Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.642
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891769

RESUMO

Staphylea, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. Staphylea spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely investigated for their phytotherapeutic potential, even though they have a long history of use for food. Here, we report the isolation of six flavonol glycosides from the hydroalcoholic extract of aerial parts of Staphylea pinnata L., collected in Italy, using a solid-phase extraction technique. They were identified using spectroscopic, spectrometric, and optical methods as three quercetin and three isorhamnetin glycosides. Among the flavonol glycosides isolated, isoquercetin and quercetin malonyl glucoside showed powerful antioxidant, antimicrobial, and wound healing promoting activity and thus are valuable as antiaging ingredients for cosmeceutical applications and for therapeutic applications in skin wound repair.


Assuntos
Antioxidantes , Flavonóis , Glicosídeos , Extratos Vegetais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Flavonóis/farmacologia , Flavonóis/química , Flavonóis/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Quercetina/farmacologia , Quercetina/química , Quercetina/análogos & derivados , Quercetina/isolamento & purificação , Humanos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Animais
2.
Physiol Plant ; 176(3): e14383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859677

RESUMO

The effects of transient increases in UVB radiation on plants are not well known; whether cumulative damage dominates or, alternately, an increase in photoprotection and recovery periods ameliorates any negative effects. We investigated photosynthetic capacity and metabolite accumulation of grapevines (Vitis vinifera Cabernet Sauvignon) in response to UVB fluctuations under four treatments: fluctuating UVB (FUV) and steady UVB radiation (SUV) at similar total biologically effective UVB dose (2.12 and 2.23 kJ m-2 day-1), and their two respective no UVB controls. We found a greater decrease in stomatal conductance under SUV than FUV. There was no decrease in maximum yield of photosystem II (Fv/Fm) or its operational efficiency (ɸPSII) under the two UVB treatments, and Fv/Fm was higher under SUV than FUV. Photosynthetic capacity was enhanced under FUV in the light-limited region of rapid light-response curves but enhanced by SUV in the light-saturated region. Flavonol content was similarly increased by both UVB treatments. We conclude that, while both FUV and SUV effectively stimulate acclimation to UVB radiation at realistic doses, FUV confers weaker acclimation than SUV. This implies that recovery periods between transient increases in UVB radiation reduce UVB acclimation, compared to an equivalent dose of UVB provided continuously. Thus, caution is needed in interpreting the findings of experiments using steady UVB radiation treatments to infer effects in natural environments, as the stimulatory effect of steady UVB is greater than that of the equivalent fluctuating UVB.


Assuntos
Aclimatação , Fotossíntese , Complexo de Proteína do Fotossistema II , Raios Ultravioleta , Vitis , Fotossíntese/efeitos da radiação , Fotossíntese/fisiologia , Aclimatação/efeitos da radiação , Aclimatação/fisiologia , Vitis/efeitos da radiação , Vitis/fisiologia , Vitis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Flavonóis/metabolismo
3.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791295

RESUMO

To achieve the environmentally friendly and rapid green synthesis of efficient and stable AgNPs for drug-resistant bacterial infection, this study optimized the green synthesis process of silver nanoparticles (AgNPs) using Dihydromyricetin (DMY). Then, we assessed the impact of AgNPs on zebrafish embryo development, as well as their therapeutic efficacy on zebrafish infected with Methicillin-resistant Staphylococcus aureus (MRSA). Transmission electron microscopy (TEM) and dynamic light-scattering (DLS) analyses revealed that AgNPs possessed an average size of 23.6 nm, a polymer dispersity index (PDI) of 0.197 ± 0.0196, and a zeta potential of -18.1 ± 1.18 mV. Compared to other published green synthesis products, the optimized DMY-AgNPs exhibited smaller sizes, narrower size distributions, and enhanced stability. Furthermore, the minimum concentration of DMY-AgNPs required to affect zebrafish hatching and survival was determined to be 25.0 µg/mL, indicating the low toxicity of DMY-AgNPs. Following a 5-day feeding regimen with DMY-AgNP-containing food, significant improvements were observed in the recovery of the gills, intestines, and livers in MRSA-infected zebrafish. These results suggested that optimized DMY-AgNPs hold promise for application in aquacultures and offer potential for further clinical use against drug-resistant bacteria.


Assuntos
Antibacterianos , Flavonóis , Química Verde , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Prata , Peixe-Zebra , Animais , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Flavonóis/farmacologia , Flavonóis/química , Química Verde/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
4.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791581

RESUMO

Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in China. Although the flavonoid biosynthetic pathway has been studied in several model species, it still remains to be explored in safflower. In this study, we aimed to elucidate the role of CtFLS1 gene in flavonoid biosynthesis and drought stress responses. The bioinformatics analysis on the CtFLS1 gene showed that it contains two FLS-specific motifs (PxxxIRxxxEQP and SxxTxLVP), suggesting its independent evolution. Further, the expression level of CtFLS1 in safflower showed a positive correlation with the accumulation level of total flavonoid content in four different flowering stages. In addition, CtFLS1-overexpression (OE) Arabidopsis plants significantly induced the expression levels of key genes involved in flavonol pathway. On the contrary, the expression of anthocyanin pathway-related genes and MYB transcription factors showed down-regulation. Furthermore, CtFLS1-OE plants promoted seed germination, as well as resistance to osmotic pressure and drought, and reduced sensitivity to ABA compared to mutant and wild-type plants. Moreover, CtFLS1 and CtANS1 were both subcellularly located at the cell membrane and nucleus; the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assay showed that they interacted with each other at the cell membrane. Altogether, these findings suggest the positive role of CtFLS1 in alleviating drought stress by stimulating flavonols and anthocyanin accumulation in safflower.


Assuntos
Antocianinas , Arabidopsis , Carthamus tinctorius , Secas , Flavonóis , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flavonóis/metabolismo , Antocianinas/metabolismo , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Plantas Geneticamente Modificadas , Oxirredutases/metabolismo , Oxirredutases/genética , Resistência à Seca
5.
Planta ; 259(6): 147, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714547

RESUMO

MAIN CONCLUSION: CsNAC086 was found to promote the expression of CsFLS, thus promoting the accumulation of flavonols in Camellia sinensis. Flavonols, the main flavonoids in tea plants, play an important role in the taste and quality of tea. In this study, a NAC TF gene CsNAC086 was isolated from tea plants and confirmed its regulatory role in the expression of flavonol synthase which is a key gene involved in the biosynthesis of flavonols in tea plant. Yeast transcription-activity assays showed that CsNAC086 has self-activation activity. The transcriptional activator domain of CsNAC086 is located in the non-conserved C-terminal region (positions 171-550), while the conserved NAC domain (positions 1-170) does not have self-activation activity. Silencing the CsNAC086 gene using antisense oligonucleotides significantly decreased the expression of CsFLS. As a result, the concentration of flavonols decreased significantly. In overexpressing CsNAC086 tobacco leaves, the expression of NtFLS was significantly increased. Compared with wild-type tobacco, the flavonols concentration increased. Yeast one-hybrid assays showed CsNAC086 did not directly regulate the gene expression of CsFLS. These findings indicate that CsNAC086 plays a role in regulating flavonols biosynthesis in tea plants, which has important implications for selecting and breeding of high-flavonols-concentration containing tea-plant cultivars.


Assuntos
Camellia sinensis , Flavonóis , Regulação da Expressão Gênica de Plantas , Nicotiana , Proteínas de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonóis/biossíntese , Flavonóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas
6.
J Food Sci ; 89(6): 3569-3576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745380

RESUMO

This study aims to investigate the impact of four key factors, namely, temperature, water source, metal ion, and pH, on the stability of molecular chirality of dihydromyricetin (DMY) and proposed effective strategies for configuration protection. The findings reveal that temperatures exceeding 80°C could accelerate the racemization process of DMY, with a significant increase in racemization observed at 100°C. In addition, DMY exhibited heightened stability in ultrapure water as compared to various water sources, including pure water-1, pure water-2, mineral water, and running water. Notably, the presence of Fe2+ displayed an inhibitory effect on the racemization of DMY, whereas Mg2+, Ca2+, and Mn2+ showed a substantial promotional effect. Additionally, acidic conditions (pH < 5.0) were found to be protective for maintaining the stability of DMY, whereas alkaline conditions (pH > 9.0) were observed to be detrimental. Meanwhile, we first identified the presence of another pair of DMY isomers in this work.


Assuntos
Flavonóis , Flavonóis/farmacologia , Flavonóis/química , Concentração de Íons de Hidrogênio , Estereoisomerismo , Água/química , Temperatura , Isomerismo , Chá/química
7.
Eur J Pharmacol ; 976: 176670, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795755

RESUMO

INTRODUCTION: Ischemia/reperfusion is a pathological condition by the restoration of perfusion and oxygenation following a period of restricted blood flow to an organ. To address existing uncertainty in the literature regarding the effects of 3', 4'-dihydroxy flavonol (DiOHF) on cerebral ischemia/reperfusion injury, our study aims to investigate the impact of DiOHF on neurological parameters, apoptosis (Caspase-3), aquaporin 4 (AQP4), and interleukin-10 (IL-10) levels in an experimental rat model of brain ischemia-reperfusion injury. MATERIALS/METHODS: A total of 28 Wistar-albino male rats were used in this study. Experimental groups were formed as 1-Control, 2-Sham, 3-Ischemia-reperfusion, 4-Ischemia-reperfusion + DiOHF (10 mg/kg). The animals were anaesthetized, and the carotid arteries were ligated (ischemia) for 30 min, followed by reperfusion for 30 min. Following reperfusion, DiOHF was administered intraperitoneally to the animals at a dose of 10 mg/kg for 1 week. During the one-week period neurological scores and new object recognition tests were performed. Then, caspase 3 and AQP4 levels were determined by PCR method and IL-10 by ELISA method in hippocampus tissue samples taken from animals sacrificed under anaesthesia. RESULTS: Brain ischemia reperfusion significantly increased both caspase 3 and AQP4 values in the hippocampus tissue, while decreasing IL-10 levels. However, 1-week DiOHF supplementation significantly suppressed increased caspase 3 and AQP4 levels and increased IL-10 values. While I/R also increased neurological score values, it suppressed the ability to recognize new objects, and the administered treatment effectively ameliorated the adverse effects observed, resulting in a positive outcome. CONCLUSIONS: The results of the study show that brain ischemia caused by bilateral carotid occlusion in rats and subsequent reperfusion causes tissue damage, but 1-week DiOHF application has a healing effect on both hippocampus tissue and neurological parameters.


Assuntos
Aquaporina 4 , Caspase 3 , Cognição , Flavonóis , Interleucina-10 , Ratos Wistar , Traumatismo por Reperfusão , Animais , Masculino , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Ratos , Cognição/efeitos dos fármacos , Caspase 3/metabolismo , Aquaporina 4/metabolismo , Interleucina-10/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos
8.
Phytomedicine ; 130: 155768, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38815408

RESUMO

BACKGROUND: Polymyxin E is widely recognized as a last resort for treating multidrug-resistant gram-negative bacteria. Unfortunately, the effectiveness of polymyxin E is significantly reduced when treating life-threatening bacterial infections due to plasmid-mediated polymyxin E resistance. The synergistic effect of applying a polymyxin E adjuvant is a promising strategy for overcoming the growing threat of antibiotic-resistant pathogens. PURPOSE: To evaluate the synergistic effect of fisetin and polymyxin E on S. typhimurium infections in vivo and further elucidate the underlying mechanism of this effect. METHODS: The effect of combining fisetin and polymyxin E to treat mobilized colistin resistance-1-positive (MCR-1-positive) gram-negative bacteria in vitro was examined using various methods, such as checkerboard assays, growth curves and time‒kill curves. To elucidate the mechanism by which fisetin affects MCR-1, we employed ultraviolet (UV) absorption spectroscopy, thin layer chromatography (TLC), and western blot analysis to investigate its effect at the protein level. Subsequently, molecular dynamics simulations (MDS) and metabolomics analysis were utilized to determine the site of interaction between fisetin and MCR-1 as well as the potential pathways and mechanisms involved. A new nanoemulsion of fisetin was produced using high-pressure homogenization, and its stability was tested. Finally, two animal models of S. typhimurium HYM2 infection were established to evaluate the synergistic effect of polymyxin E and fisetin in vivo. RESULTS: Our study revealed that fisetin exhibited a synergistic effect when combined with polymyxin E against MCR-1-positive S. typhimurium. The TLC results demonstrated that fisetin could inhibit the phosphoethanolamine (PEA) transfer of the MCR-1 protein, thereby restoring the activity of polymyxin E in strains against MCR-1. The MDS analysis indicated robust and immediate binding between fisetin and the MCR-1 protein, with both hydrophobic and polar effects playing significant roles in determining the binding energy of the former. Metabolomic studies demonstrated that the addition of fisetin significantly modulated bacterial metabolites. Moreover, it effectively inhibited the activity of ABC transporters in bacteria, thereby mitigating bacterial drug resistance and enhancing the therapeutic efficacy of polymyxin E. Furthermore, in mouse and chick models of infection, intragastric administration of the fisetin nanoemulsion together with polymyxin E resulted in significant therapeutic benefits, including increased survival rates, reduced bacterial colonization, and decreased levels of inflammatory factors. CONCLUSION: Fisetin, an MCR-1 inhibitor and a promising synergistic partner of polymyxin E, has significant potential for clinical application in the treatment of S. typhimurium infections, particularly those resulting extensively from drug-resistant MCR-1-positive strains.


Assuntos
Antibacterianos , Colistina , Flavonoides , Flavonóis , Salmonella typhimurium , Flavonóis/farmacologia , Animais , Colistina/farmacologia , Antibacterianos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Flavonoides/farmacologia , Emulsões , Sinergismo Farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Feminino , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Simulação de Dinâmica Molecular , Camundongos Endogâmicos BALB C
9.
Food Chem ; 454: 139803, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810448

RESUMO

In this work, effects of cellulose nanofiber/dihydromyricetin (CNF/DMY) ratio on the structural, antioxidant and emulsifying properties of the CNF/DMY mixtures were investigated. CNF integrated with DMY via hydrogen bonding and the antioxidant capacity of mixtures increased with decreasing CNF/DMY ratio (k). The oxidative stability of emulsions enhanced as the DMY content increased. Emulsions formed at Φ = 0.5 displayed larger size (about 25 µm), better viscoelasticity and centrifugal stability than those at Φ = 0.3 (about 23 µm). The emulsions at k = 17:3 and Φ = 0.5 exhibited the most excellent viscoelasticity. In conclusion, the DMY content in mixtures and the oil phase fraction exhibited distinct synergistic effects on the formation and characteristics of emulsions, and the emulsions could demonstrate superior oxidative and storage stability. These findings could provide a novel strategy to extend the shelf life of cellulose-based emulsions and related products.


Assuntos
Antioxidantes , Celulose , Emulsões , Flavonóis , Nanofibras , Celulose/química , Antioxidantes/química , Flavonóis/química , Nanofibras/química , Emulsões/química , Tamanho da Partícula , Emulsificantes/química , Oxirredução , Viscosidade
10.
J Agric Food Chem ; 72(23): 13328-13340, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805380

RESUMO

Flavonol glycosides, contributing to the health benefits and distinctive flavors of tea (Camellia sinensis), accumulate predominantly as diglycosides and triglycosides in tea leaves. However, the UDP-glycosyltransferases (UGTs) mediating flavonol multiglycosylation remain largely uncharacterized. In this study, we employed an integrated proteomic and metabolomic strategy to identify and characterize key UGTs involved in flavonol triglycoside biosynthesis. The recombinant rCsUGT75AJ1 exhibited flavonoid 4'-O-glucosyltransferase activity, while rCsUGT75L72 preferentially catalyzed 3-OH glucosylation. Notably, rCsUGT73AC15 displayed substrate promiscuity and regioselectivity, enabling glucosylation of rutin at multiple sites and kaempferol 3-O-rutinoside (K3R) at the 7-OH position. Kinetic analysis revealed rCsUGT73AC15's high affinity for rutin (Km = 9.64 µM). Across cultivars, CsUGT73AC15 expression inversely correlated with rutin levels. Moreover, transient CsUGT73AC15 silencing increased rutin and K3R accumulation while decreasing their respective triglycosides in tea plants. This study offers new mechanistic insights into the key roles of UGTs in regulating flavonol triglycosylation in tea plants.


Assuntos
Camellia sinensis , Flavonóis , Glicosídeos , Glicosiltransferases , Proteínas de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Flavonóis/metabolismo , Flavonóis/química , Flavonóis/biossíntese , Glicosídeos/metabolismo , Glicosídeos/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/enzimologia , Cinética , Rutina/metabolismo , Rutina/química
11.
Nanomedicine ; 59: 102752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740358

RESUMO

Fisetin has displayed potential as an anticonvulsant in preclinical studies yet lacks clinical validation. Challenges like low solubility and rapid metabolism may limit its efficacy. This study explores fisetin-loaded chitosan nanoparticles (NP) to address these issues. Using a murine model of pilocarpine-induced temporal lobe epilepsy, we evaluated the anticonvulsant and neuroprotective effects of fisetin NP. Pilocarpine-induced seizures and associated neurobehavioral deficits were assessed after administering subtherapeutic doses of free fisetin and fisetin NP. Changes in ROS, inflammatory cytokines, and NLRP3/IL-18 expression in different brain regions were estimated. The results demonstrate that the fisetin NP exerts protection against seizures and associated depression-like behavior and memory impairment. Furthermore, biochemical, and histological examinations supported behavioral findings suggesting attenuation of ROS/TNF-α-NLRP3 inflammasome pathway as a neuroprotective mechanism of fisetin NP. These findings highlight the improved pharmacodynamics of fisetin using fisetin NP against epilepsy, suggesting a promising therapeutic approach against epilepsy and associated behavioral deficits.


Assuntos
Quitosana , Epilepsia do Lobo Temporal , Flavonóis , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Pilocarpina , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Animais , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/metabolismo , Quitosana/química , Quitosana/farmacologia , Flavonóis/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Nanopartículas/química , Masculino , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Fármacos Neuroprotetores/farmacologia
12.
Phytomedicine ; 130: 155754, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820662

RESUMO

BACKGROUND: Gouty arthritis (GA), a common inflammatory condition triggered by monosodium urate crystal accumulation, often necessitates safer treatment alternatives due to the limitations of current therapies. Astilbin, a flavonoid from Smilax glabra Roxb, has demonstrated potential in traditional Chinese medicine for its anti-inflammatory properties. However, the anti-GA effect and its underlying mechanism have not been fully elucidated. PURPOSE: This study aimed to investigate the therapeutic potential of astilbin in GA, focusing on its effects on neutrophil extracellular traps (NETs), as well as the potential molecular target of GA both in vitro and in vivo. STUDY DESIGN: Firstly, astilbin inhibited the citrullinated histone H3 (Cit h3) protein levels and reduced the NETs formation in neutrophils stimulated by monosodium urate (MSU). Secondly, we wondered the effect of astilbin on migration of neutrophils and dimethyl-sulfoxide (DMSO)-differentiated HL-60 (dHL-60) cells under the stimulation of MSU. Then, the effect of astilbin on suppressing NETs through purinergic P2Y6 receptor (P2Y6R) and Interlukin-8 (IL-8)/ CXC chemokine receptor 2 (CXCR2) pathway was investigated. Also, the relationship between P2Y6R and IL-8/CXCR2 was explored in dHL-60 cells under stimulation of MSU. Finally, we testified the effect of astilbin on reducing NETs in GA through suppressing P2Y6R and then down-regulating IL-8/CXCR2 pathway. METHODS: MSU was used to induce NETs in neutrophils and dHL-60 cells. Real-time formation of NETs and migration of neutrophils were monitored by cell living imaging with or without MSU. Then, the effect of astilbin on NETs formation, P2Y6R and IL-8/CXCR2 pathway were detected by immunofluorescence (IF) and western blotting. P2Y6R knockdown dHL-60 cells were established by small interfering RNA to investigate the association between P2Y6R and IL-8/CXCR2 pathway. Also, plasmid of P2Y6R was used to overexpress P2Y6R in dHL-60 cells, which was employed to explore the role of P2Y6R in astilbin inhibiting NETs. Within the conditions of knockdown and overexpression of P2Y6R, migration and NETs formation were assessed by transmigration assay and IF staining, respectively. In vivo, MSU-induced GA mice model was established to assess the effect of astilbin on inflammation by haematoxylin-eosin and ELISA. Additionally, the effects of astilbin on neutrophils infiltration, NETs, P2Y6R and IL-8/CXCR2 pathway were analyzed by IF, ELISA, immunohistochemistry (IHC) and western blotting. RESULTS: Under MSU stimulation, astilbin significantly suppressed the level of Cit h3 and NETs formation including the fluorescent expressions of Cit h3, neutrophils elastase, myeloperoxidase, and intra/extracellular DNA. Also, results showed that MSU caused NETs release in neutrophils as well as a trend towards recruitment of dHL-60 cells to MSU. Astilbin could markedly decrease expressions of P2Y6R and IL-8/CXCR2 pathway which were upregulated by MSU. By silencing P2Y6R, the expression of IL-8/CXCR2 pathway and migration of dHL-60 cells were inhibited, leading to the suppression of NETs. These findings indicated the upstream role of P2Y6R in the IL-8/CXCR2 pathway. Moreover, overexpression of P2Y6R was evidently inhibited by astilbin, causing a downregulation in IL-8/CXCR2 pathway, migration of dHL-60 cells and NETs formation. These results emphasized that astilbin inhibited the IL-8/CXCR2 pathway primarily through P2Y6R. In vivo, astilbin administration led to marked reductions in ankle swelling, inflammatory infiltration as well as neutrophils infiltration. Expressions of P2Y6R and IL-8/CXCR2 pathway were evidently decreased by astilbin and P2Y6R inhibitor MRS2578 either alone or in combination. Also, astilbin and MRS2578 showed notable effect on reducing MSU-induced NETs formation and IL-8/CXCR2 pathway whether used alone or in combination, parallelly demonstrating that astilbin decreased NETs formation mainly through P2Y6R. CONCLUSION: This study revealed that astilbin suppressed NETs formation via downregulating P2Y6R and subsequently the IL-8/CXCR2 pathway, which evidently mitigated GA induced by MSU. It also highlighted the potential of astilbin as a promising natural therapeutic for GA.


Assuntos
Artrite Gotosa , Armadilhas Extracelulares , Flavonóis , Interleucina-8 , Neutrófilos , Receptores Purinérgicos P2 , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Receptores Purinérgicos P2/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Artrite Gotosa/tratamento farmacológico , Células HL-60 , Flavonóis/farmacologia , Animais , Ácido Úrico/farmacologia , Receptores de Interleucina-8B/metabolismo , Masculino , Histonas/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos
13.
Biomolecules ; 14(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38785985

RESUMO

Aronia melanocarpa berries contain many compounds with potential benefits for human health. The food flavonoids quercetin and rutin, found in significant amounts in the fruits of A. melanocarpa, are known to have favourable effects on animal and human organisms. However, data on the effect of flavonols isolated from black chokeberry on immune functions during immunosuppression are not available in the literature. Thus, the aim of this study was to evaluate the effect of flavonol fraction isolated from A. melanocarpa fruits, in comparison with pure quercetin and rutin substances, on the dysfunctional state of rat thymus and spleen in immunodeficiency. The study was performed on Wistar rats. The animals were orally administered solutions of the investigated substances for 7 days: water, a mixture of quercetin and rutin and flavonol fraction of A. melanocarpa. For induction of immunosuppression, the animals were injected once intraperitoneally with cyclophosphamide. Substance administration was then continued for another 7 days. The results showed that under the influence of flavonols, there was a decrease in cyclophosphamide-mediated reaction of lipid peroxidation enhancement and stimulation of proliferation of lymphocytes of thymus and spleen in rats. At that, the effect of the flavonol fraction of aronia was more pronounced.


Assuntos
Ciclofosfamida , Flavonóis , Frutas , Photinia , Ratos Wistar , Baço , Timo , Animais , Photinia/química , Ciclofosfamida/farmacologia , Ratos , Frutas/química , Timo/efeitos dos fármacos , Flavonóis/farmacologia , Flavonóis/química , Baço/efeitos dos fármacos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Terapia de Imunossupressão , Quercetina/farmacologia , Quercetina/química , Peroxidação de Lipídeos/efeitos dos fármacos , Imunossupressores/farmacologia , Proliferação de Células/efeitos dos fármacos , Rutina/farmacologia , Rutina/química
14.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731532

RESUMO

A series of flavanols were synthesized to assess their biological activity against human non-small cell lung cancer cells (A549). Among the sixteen synthesized compounds, it was observed that compounds 6k (3.14 ± 0.29 µM) and 6l (0.46 ± 0.02 µM) exhibited higher potency compared to 5-fluorouracil (5-Fu, 4.98 ± 0.41 µM), a clinical anticancer drug which was used as a positive control. Moreover, compound 6l (4'-bromoflavonol) markedly induced apoptosis of A549 cells through the mitochondrial- and caspase-3-dependent pathways. Consequently, compound 6l might be developed as a candidate for treating or preventing lung cancer.


Assuntos
Antineoplásicos , Apoptose , Flavonóis , Humanos , Flavonóis/farmacologia , Flavonóis/síntese química , Flavonóis/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células A549 , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Fluoruracila/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral
15.
Eur Rev Med Pharmacol Sci ; 28(8): 3112-3119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38708470

RESUMO

OBJECTIVE: Methotrexate (MTX), a widely used chemotherapeutic and immunosuppressive agent, is associated with hepatotoxicity, leading to liver fibrosis and cirrhosis. This study explores the regenerative and reparative effects of fisetin, a flavonoid with known antioxidant and anti-inflammatory properties, on MTX-induced liver fibrosis in a rat model. MATERIALS AND METHODS: Thirty-six male Wistar albino rats were divided into normal, MTX and saline, and MTX and fisetin. Liver injury was induced in the latter two groups using a single intraperitoneal dose of MTX (20 mg/kg). Fisetin (50 mg/kg/day) or saline was administered intraperitoneally for ten days. After sacrifice, liver tissues were subjected to histopathological evaluation and biochemical analyses, including Transforming Growth Factor-ß1 (TGF-beta), sirtuins-1 (SIRT-1), malondialdehyde (MDA), cytokeratin 18, thrombospondin 1, and alanine transaminase (ALT) levels. RESULTS: MTX administration significantly increased liver injury markers, including TGF-beta, MDA, cytokeratin 18, thrombospondin 1, and ALT, while reducing SIRT-1 levels. Fisetin treatment attenuated these effects, demonstrating its potential therapeutic impact. Histopathological analysis confirmed that fisetin mitigated MTX-induced hepatocyte necrosis, fibrosis, and cellular infiltration. CONCLUSIONS: This study proves that fisetin administration can alleviate MTX-induced liver damage in rats. The reduction in oxidative stress, inflammation, and apoptosis, along with the histological improvements, suggests fisetin's potential as a therapeutic agent against MTX-induced hepatotoxicity. Further investigations and clinical studies are warranted to validate these findings and assess fisetin's translational potential in human cases of MTX-induced liver damage.


Assuntos
Flavonóis , Cirrose Hepática , Metotrexato , Ratos Wistar , Sirtuína 1 , Metotrexato/efeitos adversos , Animais , Masculino , Ratos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Flavonóis/farmacologia , Flavonoides/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Antioxidantes/farmacologia
16.
Int J Biol Macromol ; 266(Pt 2): 131381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580009

RESUMO

The biosynthetic route for flavonol in Camptotheca acuminata has been recently elucidated from a chemical point of view. However, the genes involved in flavonol methylation remain unclear. It is a critical step for fully uncovering the flavonol metabolism in this ancient plant. In this study, the multi-omics resource of this plant was utilized to perform flavonol O-methyltransferase-oriented mining and screening. Two genes, CaFOMT1 and CaFOMT2 are identified, and their recombinant CaFOMT proteins are purified to homogeneity. CaFOMT1 exhibits strict substrate and catalytic position specificity for quercetin, and selectively methylates only the 4'-OH group. CaFOMT2 possesses sequential O-methyltransferase activity for the 4'-OH and 7-OH of quercetin. These CaFOMT genes are enriched in the leaf and root tissues. The catalytic dyad and critical substrate-binding sites of the CaFOMTs are determined by molecular docking and further verified through site-mutation experiments. PHE181 and MET185 are designated as the critical sites for flavonol substrate selectivity. Genomic environment analysis indicates that CaFOMTs evolved independently and that their ancestral genes are different from that of the known Ca10OMT. This study provides molecular insights into the substrate-binding pockets of two new CaFOMTs responsible for flavonol metabolism in C. acuminata.


Assuntos
Camptotheca , Metiltransferases , Simulação de Acoplamento Molecular , Especificidade por Substrato , Camptotheca/enzimologia , Camptotheca/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/química , Flavonóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Filogenia , Metilação , Sequência de Aminoácidos
17.
Pharmacology ; 109(3): 169-179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583431

RESUMO

INTRODUCTION: Fisetin has been demonstrated to inhibit the occurrence of atherosclerosis; however, the mechanism of fisetin suppressing atherosclerosis remains elusive. METHODS: The function of fisetin in the inhibition of atherosclerosis was evaluated by hematoxylin and eosin and Oil Red O staining in ApoE-/- mice. Molecular biomarkers of atherosclerosis progression were detected by Western blot and qPCR. Moreover, the inhibition of atherosclerosis on oxidative stress and ferroptosis was evaluated by immunofluorescence staining, qPCR, and Western blot assays. RESULTS: The obtained results showed that serum lipid was attenuated and consequentially the formation of atherosclerosis was also suppressed by fisetin in ApoE-/- mice. Exploration of the mechanism revealed that molecular biomarkers of atherosclerosis were decreased under fisetin treatment. The level of reactive oxygen species and malondialdehyde declined, while the activity of superoxide dismutases and glutathione peroxidase was increased under the fisetin treatment. Additionally, the suppressor of ferroptosis, glutathione peroxidase 4 proteins, was elevated. The ferritin was decreased in the aortic tissues treated with fisetin. CONCLUSIONS: In summary, fisetin attenuated the formation of atherosclerosis through the inhibition of oxidative stress and ferroptosis in the aortic tissues of ApoE-/- mice.


Assuntos
Apolipoproteínas E , Aterosclerose , Ferroptose , Flavonóis , Estresse Oxidativo , Animais , Flavonóis/farmacologia , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Aterosclerose/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Camundongos , Masculino , Apolipoproteínas E/genética , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Flavonoides/farmacologia , Camundongos Knockout para ApoE , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo
18.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612453

RESUMO

The objective of this study was to investigate gut dysbiosis and its metabolic and inflammatory implications in pediatric metabolic dysfunction-associated fatty liver disease (MAFLD). This study included 105 children and utilized anthropometric measurements, blood tests, the Ultrasound Fatty Liver Index, and fecal DNA sequencing to assess the relationship between gut microbiota and pediatric MAFLD. Notable decreases in Lachnospira spp., Faecalibacterium spp., Oscillospira spp., and Akkermansia spp. were found in the MAFLD group. Lachnospira spp. was particularly reduced in children with MAFLD and hepatitis compared to controls. Both MAFLD groups showed a reduction in flavone and flavonol biosynthesis sequences. Lachnospira spp. correlated positively with flavone and flavonol biosynthesis and negatively with insulin levels and insulin resistance. Body weight, body mass index (BMI), and total cholesterol levels were inversely correlated with flavone and flavonol biosynthesis. Reduced Lachnospira spp. in children with MAFLD may exacerbate insulin resistance and inflammation through reduced flavone and flavonol biosynthesis, offering potential therapeutic targets.


Assuntos
Flavonas , Hepatite A , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Criança , Clostridiales , Flavonóis
19.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612460

RESUMO

In this study, binary amorphous solid dispersions (ASDs, fisetin-Eudragit®) and ternary amorphous solid inclusions (ASIs, fisetin-Eudragit®-HP-ß-cyclodextrin) of fisetin (FIS) were prepared by the mechanochemical method without solvent. The amorphous nature of FIS in ASDs and ASIs was confirmed using XRPD (X-ray powder diffraction). DSC (Differential scanning calorimetry) confirmed full miscibility of multicomponent delivery systems. FT-IR (Fourier-transform infrared analysis) confirmed interactions that stabilize FIS's amorphous state and identified the functional groups involved. The study culminated in evaluating the impact of amorphization on water solubility and conducting in vitro antioxidant assays: 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-ABTS, 2,2-diphenyl-1-picrylhydrazyl-DPPH, Cupric Reducing Antioxidant Capacity-CUPRAC, and Ferric Reducing Antioxidant Power-FRAP and in vitro neuroprotective assays: inhibition of acetylcholinesterase-AChE and butyrylcholinesterase-BChE. In addition, molecular docking allowed for the determination of possible bonds and interactions between FIS and the mentioned above enzymes. The best preparation turned out to be ASI_30_EPO (ASD fisetin-Eudragit® containing 30% FIS in combination with HP-ß-cyclodextrin), which showed an improvement in apparent solubility (126.5 ± 0.1 µg∙mL-1) and antioxidant properties (ABTS: IC50 = 10.25 µg∙mL-1, DPPH: IC50 = 27.69 µg∙mL-1, CUPRAC: IC0.5 = 9.52 µg∙mL-1, FRAP: IC0.5 = 8.56 µg∙mL-1) and neuroprotective properties (inhibition AChE: 39.91%, and BChE: 42.62%).


Assuntos
Adenoma , Benzotiazóis , Flavonóis , Ácidos Polimetacrílicos , Ácidos Sulfônicos , beta-Ciclodextrinas , Humanos , Acetilcolinesterase , Antioxidantes/farmacologia , Butirilcolinesterase , Simulação de Acoplamento Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Cell Mol Med ; 28(8): e18285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597406

RESUMO

Microglial polarization and associated inflammatory activity are the key mediators of depression pathogenesis. The natural Smilax glabra rhizomilax derivative engeletin has been reported to exhibit robust anti-inflammatory activity, but no studies to date have examined the mechanisms through which it can treat depressive symptoms. We showed that treatment for 21 days with engeletin significantly alleviated depressive-like behaviours in chronic stress social defeat stress (CSDS) model mice. T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) imaging revealed no significant differences between groups, but the bilateral prefrontal cortex of CSDS mice exhibited significant increases in apparent diffusion coefficient and T2 values relative to normal control mice, with a corresponding reduction in fractional anisotropy, while engeletin reversed all of these changes. CSDS resulted in higher levels of IL-1ß, IL-6, and TNF-a production, enhanced microglial activation, and greater M1 polarization with a concomitant decrease in M2 polarization in the mPFC, whereas engeletin treatment effectively abrogated these CSDS-related pathological changes. Engeletin was further found to suppress the LCN2/C-X-C motif chemokine ligand 10 (CXCL10) signalling axis such that adeno-associated virus-induced LCN2 overexpression ablated the antidepressant effects of engeletin and reversed its beneficial effects on the M1/M2 polarization of microglia. In conclusion, engeletin can alleviate CSDS-induced depressive-like behaviours by regulating the LCN2/CXCL10 pathway and thereby altering the polarization of microglia. These data suggest that the antidepressant effects of engeletin are correlated with the polarization of microglia, highlighting a potential avenue for future design of antidepressant strategies that specifically target the microglia.


Assuntos
Antidepressivos , Flavonóis , Glicosídeos , Microglia , Camundongos , Animais , Microglia/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/etiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA