Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
BMC Vet Res ; 17(1): 220, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154593

RESUMO

BACKGROUND: 5-fluorocytosine is a pyrimidine and a fluorinated cytosine analog mainly used as an antifungal agent. It is a precursor of 5-fluorouracil, which possesses anticancer properties. To reduce systemic toxicity of 5-fluorouracil during chemotherapy, 5- fluorocytosine can be used as a targeted anticancer agent. Expression of cytosine deaminase by a viral vector within a tumor allows targeted chemotherapy by converting 5-fluorocytosine into the cytotoxic chemotherapeutic agent 5-fluorouracil. However, little is known about the tolerance of 5-fluorocytosine in dogs after prolonged administration. RESULTS: In three healthy Beagle dogs receiving 100 mg/kg of 5-fluorocytosine twice daily for 14 days by oral route, non-compartmental pharmacokinetics revealed a terminal elimination half-life of 164.5 ± 22.5 min at day 1 and of 179.2 ± 11.5 min, after 7 days of administration. Clearance was significantly decreased between day 1 and day 7 with 0.386 ± 0.031 and 0.322 ± 0.027 ml/min/kg, respectively. Maximal plasma concentration values were below 100 µg/ml, which is considered within the therapeutic margin for human patients. 5-fluorouracil plasma concentration was below the limit of detection at all time points. The main adverse events consisted of depigmented, ulcerated, exudative, and crusty cutaneous lesions 10 to 13 days after beginning 5-fluorocytosine administration. The lesions were localized to the nasal planum, the lips, the eyelids, and the scrotum. Histological analyses were consistent with a cutaneous lupoid drug reaction. Complete healing was observed 15 to 21 days after cessation of 5-fluorocytosine. No biochemical or hematological adverse events were noticed. CONCLUSIONS: Long term administration of 5-fluorocytosine was associated with cutaneous toxicity in healthy dogs. It suggests that pharmacotherapy should be adjusted to reduce the toxicity of 5-fluorocytosine in targeted chemotherapy.


Assuntos
Doenças do Cão/induzido quimicamente , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/veterinária , Flucitosina/efeitos adversos , Flucitosina/farmacocinética , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Cães , Toxidermias/veterinária , Feminino , Flucitosina/administração & dosagem , Fluoruracila/sangue , Masculino
2.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076270

RESUMO

Genetically modified vaccinia viruses (VACVs) have been shown to possess profound oncolytic capabilities. However, tumor cell resistance to VACVs may endanger broad clinical success. Using cell mass assays, viral replication studies, and fluorescence microscopy, we investigated primary resistance phenomena of cell lines of the NCI-60 tumor cell panel to GLV-1h94, a derivative of the Lister strain of VACV, which encodes the enzyme super cytosine deaminase (SCD) that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). After treatment with GLV-1h94 alone, only half of the cell lines were defined as highly susceptible to GLV-1h94-induced oncolysis. When adding 5-FC, 85% of the cell lines became highly susceptible to combinatorial treatment; none of the tested tumor cell lines exhibited a "high-grade resistance" pattern. Detailed investigation of the SCD prodrug system suggested that the cytotoxic effect of converted 5-FU is directed either against the cells or against the virus particles, depending on the balance between cell line-specific susceptibility to GLV-1h94-induced oncolysis and 5-FU sensitivity. The data provided by this work underline that cellular resistance against VACV-based virotherapy can be overcome by virus-encoded prodrug systems. Phase I/II clinical trials are recommended to further elucidate the enormous potential of this combination therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Engenharia Genética/métodos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vaccinia virus/genética , Antineoplásicos/toxicidade , Morte Celular , Linhagem Celular Tumoral , Terapia Combinada/métodos , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Flucitosina/farmacocinética , Fluoruracila/toxicidade , Humanos , Vírus Oncolíticos/enzimologia , Pró-Fármacos , Vaccinia virus/enzimologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
Mycoses ; 63(8): 854-858, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32472719

RESUMO

The aim of this perspective is to give an overlook on the utility of pharmacokinetics/pharmacodynamics (PK/PD) in predicting the efficacy of antifungals in invasive candidiasis. Overall, from the available literature it appears that bridging data of PK/PD of antifungals from the laboratory to the clinic for the treatment of invasive candidiasis are feasible only partially. Fluconazole is the only antifungal agent having the pharmacodynamic threshold of efficacy identified in experimental animal models convincingly validated in the clinical setting of invasive candidiasis as well. Conversely, for voriconazole and posaconazole data on this topic are very limited. For the echinocandins, robust PK/PD identified in the laboratory represented the rationale for defining differential clinical breakpoints of echinocandins against different species of Candida by the regulatory agencies. However, translation of the findings in the clinical setting provided conflicting results. Data on PK/PD of amphotericin B and flucytosine in models of invasive candidiasis are quite limited, and clinical studies assessing the role of drug exposure on efficacy are currently lacking. The expectation is that prospective studies could test more and more frequently the validity of experimental PK/PD data of antifungals in the clinical setting of invasive candidiasis. The findings could represent a step forward in addressing adequate antifungal stewardship programmes.


Assuntos
Antifúngicos , Candida/efeitos dos fármacos , Candidíase Invasiva/tratamento farmacológico , Anfotericina B/farmacocinética , Anfotericina B/uso terapêutico , Animais , Antifúngicos/farmacocinética , Antifúngicos/uso terapêutico , Gestão de Antimicrobianos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Equinocandinas/farmacocinética , Equinocandinas/uso terapêutico , Fluconazol/farmacocinética , Fluconazol/uso terapêutico , Flucitosina/farmacocinética , Flucitosina/uso terapêutico , Humanos , Especificidade da Espécie , Triazóis/farmacocinética , Triazóis/uso terapêutico , Voriconazol/farmacocinética , Voriconazol/uso terapêutico
4.
Am J Health Syst Pharm ; 77(8): 609-613, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236456

RESUMO

PURPOSE: To describe the pharmacokinetics of flucytosine in a critically ill patient undergoing continuous venovenous hemodiafiltration (CVVHDF) treated for cryptococcal meningitis. SUMMARY: A 20-year-old female weighing 93.4 kg with a body mass index of 34.3 kg/m2 with a past medical history of systemic lupus erythematous with diffuse proliferative lupus nephritis (class IV) was admitted to the hospital after several months of worsening dyspnea, fatigue, myalgia, vomiting, and diarrhea. The patient developed worsening renal function and volume overload requiring CVVHDF on hospital day 7. She was diagnosed with cryptococcal meningitis on hospital day 8, and flucytosine 2,500 mg enterally every 12 hours and liposomal amphotericin B 500 mg intravenously every 24 hours were initiated. Flucytosine serum concentrations were collected on day 4 of therapy, and pharmacokinetics were performed on 2 sequential levels. Pharmacokinetic calculations displayed an elimination rate constant of 0.0338 h-1, a volume of distribution between 0.42 and 0.43 L/kg, a half-life of 20.5 hours, and a total drug clearance between 1.32 and 1.36 L/h while on CVVHDF. The nonsequential levels displayed good correlation, and no further monitoring or dosage adjustment was required. The patient completed therapy, with clinical resolution of her infection, and no toxicities due to flucytosine were noted. CONCLUSION: Flucytosine dosed at 25 mg/kg of actual body weight every 12 hours during CVVHDF conferred therapeutic levels with no appreciable toxicities. Because of its narrow therapeutic index and risk of toxicity, additional pharmacokinetic studies are needed to determine optimal drug dosing of this medication in patients requiring renal replacement therapy.


Assuntos
Antifúngicos/farmacocinética , Terapia de Substituição Renal Contínua , Flucitosina/farmacocinética , Meningite Criptocócica/tratamento farmacológico , Antifúngicos/uso terapêutico , Estado Terminal , Monitoramento de Medicamentos , Feminino , Flucitosina/uso terapêutico , Humanos , Taxa de Depuração Metabólica , Adulto Jovem
5.
Bioconjug Chem ; 31(1): 104-112, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31840981

RESUMO

In this work, we show that a prodrug enzyme covalently photoconjugated to live cell receptors survives endosomal proteolysis and retains its catalytic activity over multiple days. Here, a fusion protein was designed with both an antiepidermal growth factor receptor (EGFR) affibody and the prodrug enzyme cytosine deaminase, which can convert prodrug 5-fluorocytosine to the anticancer drug 5-fluorouracil. A benzophenone group was added at a site-specific mutation within the affibody, and the fusion protein was selectively photoconjugated to EGFR receptors expressed on membranes of MDA-MB-468 breast cancer cells. The fusion protein was next labeled with two dyes for tracking uptake: AlexaFluor 488 and pH-sensitive pHAb. Flow cytometry showed that fusion proteins photo-cross-linked to EGFR first underwent receptor-mediated endocytosis within 12 h, followed by recycling back to the cell membrane within 24 h. These findings were also confirmed by confocal microscopy. The unique cross-linking of the affibody-enzyme fusion proteins was utilized for two anticancer treatments. First, the covalent linking of the protein to the EGFR led to inhibition of ERK signaling over a two-day period, whereas conventional antibody therapy only led to 6 h of inhibition. Second, when the affibody-CodA fusion proteins were photo-cross-linked to EGFR overexpressed on MDA-MB-468 breast cancer cells, prodrug conversion was found even 48 h postincubation without any apparent decrease in cell killing, while without photo-cross-linking no cell killing was observed 8 h postincubation. These studies show that affinity-mediated covalent conjugation of the affibody-enzymes to cell receptors allows for prolonged expression on membranes and retained enzymatic activity without genetic engineering.


Assuntos
Antineoplásicos/farmacologia , Citosina Desaminase/farmacologia , Receptores ErbB/antagonistas & inibidores , Flucitosina/farmacologia , Fluoruracila/farmacologia , Pró-Fármacos/farmacologia , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citosina Desaminase/farmacocinética , Receptores ErbB/metabolismo , Feminino , Flucitosina/farmacocinética , Fluoruracila/farmacocinética , Humanos , Pró-Fármacos/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia
6.
J Cell Biochem ; 121(2): 1586-1598, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31512776

RESUMO

Stem cells that express therapeutic proteins have been identified to have an anticancer effects on various types of cancer. In the present study study, human neural stem cells (hNSCs) that were genetically engineered to express cytosine deaminase (CD) and human interferon-ß (IFN-ß) were used for anaplastic thyroid cancer (ATC) treatment owing to their tumor-tropic properties and therapeutic effects. CD is an enzyme that converts 5-fluorocytosine (5-FC), a prodrug, to 5-fluorouracil (5-FU) which is a medication to suppress tumor growth through DNA synthesis inhibition. Also, IFN-ß suppresses tumor growth by the induction of apoptotic process. In water soluble tetrazolium salt (WST) assay, SNU-80 cells which are human female ATC cells were cocultured with three cell types including engineered hNSCs such as HB1.F3, HB1.F3.CD, and HB1.F3.CD.IFN-ß cells on transwells and treated with 5-FC for 72 hours. Finally, the SNU-80 cell viability was reduced by the coculture with HB1.F3.CD and HB1.F3.CD.IFN-ß cells. In dichlorofluorescein diacetate (DCF-DA) and TdT-mediated dUTP nick-end labeling (TUNEL) assays, the production of reactive oxygen species (ROS) and the number of apoptotic cells were increased by HB1.F3.CD and HB1.F3.CD.IFN-ß cells in the presence of 5-FC. In Western blot assay, ROS, and apoptosis-related genes were increased in SNU-80 cells when they were cocultured with HB1.F3.CD and HB1.F3.CD.IFN-ß cells. In transwell migration assay, hNSCs selectively migrated to SNU-80 cells because hNSCs interacted with chemoattractant factors like SDF-1α, uPAR, and CCR2 secreted by SNU-80 cells. Taken together, engineered hNSCs were revealed to selectively migrate to ATC cells and to inhibit growth as well as to induce apoptosis of ATC cells via ROS production through the actions of transgenes such as CD and IFN-ß. Therefore, these engineered hNSCs can be promising candidates for the treatment of metastatic ATC.


Assuntos
Citosina Desaminase/metabolismo , Flucitosina , Expressão Gênica , Células-Tronco Neurais/enzimologia , Carcinoma Anaplásico da Tireoide , Linhagem Celular Tumoral , Técnicas de Cocultura , Citosina Desaminase/genética , Flucitosina/farmacocinética , Flucitosina/farmacologia , Humanos , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/terapia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia
7.
Biomacromolecules ; 20(4): 1683-1690, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30884222

RESUMO

The simultaneous delivery of multiple therapeutics to a single site has shown promise for cancer targeting and treatment. However, because of the inherent differences in charge and size between drugs and biomolecules, new approaches are required for colocalization of unlike components in one delivery vehicle. In this work, we demonstrate that triblock copolymers containing click nucleic acids (CNAs) can be used to simultaneously load a prodrug enzyme (cytosine deaminase, CodA) and a chemotherapy drug (doxorubicin, DOX) in a single polymer nanoparticle. CNAs are synthetic analogs of DNA comprised of a thiolene backbone and nucleotide bases that can hybridize to complementary strands of DNA. In this study, CodA was appended with complementary DNA sequences and fluorescent dyes to allow its encapsulation in PEG-CNA-PLGA nanoparticles. The DNA-modified CodA was found to retain its enzyme activity for converting prodrug 5-fluorocytosine (5-FC) to active 5-fluorouracil (5-FU) using a modified fluorescent assay. The DNA-conjugated CodA was then loaded into the PEG-CNA-PLGA nanoparticles and tested for cell cytotoxicity in the presence of the 5-FC prodrug. To study the effect of coloading DOX and CodA within a single nanoparticle, cell toxicity assays were run to compare dually loaded nanoparticles with nanoparticles loaded only with either DOX or CodA. We show that the highest level of cell death occurred when both DOX and CodA were simultaneously entrapped and delivered to cells in the presence of 5-FC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Citosina Desaminase , DNA , Portadores de Fármacos , Enzimas Imobilizadas , Proteínas de Escherichia coli , Nanopartículas , Neoplasias , Poliésteres , Polietilenoglicóis , Pró-Fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Citosina Desaminase/química , Citosina Desaminase/farmacologia , DNA/química , DNA/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Flucitosina/química , Flucitosina/farmacocinética , Flucitosina/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Poliésteres/síntese química , Poliésteres/química , Poliésteres/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia
8.
Mol Biol Rep ; 44(4): 323-332, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28748410

RESUMO

Recent reports on various cancer models demonstrate a great potential of cytosine deaminase/5-fluorocytosine suicide system in cancer therapy. However, this approach has limited success and its application to patients has not reached the desirable clinical significance. Accordingly, the improvement of this suicide system is an actively developing trend in gene therapy. The purpose of this study was to explore the cytotoxic effect observed after co-expression of hepatitis A virus 3C protease (3C) and yeast cytosine deaminase/uracil phosphoribosyltransferase fusion protein (FCU1) in a bicistronic vector. A set of mono- and bicistronic plasmid constructs was generated to provide individual or combined expression of 3C and FCU1. The constructs were introduced into HEK293 and HeLa cells, and target protein synthesis as well as the effect of 5-fluorocytosine on cell death and the time course of the cytotoxic effect was studied. The obtained vectors provide for the synthesis of target proteins in human cells. The expression of the genes in a bicistronic construct provide for the cytotoxic effect comparable to that observed after the expression of genes in monocistronic constructs. At the same time, co-expression of FCU1 and 3C recapitulated their cytotoxic effects. The combined effect of the killer and suicide genes was studied for the first time on human cells in vitro. The integration of different gene therapy systems inducing cell death (FCU1 and 3C genes) in a bicistronic construct allowed us to demonstrate that it does not interfere with the cytotoxic effect of each of them. A combination of cytotoxic genes in multicistronic vectors can be used to develop pluripotent gene therapy agents.


Assuntos
Cisteína Endopeptidases/biossíntese , Citosina Desaminase/biossíntese , Flucitosina/farmacologia , Terapia Genética/métodos , Vírus da Hepatite A Humana/enzimologia , Pentosiltransferases/biossíntese , Proteínas Virais/biossíntese , Proteases Virais 3C , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Flucitosina/farmacocinética , Genes Transgênicos Suicidas , Vetores Genéticos , Células HEK293 , Células HeLa , Vírus da Hepatite A Humana/metabolismo , Humanos , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Plasmídeos/genética , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Transdução Genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Ann Oncol ; 28(1): 169-174, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177438

RESUMO

Background: TG4023 is a modified vaccinia virus Ankara (MVA) containing the yeast-originated transgene FCU1, expressing cytosine deaminase and uracil phosphoribosyltransferase enzymes that transform the prodrug flucytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) and 5-fluorouridine-5'-monophosphate, respectively. This first-in-human study aimed to assess the maximum tolerated dose (MTD) of intratumoral (IT) TG4023 and the safety, feasibility, and proof-of-concept (PoC) of TG4023/5-FC combination to deliver high 5-FU concentrations in tumors. Patients and Methods: Cancer patients without further therapeutic option and with at least one injectable primary or metastatic liver tumor underwent on day 1 a percutaneous IT injection of TG4023 at doses of 107, 108, or 4.108 plaque forming units (p.f.u.) using ultrasound imaging guidance, after a dose-limiting toxicities (DLTs)-driven 3 + 3 dose-escalating design. On day 2, patients were given intravenous and/or oral 5-FC at a dose of 200 mg/kg/day for 14 days and were followed for safety through day 43. Tumor response was assessed at week 6, according to RECIST. Plasma and tumor 5-FU concentrations were measured to establish the PoC. Results: In total, 16 patients completed treatment with TG4023 and 5-FC. One DLT/7 patients (ALT/aspartate aminotransferase transient increase) was observed at 4 × 108 p.f.u.; MTD was therefore not reached. The most frequent adverse events were pyrexia, asthenia, vomiting, and decreased appetite. Eight of 16 patients had stable disease. Mean 5-FU concentrations in plasma were 1.9 ± 2.6 ng/ml and 56 ± 30 ng/g in tumors. Seroconversion for anti-FCU1 antibodies was found for one patient from each cohort (16%, overall). Conclusions: This phase I study demonstrated that IT injections of TG4023 were feasible and well tolerated; MTD was defined as 4 × 108 p.f.u. Therapeutic 5-FU concentrations in tumors established the virus-directed enzyme-prodrug therapy PoC. Clinicaltrials.gov Number: NCT00978107.


Assuntos
Citosina Desaminase/genética , Flucitosina/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Neoplasias Hepáticas/terapia , Pentosiltransferases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Citosina Desaminase/metabolismo , Feminino , Flucitosina/farmacocinética , Fluoruracila/sangue , Fluoruracila/farmacocinética , Humanos , Injeções Intralesionais , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Masculino , Pessoa de Meia-Idade , Pentosiltransferases/metabolismo , Estudo de Prova de Conceito , Transgenes , Vaccinia virus/genética
10.
J Control Release ; 238: 80-91, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27449745

RESUMO

Flucytosine (5-fluorocytosine, 5-FC) is a fluorinated analogue of cytosine currently approved for the systemic treatment of fungal infections, which has recently demonstrated a very promising antivirulence activity against the bacterial pathogen Pseudomonas aeruginosa. In this work, we propose novel inhalable hyaluronic acid (HA)/mannitol composite dry powders for repositioning 5-FC in the local treatment of lung infections, including those affecting cystic fibrosis (CF) patients. Different dry powders were produced in one-step by spray-drying. Powder composition and process conditions were selected after in depth formulation studies aimed at selecting the 5-FC/HA/mannitol formulation with convenient aerosolization properties and drug release profile in simulated lung fluids. The optimized 5-FC/HA/mannitol powder for inhalation (HyaMan_FC#3) was effectively delivered from different breath-activated dry powder inhalers (DPI) already available to CF patients. Nevertheless, the aerodynamic assessment of fine particles suggested that the developed formulation well fit with a low-resistance DPI. HyaMan_FC#3 inhibited the growth of the fungus Candida albicans and the production of the virulence factor pyoverdine by P. aeruginosa at 5-FC concentrations that did not affect the viability of both wild type (16HBE14o-) and CF (CFBE41o-) human bronchial epithelial cells. Finally, pharmacokinetics of HyaMan_FC#3 inhalation powder and 5-FC solution after intratracheal administration in rats were compared. In vivo results clearly demonstrated that, when formulated as dry powder, 5-FC levels in both bronchoalveolar lavage fluid and lung tissue were significantly higher and sustained over time as compared to those obtained with the 5-FC solution. Of note, when the same 5-FC amount was administered intravenously, no significant drug amount was found in the lung at each time point from the injection. To realize a 5-FC lung concentration similar to that obtained by using HyaMan_FC#3, a 6-fold higher dose of 5-FC should be administered intravenously. Taken together, our data demonstrate the feasibility to deliver 5-FC by the pulmonary route likely avoiding/reducing the well-known side effects associated to the high systemic 5-FC doses currently used in humans. Furthermore, our results highlight that an appropriate formulation design can improve the persistence of the drug at lungs, where microorganisms causing severe infections are located.


Assuntos
Antibacterianos/administração & dosagem , Antifúngicos/administração & dosagem , Reposicionamento de Medicamentos , Inaladores de Pó Seco , Flucitosina/administração & dosagem , Ácido Hialurônico/química , Manitol/química , Administração por Inalação , Aerossóis/química , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antifúngicos/farmacocinética , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Flucitosina/farmacocinética , Flucitosina/farmacologia , Humanos , Pulmão/microbiologia , Pneumopatias Fúngicas/tratamento farmacológico , Masculino , Tamanho da Partícula , Pós , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos Wistar
11.
Drug Des Devel Ther ; 10: 277-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834459

RESUMO

Nanoliposomes have an organized architecture that provides versatile functions. In this study, liposomes were used as an ocular carrier for nanogold capped with flucytosine antifungal drug. Gold nanoparticles were used as a contrasting agent that provides tracking of the drug to the posterior segment of the eye for treating fungal intraocular endophthalmitis. The nanoliposomes were prepared with varying molar ratios of lecithin, cholesterol, Span 60, a positive charge inducer (stearylamine), and a negative charge inducer (dicetyl phosphate). Formulation F6 (phosphatidylcholine, cholesterol, Span 60, and stearylamine at a molar ratio of 1:1:1:0.15) demonstrated the highest extent of drug released, which reached 7.043 mg/h. It had a zeta potential value of 42.5±2.12 mV and an average particle size approaching 135.1±12.0 nm. The ocular penetration of the selected nanoliposomes was evaluated in vivo using a computed tomography imaging technique. It was found that F6 had both the highest intraocular penetration depth (10.22±0.11 mm) as measured by the computed tomography and the highest antifungal efficacy when evaluated in vivo using 32 infected rabbits' eyes. The results showed a strong correlation between the average intraocular penetration of the nanoparticles capped with flucytosine and the percentage of the eyes healed. After 4 weeks, all the infected eyes (n=8) were significantly healed (P<0.01) when treated with liposomal formulation F6. Overall, the nanoliposomes encapsulating flucytosine have been proven efficient in treating the infected rabbits' eyes, which proves the efficiency of the nanoliposomes in delivering both the drug and the contrasting agent to the posterior segment of the eye.


Assuntos
Antifúngicos/administração & dosagem , Infecções Oculares Fúngicas/tratamento farmacológico , Flucitosina/administração & dosagem , Nanopartículas Metálicas , Administração Oftálmica , Animais , Antifúngicos/farmacocinética , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Excipientes/química , Olho/metabolismo , Olho/microbiologia , Infecções Oculares Fúngicas/microbiologia , Flucitosina/farmacocinética , Ouro/química , Lipossomos , Tamanho da Partícula , Coelhos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
12.
J Biomed Sci ; 23: 15, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26801910

RESUMO

BACKGROUND: The enzyme-prodrug system is considered a promising tool for tumor treatment when conjugated with a targeting molecule. The asparagine-glycine-arginine (NGR) motif is a developing and interesting targeting peptide that could specifically bind to aminopeptidase N (APN), which is an NGR receptor expressed on the cell membrane of angiogenic endothelial cells and a number of tumor cells within the tumor tissues. The objective of this study was to develop a novel targeted enzyme-prodrug system using 5-fluorocytosine (5-FC) and an NGR-containing peptide fused with yeast cytosine deaminase (yCD), i.e. CNGRC-yCD fusion protein, to target APN-expressing cells within the tumor tissues and to convert 5-FC into 5-fluorouracil (5-FU) to kill tumors. RESULTS: Both yCD and CNGRC-yCD proteins were cloned into the pET28a vector and expressed by an Escherichia coli host. Both yCD and CNGRC-yCD proteins were purified and the yields were approximately 20 mg/L with over 95 % purity. The binding assay demonstrated that the CNGRC-yCD fusion protein had specific binding affinity toward purified APN recombinant protein and high-APN-expressing cells, including human endothelial cells (HUVECs) and various types of human tumor cell lines, but not low-APN-expressing tumor cell lines. Moreover, the enzyme activity and cell viability assay showed that the CNGRC-yCD fusion protein could effectively convert 5-FC into 5-FU and resulted in significant cell death in both high-APN-expressing tumor cells and HUVECs. CONCLUSIONS: This study successfully constructs a new targeting enzyme-prodrug system, CNGRC-yCD fusion protein/5-FC. Systematic experiments demonstrated that the CNGRC-yCD protein retained both the APN-binding affinity of NGR and the enzyme activity of yCD to convert 5-FC into 5-FU. The combined treatment of the CNGRC-yCD protein with 5-FC resulted in the significantly increased cell death of high-APN-expressing cells as compared to that of low-APN-expressing cells.


Assuntos
Antineoplásicos , Citosina Desaminase/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Flucitosina , Neoplasias/tratamento farmacológico , Oligopeptídeos/farmacologia , Pró-Fármacos , Proteínas de Saccharomyces cerevisiae/farmacologia , Saccharomyces cerevisiae , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Citosina Desaminase/genética , Flucitosina/farmacocinética , Flucitosina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Oligopeptídeos/genética , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas de Saccharomyces cerevisiae/genética
13.
Drug Des Devel Ther ; 9: 3705-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229435

RESUMO

BACKGROUND: The blood-brain barrier prevents many drug moieties from reaching the central nervous system. Therefore, glutathione-modulated nanoliposomes have been engineered to enhance the targeting of flucytosine to the brain. METHODS: Glutathione-modulated nanoliposomes were prepared by thin-film hydration technique and evaluated in the primary brain cells of rats. Lecithin, cholesterol, and span 65 were mixed at 1:1:1 molar ratio. The molar percentage of PEGylated glutathione varied from 0 mol% to 0.75 mol%. The cellular binding and the uptake of the targeted liposomes were both monitored by epifluorescent microscope and flow cytometry techniques. A biodistribution and a pharmacokinetic study of flucytosine and flucytosine-loaded glutathione-modulated liposomes was carried out to evaluate the in vivo brain-targeting efficiency. RESULTS: The size of glutathione-modulated nanoliposomes was <100 nm and the zeta potential was more than -65 mV. The cumulative release reached 70% for certain formulations. The cellular uptake increased as molar percent of glutathione increased to reach the maximum at 0.75 mol%. The uptake of the targeted liposomes by brain cells of the rats was three times greater than that of the nontargeted liposomes. An in vivo study showed that the relative efficiency was 2.632±0.089 and the concentration efficiency was 1.590±0.049, and also, the drug-targeting index was 3.670±0.824. CONCLUSION: Overall, these results revealed that glutathione-PEGylated nanoliposomes enhance the effective delivery of flucytosine to brain and could become a promising new therapeutic option for the treatment of the brain infections.


Assuntos
Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Flucitosina/administração & dosagem , Glutationa/química , Animais , Antifúngicos/administração & dosagem , Antifúngicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Excipientes/química , Citometria de Fluxo , Flucitosina/farmacocinética , Lipossomos , Masculino , Nanopartículas , Tamanho da Partícula , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
14.
Cancer Gene Ther ; 22(4): 215-21, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25837665

RESUMO

Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.


Assuntos
Adenoviridae/genética , Citosina Desaminase/genética , Terapia Genética , Receptores de Somatostatina/genética , Animais , Ligação Competitiva , Citosina Desaminase/biossíntese , Feminino , Flucitosina/farmacocinética , Flucitosina/uso terapêutico , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Genes Reporter , Humanos , Células MCF-7 , Camundongos SCID , Especificidade de Órgãos , Pró-Fármacos/farmacocinética , Pró-Fármacos/uso terapêutico , Receptores de Somatostatina/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cold Spring Harb Perspect Med ; 5(5): a019653, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25384765

RESUMO

Successful treatment of infectious diseases requires choice of the most suitable antimicrobial agent, comprising consideration of drug pharmacokinetics (PK), including penetration into infection site, pathogen susceptibility, optimal route of drug administration, drug dose, frequency of administration, duration of therapy, and drug toxicity. Antimicrobial pharmacokinetic/pharmacodynamic (PK/PD) studies consider these variables and have been useful in drug development, optimizing dosing regimens, determining susceptibility breakpoints, and limiting toxicity of antifungal therapy. Here the concepts of antifungal PK/PD studies are reviewed, with emphasis on methodology and application. The initial sections of this review focus on principles and methodology. Then the pharmacodynamics of each major antifungal drug class (polyenes, flucytosine, azoles, and echinocandins) is discussed. Finally, the review discusses novel areas of pharmacodynamic investigation in the study and application of combination therapy.


Assuntos
Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Antifúngicos/farmacocinética , Micoses/tratamento farmacológico , Animais , Modelos Animais de Doenças , Equinocandinas/administração & dosagem , Equinocandinas/farmacocinética , Equinocandinas/farmacologia , Flucitosina/administração & dosagem , Flucitosina/farmacocinética , Flucitosina/farmacologia , Humanos , Camundongos , Polienos/administração & dosagem , Polienos/farmacocinética , Polienos/farmacologia , Coelhos , Ratos , Triazóis/administração & dosagem , Triazóis/farmacocinética , Triazóis/farmacologia
16.
Cancer Gene Ther ; 20(10): 544-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23969884

RESUMO

Toca 511 (vocimagene amiretrorepvec), an amphotropic retroviral replicating vector (RRV), can successfully and safely deliver a functional, optimized cytosine deaminase (CD) gene to tumors in orthotopic glioma models. This agent, in conjunction with subsequent oral extended-release 5-fluorocytosine (5-FC) (Toca FC), is currently under investigation in patients with recurrent high-grade glioma . Temozolomide (TMZ) with radiation is the most frequently used first-line treatment for patients with glioblastoma, the most common and aggressive form of primary brain cancer in adults. However, subsets of patients with certain genetic alterations do not respond well to TMZ treatment and the overall median survival for patients who respond remains modest, suggesting that combinatorial approaches may be necessary to significantly improve outcomes. We show that in vitro TMZ delays but does not prevent RRV spread, nor interfere with Toca 511+5-FC-mediated cell killing in glioma tumor cells, and in vivo there is no significant hematologic effect from the combination of 5-FC and the clinically relevant dose of TMZ. A synergistic long-term survival advantage is observed in mice bearing an orthotopic TMZ-sensitive glioma after Toca 511 administration followed by coadministration of TMZ and 5-FC. These results provide support for the investigation of this novel combination treatment strategy in patients with newly diagnosed malignant glioma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/terapia , Citosina Desaminase/genética , Dacarbazina/análogos & derivados , Flucitosina/farmacologia , Glioblastoma/terapia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Citosina Desaminase/biossíntese , Citosina Desaminase/metabolismo , Dacarbazina/administração & dosagem , Dacarbazina/farmacologia , Sinergismo Farmacológico , Feminino , Flucitosina/administração & dosagem , Flucitosina/farmacocinética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Camundongos , Camundongos Nus , Retroviridae/genética , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Infect Dis ; 208(2): 351-61, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23599314

RESUMO

BACKGROUND: Cryptococcal meningoencephalitis is a lethal infection with relatively few therapeutic options. The optimal dosage of liposomal amphotericin B (LAmB) alone or in combination with flucytosine is not known. METHODS: A murine model of cryptococcal meningoencephalitis was used. The fungal density in the brain was determined using quantitative cultures. Pharmacokinetic-pharmacodynamic relationships were determined for LAmB and flucytosine administered alone. The effect of the combination was described using the Greco model and a mathematical model. The results were bridged to humans. RESULTS: Inoculation resulted in hematogenous dissemination and logarithmic growth within the central nervous system. There was histological evidence of multifocal infection throughout the brain. Both LAmB and flucytosine produced a dose-dependent reduction in fungal burden. The effect of the combination of agents in the brain was additive. Bridging studies suggested that a human dosage of LAmB 3 mg/kg/d resulted in a submaximal antifungal effect. Regimens of LAmB 6 mg/kg/d alone, LAmB 3 mg/kg/d plus flucytosine 50 mg/kg/d, and LAmB 3 mg/kg/d plus flucytosine 100 mg/kg/d all resulted in near-maximal antifungal activity. CONCLUSIONS: Potential regimens for further study in clinical trials include LAmB 6 mg/kg/d alone, LAmB 3 mg/kg/d plus flucytosine 50 mg/kg/d, and LAmB 3 mg/kg/d plus flucytosine 100 mg/kg/d.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Flucitosina/farmacologia , Meningite Criptocócica/tratamento farmacológico , Meningoencefalite/tratamento farmacológico , Anfotericina B/farmacocinética , Animais , Antifúngicos/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/microbiologia , Cryptococcus neoformans/isolamento & purificação , Quimioterapia Combinada , Flucitosina/farmacocinética , Humanos , Hospedeiro Imunocomprometido , Masculino , Meningite Criptocócica/imunologia , Meningite Criptocócica/metabolismo , Meningite Criptocócica/microbiologia , Meningoencefalite/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Biológicos
18.
Cancer Lett ; 335(1): 58-65, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23391716

RESUMO

Prostate cancer is the most common malignancy among men. Prostate cancer-related deaths are largely attributable to the development of hormone resistance in the tumor. No effective chemotherapy has yet been developed for advanced prostate cancer. It is desirable if a drug can be delivered directly and specifically to prostate cancer cells. Stem cells have selective migration ability toward cancer cells and therapeutic genes can be easily transduced into stem cells. In one form of gene therapy for cancer, the stem cells carry a gene encoding an enzyme that transforms an inert prodrug into a toxic product. Cytosine deaminase (CD) transforms the pro-drug 5-fluorocytosine into highly cytotoxic 5-fluorouracil (5-FU). The migration of the genetically modified stem cells was monitored by molecular magnetic resonance imaging, after labeling the stem cells with fluorescent magnetic nanoparticles (MNPs). Human neural stem cells encoding CD (HB1.F3.CD) were prepared and labeled with MNP. In tumor-bearing C57B mice, systemically transplanted HB1.F3.CD stem cells migrated toward the tumor and in combination with prodrug 5-FC, the volume of tumor implant was significantly reduced. These findings may contribute to development of a new selective chemotherapeutic strategy against prostate cancer.


Assuntos
Antimetabólitos Antineoplásicos/farmacocinética , Citosina Desaminase/biossíntese , Flucitosina/farmacocinética , Células-Tronco Neurais/transplante , Pró-Fármacos/farmacocinética , Neoplasias da Próstata/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular/efeitos dos fármacos , Rastreamento de Células , Células Cultivadas , Flucitosina/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/enzimologia , Células-Tronco Neurais/fisiologia , Pró-Fármacos/uso terapêutico , Neoplasias da Próstata/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Gene Ther ; 19(3): 181-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22076043

RESUMO

First-line treatment of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC) is based on platinum, 5-fluorouracil (5-FU) and the monoclonal antiEGFR antibody cetuximab. However, in most cases this chemoimmunotherapy does not cure the disease, and more than 50% of HNSCC patients are dying because of local recurrence of the tumors. In the majority of cases, HNSCC overexpress the epidermal growth factor receptor (EGFR), and its presence is associated with a poor outcome. In this study, we engineered an EGFR-targeted oncolytic measles virus (MV), armed with the bifunctional enzyme cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT). CD/UPRT converts 5-fluorocytosine (5-FC) into the chemotherapeutic 5-FU, a mainstay of HNSCC chemotherapy. This virus efficiently replicates in and lyses primary HNSCC cells in vitro. Arming with CD/UPRT mediates efficient prodrug activation with high bystander killing of non-infected tumor cells. In mice bearing primary HNSCC xenografts, intratumoral administration of MV-antiEGFR resulted in statistically significant tumor growth delay and prolongation of survival. Importantly, combination with 5-FC is superior to virus-only treatment leading to significant tumor growth inhibition. Thus, chemovirotherapy with EGFR-targeted and CD/UPRT-armed MV is highly efficacious in preclinical settings with direct translational implications for a planned Phase I clinical trial of MV for locoregional treatment of HNSCC.


Assuntos
Carcinoma de Células Escamosas/terapia , Citosina Desaminase/genética , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Vírus do Sarampo/fisiologia , Terapia Viral Oncolítica/métodos , Pentosiltransferases/genética , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Citosina Desaminase/biossíntese , Citosina Desaminase/metabolismo , Receptores ErbB/biossíntese , Receptores ErbB/genética , Feminino , Flucitosina/farmacocinética , Flucitosina/farmacologia , Fluoruracila/farmacocinética , Fluoruracila/farmacologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Vírus do Sarampo/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pentosiltransferases/biossíntese , Pentosiltransferases/metabolismo , Pró-Fármacos/farmacocinética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Células Vero , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Gene Ther ; 19(3): 160-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22076044

RESUMO

Yeast cytosine deaminase (yCD) is a well-characterized prodrug/enzyme system that converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), and has been combined with oncolytic viruses. However, in vivo studies of the interactions between 5-FC bioactivation and viral replication have not been previously reported, nor have the kinetics of transgene expression and the pharmacokinetics of 5-FC and 5-FU. We constructed a replication-conditional Herpes simplex virus 1 (HSV-1) expressing yCD and examined cytotoxicity when 5-FC was initiated at different times after viral infection, and observed that earlier 5-FC administration led to greater cytotoxicity than later 5-FC administration in vitro and in vivo. In animal models, 12 days of 5-FC administration was superior to 6 days, but dosing beyond 12 days did not further enhance efficacy. Consistent with the dosing-schedule results, both viral genomic DNA copy number and viral titers were observed to peak on Day 3 after viral injection and gradually decrease thereafter. The virus is replication-conditional and was detected in tumors for as long as 2 weeks after viral injection. The maximum relative extent of yCD conversion of 5-FC to 5-FU in tumors was observed on Day 6 after viral injection and it decreased progressively thereafter. The observation that 5-FU generation within tumors did not lead to appreciable levels of systemic 5-FU (<10 ng ml⁻¹) is important and has not been previously reported. The approaches used in these studies of the relationship between the viral replication kinetics, transgene expression, prodrug administration and anti-tumor efficacy are useful in the design of clinical trials of armed, oncolytic viruses.


Assuntos
Neoplasias do Colo/terapia , Citosina Desaminase/biossíntese , Flucitosina/farmacocinética , Fluoruracila/farmacocinética , Terapia Viral Oncolítica/métodos , Pró-Fármacos/farmacocinética , Simplexvirus/fisiologia , Animais , Antimetabólitos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Chlorocebus aethiops , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/virologia , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Esquema de Medicação , Terapia Genética/métodos , Vetores Genéticos , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simplexvirus/enzimologia , Simplexvirus/genética , Transgenes , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto , Leveduras/enzimologia , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...