti and Culex quinquefasciatus mosquitoes showed evidence of dengue virus (DENV) 2 circulation in the city of Rosso. Further studies are therefore needed to also examine DENV circulation in Mauritania.


Assuntos
Aedes , Vírus da Dengue , Comportamento Alimentar , Flavivirus , Vírus da Febre do Vale do Rift , Animais , Bovinos , Feminino , Flavivirus/isolamento & purificação , Imunoglobulina M , Mauritânia/epidemiologia , Mosquitos Vetores , Vírus da Febre do Vale do Rift/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...