Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.467
Filtrar
1.
J Phys Chem B ; 128(33): 7978-7986, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39115241

RESUMO

The development of drug resistance is a nearly universal phenomenon in patients with glioblastoma multiforme (GBM) brain tumors. Upon treatment, GBM cancer cells may initially undergo a drug-induced cell-state change to a drug-tolerant, slow-cycling state. The kinetics of that process are not well understood, in part due to the heterogeneity of GBM tumors and tumor models, which can confound the interpretation of kinetic data. Here, we resolve drug-adaptation kinetics in a patient-derived in vitro GBM tumor model characterized by the epithelial growth factor receptor (EGFR) variant(v)III oncogene treated with an EGFR inhibitor. We use radiolabeled 18F-fluorodeoxyglucose (FDG) to monitor the glucose uptake trajectories of single GBM cancer cells over a 12 h period of drug treatment. Autocorrelation analysis of the single-cell glucose uptake trajectories reveals evidence of a drug-induced cell-state change from a high- to low-glycolytic phenotype after 5-7 h of drug treatment. Information theoretic analysis of a bulk transcriptome kinetic series of the GBM tumor model delineated the underlying molecular mechanisms driving the cellular state change, including a shift from a stem-like mesenchymal state to a more differentiated, slow-cycling astrocyte-like state. Our results demonstrate that complex drug-induced cancer cell-state changes of cancer cells can be captured via measurements of single cell metabolic trajectories and reveal the extremely facile nature of drug adaptation.


Assuntos
Receptores ErbB , Glioblastoma , Glucose , Humanos , Glucose/metabolismo , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Cinética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/metabolismo , Análise de Célula Única , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000586

RESUMO

Visceral adipose tissue (VAT) dysfunction has been recently recognized as a potential contributor to the development of Alzheimer's disease (AD). This study aimed to explore the relationship between VAT metabolism and cerebral glucose metabolism in patients with cognitive impairment. This cross-sectional prospective study included 54 patients who underwent 18F-fluorodeoxyglucose (18F-FDG) brain and torso positron emission tomography/computed tomography (PET/CT), and neuropsychological evaluations. VAT metabolism was measured by 18F-FDG torso PET/CT, and cerebral glucose metabolism was measured using 18F-FDG brain PET/CT. A voxel-based analysis revealed that the high-VAT-metabolism group exhibited a significantly lower cerebral glucose metabolism in AD-signature regions such as the parietal and temporal cortices. In the volume-of-interest analysis, multiple linear regression analyses with adjustment for age, sex, and white matter hyperintensity volume revealed that VAT metabolism was negatively associated with cerebral glucose metabolism in AD-signature regions. In addition, higher VAT metabolism was correlated with poorer outcomes on cognitive assessments, including the Korean Boston Naming Test, Rey Complex Figure Test immediate recall, and the Controlled Oral Word Association Test. In conclusion, our study revealed significant relationships among VAT metabolism, cerebral glucose metabolism, and cognitive function. This suggests that VAT dysfunction actively contributes to the neurodegenerative processes characteristic of AD, making VAT dysfunction targeting a novel AD therapy approach.


Assuntos
Encéfalo , Disfunção Cognitiva , Fluordesoxiglucose F18 , Glucose , Gordura Intra-Abdominal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Feminino , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/diagnóstico por imagem , Glucose/metabolismo , Idoso , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Fluordesoxiglucose F18/metabolismo , Estudos Transversais , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Prospectivos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Testes Neuropsicológicos
3.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39062992

RESUMO

[123I]ß-methyl-p-iodophenyl-pentadecanoic acid ([123I]BMIPP), which is used for nuclear medicine imaging of myocardial fatty acid metabolism, accumulates in cancer cells. However, the mechanism of accumulation remains unknown. Therefore, this study aimed to elucidate the accumulation and accumulation mechanism of [123I]BMIPP in cancer cells. We compared the accumulation of [123I]BMIPP in cancer cells with that of [18F]FDG and found that [123I]BMIPP was a much higher accumulation than [18F]FDG. The accumulation of [123I]BMIPP was evaluated in the presence of sulfosuccinimidyl oleate (SSO), a CD36 inhibitor, and lipofermata, a fatty acid transport protein (FATP) inhibitor, under low-temperature conditions and in the presence of etomoxir, a carnitine palmitoyl transferase I (CPT1) inhibitor. The results showed that [123I]BMIPP accumulation was decreased in the presence of SSO and lipofermata in H441, LS180, and DLD-1 cells, suggesting that FATPs and CD36 are involved in [123I]BMIPP uptake in cancer cells. [123I]BMIPP accumulation in all cancer cell lines was significantly decreased at 4 °C compared to that at 37 °C and increased in the presence of etomoxir in all cancer cell lines, suggesting that the accumulation of [123I]BMIPP in cancer cells is metabolically dependent. In a biological distribution study conducted using tumor-bearing mice transplanted with LS180 cells, [123I]BMIPP highly accumulated in not only LS180 cells but also normal tissues and organs (including blood and muscle). The tumor-to-intestine or large intestine ratios of [123I]BMIPP were similar to those of [18F]FDG, and the tumor-to-large-intestine ratios exceeded 1.0 during 30 min after [123I]BMIPP administration in the in vivo study. [123I]BMIPP is taken up by cancer cells via CD36 and FATP and incorporated into mitochondria via CPT1. Therefore, [123I]BMIPP may be useful for imaging cancers with activated fatty acid metabolism, such as colon cancer. However, the development of novel imaging radiotracers based on the chemical structure analog of [123I]BMIPP is needed.


Assuntos
Neoplasias do Colo , Iodobenzenos , Animais , Humanos , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Camundongos , Linhagem Celular Tumoral , Iodobenzenos/química , Antígenos CD36/metabolismo , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/metabolismo , Radioisótopos do Iodo , Ácidos Oleicos/química , Miocárdio/metabolismo , Distribuição Tecidual , Proteínas de Transporte de Ácido Graxo/metabolismo , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/metabolismo , Ácidos Graxos
4.
J Transl Med ; 22(1): 558, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862971

RESUMO

PURPOSE: The purpose of the study was to evaluate the expression and function of basic leucine zipper ATF-like transcription factor (BATF) in colorectal cancer (CRC), and its correlation with 2-deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) parameters. METHODS: The TIMER database, GEPIA database, TCGA, and GEO database were used to analyze the expression profile of BATF in human cancers. The reverse transcription­quantitative PCR and western blot analyses were used to evaluate the mRNA level and protein expression in different CRC cell lines. The expression of BATF in SW620 and HCT116 cells was silenced and cell counting kit-8 assays and clonogenic assay were utilized to evaluate the role of BATF in CRC proliferation. The expression of tumor BATF and glucose transporter 1 (GLUT-1) were examined using immunohistochemical tools in 37 CRC patients undergoing preoperative 18F-FDG PET/CT imaging. The correlation between the PET/CT parameters and immunohistochemical result was evaluated. RESULTS: In database, BATF was highly expressed in pan-cancer analyses, including CRC, and was associated with poor prognosis in CRC. In vitro, the results showed that knocking down of BATF expression could inhibit the proliferation of SW620 and HCT116 cells. In CRC patients, BATF expression was upregulated in tumor tissues compared with matched para-tumoral tissues, and was related with gender and Ki-67 levels. BATF expression was positively related to GLUT-1 expression and PET/CT parameters, including tumor size, maximum standard uptake value, metabolic tumor volume, and total lesion glycolysis. The multiple logistic analyses showed that SUVmax was an independent predictor of BATF expression. With 15.96 g/cm3 as the cutoff, sensitivity was 85.71%, specificity 82.61%, and area-under-the-curve 0.854. CONCLUSION: BATF may be an oncogene associated with 18F-FDG PET/CT parameters in CRC. SUVmax may be an independent predictor of BATF expression.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proliferação de Células , Neoplasias Colorretais , Progressão da Doença , Fluordesoxiglucose F18 , Regulação Neoplásica da Expressão Gênica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Fluordesoxiglucose F18/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Feminino , Masculino , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Idoso
5.
Nat Commun ; 15(1): 5239, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937448

RESUMO

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.


Assuntos
Mycobacterium tuberculosis , Tomografia por Emissão de Pósitrons , Trealose , Tuberculose , Animais , Mycobacterium tuberculosis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Trealose/metabolismo , Tuberculose/diagnóstico por imagem , Tuberculose/microbiologia , Tuberculose/metabolismo , Humanos , Camundongos , Radioisótopos de Flúor , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/química , Compostos Radiofarmacêuticos/metabolismo , Modelos Animais de Doenças , Feminino
6.
J Neurol ; 271(8): 5290-5300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861034

RESUMO

OBJECTIVE: Half of ALS patients are cognitively and/or behaviourally impaired. As cognition/behaviour and cerebral glucose metabolism can be correlated by means of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET), we aimed to utilise FDG-PET, first, to replicate group-level differences in glucose metabolism between non-demented ALS patients separated into non-impaired (ALSni), cognitively impaired (ALSci), behaviourally impaired (ALSbi), and cognitively and behaviourally impaired (ALScbi) groups; second, to investigate glucose metabolism and performance in various cognitive domains; and third, to examine the impact of partial volume effects correction (PVEC) of the FDG-PET data on the results. METHODS: We analysed neuropsychological, clinical, and imaging data from 67 ALS patients (30 ALSni, 21 ALSci, 5 ALSbi, and 11 ALScbi). Cognition was assessed with the Edinburgh Cognitive and Behavioural ALS Screen, and two social cognition tests. FDG-PET and structural MRI scans were acquired for each patient. Voxel-based statistical analyses were undertaken on grey matter volume (GMV) and non-corrected vs. PVE-corrected FDG-PET scans. RESULTS: ALSci and ALScbi had lower cognitive scores than ALSni. In contrast to both ALSni and ALSci, ALScbi showed widespread hypometabolism in the superior- and middle-frontal gyri in addition to the right temporal pole. Correlations were observed between the GMV, the FDG-PET signal, and various cognitive scores. The FDG-PET results were largely unaffected by PVEC. INTERPRETATION: Our study identified widespread differences in hypometabolism in the ALScbi-ni but not in the ALSci-ni group comparison, raising the possibility that cerebral metabolism may be more closely related to the presence of behavioural changes than to mild cognitive deficits.


Assuntos
Esclerose Lateral Amiotrófica , Fluordesoxiglucose F18 , Glucose , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Fluordesoxiglucose F18/metabolismo , Idoso , Glucose/metabolismo , Imageamento por Ressonância Magnética , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Mentais/metabolismo , Transtornos Mentais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo
7.
Adv Sci (Weinh) ; 11(28): e2308255, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757578

RESUMO

Metabolic alterations in cancers can be exploited for diagnostic, prognostic, and therapeutic purposes. This is exemplified by 18F-fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET), an imaging tool that relies on enhanced glucose uptake by tumors for diagnosis and staging. By performing transcriptomic analysis of breast cancer (BC) samples from patients stratified by FDG-PET, a 54-gene signature (PETsign) is identified that recapitulates FDG uptake. PETsign is independently prognostic of clinical outcome in luminal BCs, the most common and heterogeneous BC molecular subtype, which requires improved stratification criteria to guide therapeutic decision-making. The prognostic power of PETsign is stable across independent BC cohorts and disease stages including the earliest BC stage, arguing that PETsign is an ab initio metabolic signature. Transcriptomic and metabolomic analysis of BC cells reveals that PETsign predicts enhanced glycolytic dependence and reduced reliance on fatty acid oxidation. Moreover, coamplification of PETsign genes occurs frequently in BC arguing for their causal role in pathogenesis. CXCL8 and EGFR signaling pathways feature strongly in PETsign, and their activation in BC cells causes a shift toward a glycolytic phenotype. Thus, PETsign serves as a molecular surrogate for FDG-PET that could inform clinical management strategies for BC patients.


Assuntos
Neoplasias da Mama , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18/metabolismo , Prognóstico , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética
8.
Ann Nucl Med ; 38(9): 726-733, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38761311

RESUMO

OBJECTIVE: The effects of hormonal therapy, estrogen-based hormone replacement therapy (HRT), and anti-tumor hormone therapy, such as tamoxifen, on the physiological uptake of the endometrium on 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) positron emission tomography (PET) in postmenopausal women have not been determined. We explored the effect of hormone therapy, particularly HRT, on physiological uptake in the endometrium of postmenopausal women. MATERIALS AND METHODS: Postmenopausal women receiving hormone therapy who underwent cancer screening using PET/computed tomography (CT) between June 2016 and April 2023 were included in the hormone therapy group (n = 21). Postmenopausal women with no history of hormone therapy were included in the control group (n = 49). First, the physiological endometrial uptake at menopausal age and at least 1 year thereafter was compared quantitatively (SUVmax) and qualitatively (4-point scale) in the control group, to assess when the endometrium ceased to show significant physiological [18F]F-FDG uptake after menopause. Endometrial uptake was compared between the hormone therapy and control groups. The association between HRT duration (months) and endometrial uptake (SUVmax) was evaluated. Endometrial thickness, measured using transvaginal ultrasonography, was also compared between the two groups. RESULTS: Endometrial uptake was significantly reduced both qualitatively and quantitatively (P < 0.05) at least 1 year after menopause in control patients, by which time most women (89.8%) no longer had significant endometrial uptake. The hormone therapy group (n = 21) showed higher FDG uptake in the endometrium compared to the control group (median SUVmax: 2.3 vs 1.9, P = 0.0011), as well as a higher visual score (P < 0.0001). HRT duration did not correlate with endometrial uptake (P = 0.097). Endometrial thickness in the hormone therapy group was significantly thicker than in the control group (median: 3.9 mm vs 1.8 mm, P = 0.002). CONCLUSION: Hormone therapy may affect physiological uptake in the endometrium in postmenopausal women.


Assuntos
Endométrio , Fluordesoxiglucose F18 , Terapia de Reposição Hormonal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Pós-Menopausa , Humanos , Feminino , Fluordesoxiglucose F18/metabolismo , Endométrio/diagnóstico por imagem , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Pessoa de Meia-Idade , Idoso , Transporte Biológico/efeitos dos fármacos , Estudos Retrospectivos
9.
Cancer J ; 30(3): 159-169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753750

RESUMO

ABSTRACT: Imaging glucose metabolism with [18F]fluorodeoxyglucose positron emission tomography has transformed the diagnostic and treatment algorithms of numerous malignancies in clinical practice. The cancer phenotype, though, extends beyond dysregulation of this single pathway. Reprogramming of other pathways of metabolism, as well as altered perfusion and hypoxia, also typifies malignancy. These features provide other opportunities for imaging that have been developed and advanced into humans. In this review, we discuss imaging metabolism, perfusion, and hypoxia in cancer, focusing on the underlying biology to provide context. We conclude by highlighting the ability to image multiple facets of biology to better characterize cancer and guide targeted treatment.


Assuntos
Fluordesoxiglucose F18 , Neoplasias , Tomografia por Emissão de Pósitrons , Humanos , Fluordesoxiglucose F18/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Hipóxia/metabolismo , Hipóxia/diagnóstico por imagem
10.
J Transl Med ; 22(1): 453, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741142

RESUMO

BACKGROUND: The lack of distinct biomarkers for pancreatic cancer is a major cause of early-stage detection difficulty. The pancreatic cancer patient group with high metabolic tumor volume (MTV), one of the values measured from positron emission tomography-a confirmatory method and standard care for pancreatic cancer, showed a poorer prognosis than those with low MTV. Therefore, MTV-associated differentially expressed genes (DEGs) may be candidates for distinctive markers for pancreatic cancer. This study aimed to evaluate the possibility of MTV-related DEGs as markers or therapeutic targets for pancreatic cancer. METHODS: Tumor tissues and their normal counterparts were obtained from patients undergoing preoperative 18F-FDG PET/CT. The tissues were classified into MTV-low and MTV-high groups (7 for each) based on the MTV2.5 value of 4.5 (MTV-low: MTV2.5 < 4.5, MTV-high: MTV2.5 ≥ 4.5). Gene expression fold change was first calculated in cancer tissue compared to its normal counter and then compared between low and high MTV groups to obtain significant DEGs. To assess the suitability of the DEGs for clinical application, the correlation of the DEGs with tumor grades and clinical outcomes was analyzed in TCGA-PAAD, a large dataset without MTV information. RESULTS: Total RNA-sequencing (MTV RNA-Seq) revealed that 44 genes were upregulated and 56 were downregulated in the high MTV group. We selected the 29 genes matching MTV RNA-seq patterns in the TCGA-PAAD dataset, a large clinical dataset without MTV information, as MTV-associated genes (MAGs). In the analysis with the TCGA dataset, MAGs were significantly associated with patient survival, treatment outcomes, TCGA-PAAD-suggested markers, and CEACAM family proteins. Some MAGs showed an inverse correlation with miRNAs and were confirmed to be differentially expressed between normal and cancerous pancreatic tissues. Overexpression of KIF11 and RCC1 and underexpression of ADCY1 and SDK1 were detected in ~ 60% of grade 2 pancreatic cancer patients and associated with ~ 60% mortality in stages I and II. CONCLUSIONS: MAGs may serve as diagnostic markers and miRNA therapeutic targets for pancreatic cancer. Among the MAGs, KIF11, RCC1, ADCY, and SDK1 may be early diagnostic markers.


Assuntos
Biomarcadores Tumorais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas , Carga Tumoral , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Terapia de Alvo Molecular , Pessoa de Meia-Idade , Idoso , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18/metabolismo
11.
Cancer Imaging ; 24(1): 53, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627864

RESUMO

BACKGROUND: Imaging features of colorectal cancers on 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography/computed tomography (PET/CT) have been considered to be affected by tumor characteristics and tumor immune microenvironment. However, the relationship between PET/CT imaging features and immune reactions in tumor tissue has not yet been fully evaluated. This study investigated the association of FDG PET/CT imaging features in the tumor, bone marrow, and spleen with immunohistochemical results of cancer tissue and recurrence-free survival (RFS) in patients with colorectal cancer. METHODS: A total of 119 patients with colorectal cancer who underwent FDG PET/CT for staging work-up and received curative surgical resection were retrospectively enrolled. From PET/CT images, 10 first-order imaging features of primary tumors, including intensity of FDG uptake, volumetric metabolic parameters, and metabolic heterogeneity parameters, as well as FDG uptake in the bone marrow and spleen were measured. The degrees of CD4+, CD8+, and CD163 + cell infiltration and interleukin-6 (IL-6) and matrix metalloproteinase-11 (MMP-11) expression were graded through immunohistochemical analysis of surgical specimens. The relationship between FDG PET/CT imaging features and immunohistochemical results was assessed, and prognostic significance of PET/CT imaging features in predicting RFS was evaluated. RESULTS: Correlation analysis with immunohistochemistry findings showed that the degrees of CD4 + and CD163 + cell infiltration and IL-6 and MMP-11 expression were correlated with cancer imaging features on PET/CT. Patients with enhanced inflammatory response in cancer tissue demonstrated increased FDG uptake, volumetric metabolic parameters, and metabolic heterogeneity. FDG uptake in the bone marrow and spleen was positively correlated with the degree of CD163 + cell infiltration and IL-6 expression, respectively. In multivariate survival analysis, the coefficient of variation of FDG uptake in the tumor (p = 0.019; hazard ratio, 0.484 for 0.10 increase) and spleen-to-liver uptake ratio (p = 0.020; hazard ratio, 24.901 for 1.0 increase) were significant independent predictors of RFS. CONCLUSIONS: The metabolic heterogeneity of tumors and FDG uptake in the spleen were correlated with tumor immune microenvironment and showed prognostic significance in predicting RFS in patients with colorectal cancer.


Assuntos
Neoplasias Colorretais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18/metabolismo , Estudos Retrospectivos , Metaloproteinase 11 da Matriz , Compostos Radiofarmacêuticos/metabolismo , Interleucina-6 , Prognóstico , Neoplasias Colorretais/patologia , Microambiente Tumoral
12.
Phys Med ; 121: 103336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626637

RESUMO

PURPOSE: We aimed to investigate whether a clinically feasible dual time-point (DTP) approach can accurately estimate the metabolic uptake rate constant (Ki) and to explore reliable acquisition times through simulations and clinical assessment considering patient comfort and quantification accuracy. METHODS: We simulated uptake kinetics in different tumors for four sets of DTP PET images within the routine clinical static acquisition at 60-min post-injection (p.i.). We determined Ki for a total of 81 lesions. Ki quantification from full dynamic PET data (Patlak-Ki) and Ki from DTP (DTP-Ki) were compared. In addition, we scaled a population-based input function (PBIFscl) with the image-derived blood pool activity sampled at different time points to assess the best scaling time-point for Ki quantifications in the simulation data. RESULTS: In the simulation study, Ki estimated using DTP via (30,60-min), (30,90-min), (60,90-min), and (60,120-min) samples showed strong correlations (r ≥ 0.944, P < 0.0001) with the true value of Ki. The DTP results with the PBIFscl at 60-min time-point in (30,60-min), (60,90-min), and (60,120-min) were linearly related to the true Ki with a slope of 1.037, 1.008, 1.013 and intercept of -6 × 10-4, 2 × 10-5, 5 × 10-5, respectively. In a clinical study, strong correlations (r ≥ 0.833, P < 0.0001) were observed between Patlak-Ki and DTP-Ki. The Patlak-derived mean values of Ki, tumor-to-background-ratio, signal-to-noise-ratio, and contrast-to-noise-ratio were linearly correlated with the DTP method. CONCLUSIONS: Besides calculating the retention index as a commonly used quantification parameter inDTP imaging,our DTP method can accurately estimate Ki.


Assuntos
Estudos de Viabilidade , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Humanos , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Fatores de Tempo , Processamento de Imagem Assistida por Computador/métodos , Cinética , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Transporte Biológico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Simulação por Computador
13.
Free Radic Biol Med ; 218: 57-67, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574976

RESUMO

Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.


Assuntos
Estudos de Viabilidade , Fluordesoxiglucose F18 , Glucose , Imagem Multimodal , Oxirredução , Animais , Humanos , Camundongos , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Imagem Multimodal/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Butionina Sulfoximina/farmacologia , Autorradiografia , Células HCT116 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Compostos Radiofarmacêuticos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Glutationa/metabolismo , Camundongos Nus
14.
J Neurosci Res ; 102(4): e25327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588037

RESUMO

Despite evidence of the beneficial effects of cannabidiol (CBD) in animal models of cocaine use disorder (CUD), CBD neuronal mechanisms remain poorly understood. This study investigated the effects of CBD treatment on brain glucose metabolism, in a CUD animal model, using [18F]FDG positron emission tomography (PET). Male C57Bl/6 mice were injected with cocaine (20 mg/kg, i.p.) every other day for 9 days, followed by 8 days of CBD administration (30 mg/kg, i.p.). After 48 h, animals were challenged with cocaine. Control animals received saline/vehicle. [18F]FDG PET was performed at four time points: baseline, last day of sensitization, last day of withdrawal/CBD treatment, and challenge. Subsequently, the animals were euthanized and immunohistochemistry was performed on the hippocampus and amygdala to assess the CB1 receptors, neuronal nuclear protein, microglia (Iba1), and astrocytes (GFAP). Results showed that cocaine administration increased [18F]FDG uptake following sensitization. CBD treatment also increased [18F]FDG uptake in both saline and cocaine groups. However, animals that were sensitized and challenged with cocaine, and those receiving only an acute cocaine injection during the challenge phase, did not exhibit increased [18F]FDG uptake when treated with CBD. Furthermore, CBD induced modifications in the integrated density of NeuN, Iba, GFAP, and CB1R in the hippocampus and amygdala. This is the first study addressing the impact of CBD on brain glucose metabolism in a preclinical model of CUD using PET. Our findings suggest that CBD disrupts cocaine-induced changes in brain energy consumption and activity, which might be correlated with alterations in neuronal and glial function.


Assuntos
Canabidiol , Cocaína , Camundongos , Animais , Masculino , Canabidiol/farmacologia , Canabidiol/metabolismo , Glucose/metabolismo , Fluordesoxiglucose F18/metabolismo , Encéfalo/metabolismo , Cocaína/farmacologia , Camundongos Endogâmicos C57BL
15.
Am J Physiol Endocrinol Metab ; 326(5): E588-E601, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477875

RESUMO

In rodents, loss of estradiol (E2) reduces brown adipose tissue (BAT) metabolic activity. Whether E2 impacts BAT activity in women is not known. BAT oxidative metabolism was measured in premenopausal (n = 27; 35 ± 9 yr; body mass index = 26.0 ± 5.3 kg/m2) and postmenopausal (n = 25; 51 ± 8 yr; body mass index = 28.0 ± 5.0 kg/m2) women at room temperature and during acute cold exposure using [11C]acetate with positron emission tomography coupled with computed tomograph. BAT glucose uptake was also measured during acute cold exposure using 2-deoxy-2-[18F]fluoro-d-glucose. To isolate the effects of ovarian hormones from biological aging, measurements were repeated in a subset of premenopausal women (n = 8; 40 ± 4 yr; BMI = 28.0 ± 7.2 kg/m2) after 6 mo of gonadotropin-releasing hormone agonist therapy to suppress ovarian hormones. At room temperature, there was no difference in BAT oxidative metabolism between premenopausal (0.56 ± 0.31 min-1) and postmenopausal women (0.63 ± 0.28 min-1). During cold exposure, BAT oxidative metabolism (1.28 ± 0.85 vs. 0.91 ± 0.63 min-1, P = 0.03) and net BAT glucose uptake (84.4 ± 82.5 vs. 29.7 ± 31.4 nmol·g-1·min-1, P < 0.01) were higher in premenopausal than postmenopausal women. In premenopausal women who underwent gonadotropin-releasing hormone agonist, cold-stimulated BAT oxidative metabolism was reduced to a similar level (from 1.36 ± 0.66 min-1 to 0.91 ± 0.41 min-1) to that observed in postmenopausal women (0.91 ± 0.63 min-1). These results provide the first evidence in humans that reproductive hormones are associated with BAT oxidative metabolism and suggest that BAT may be a target to attenuate age-related reduction in energy expenditure and maintain metabolic health in postmenopausal women.NEW & NOTEWORTHY In rodents, loss of estrogen reduces brown adipose tissue (BAT) activity. Whether this is true in humans is not known. We found that BAT oxidative metabolism and glucose uptake were lower in postmenopausal compared to premenopausal women. In premenopausal women who underwent ovarian suppression to reduce circulating estrogen, BAT oxidative metabolism was reduced to postmenopausal levels. Thus the loss of ovarian function in women leads to a reduction in BAT metabolic activity independent of age.


Assuntos
Tecido Adiposo Marrom , Fluordesoxiglucose F18 , Humanos , Feminino , Tecido Adiposo Marrom/metabolismo , Fluordesoxiglucose F18/metabolismo , Metabolismo Energético , Glucose/metabolismo , Tomografia por Emissão de Pósitrons , Estrogênios/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Temperatura Baixa , Termogênese
16.
J Nucl Med ; 65(4): 600-606, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485272

RESUMO

Because of the limited axial field of view of conventional PET scanners, the internal carotid arteries are commonly used to obtain an image-derived input function (IDIF) in quantitative brain PET. However, time-activity curves extracted from the internal carotids are prone to partial-volume effects due to the limited PET resolution. This study aimed to assess the use of the internal carotids for quantifying brain glucose metabolism before and after partial-volume correction. Methods: Dynamic [18F]FDG images were acquired on a 106-cm-long PET scanner, and quantification was performed with a 2-tissue-compartment model and Patlak analysis using an IDIF extracted from the internal carotids. An IDIF extracted from the ascending aorta was used as ground truth. Results: The internal carotid IDIF underestimated the area under the curve by 37% compared with the ascending aorta IDIF, leading to Ki values approximately 17% higher. After partial-volume correction, the mean relative Ki differences calculated with the ascending aorta and internal carotid IDIFs dropped to 7.5% and 0.05%, when using a 2-tissue-compartment model and Patlak analysis, respectively. However, microparameters (K 1, k 2, k 3) derived from the corrected internal carotid curve differed significantly from those obtained using the ascending aorta. Conclusion: These results suggest that partial-volume-corrected internal carotids may be used to estimate Ki but not kinetic microparameters. Further validation in a larger patient cohort with more variable kinetics is needed for more definitive conclusions.


Assuntos
Artéria Carótida Interna , Tomografia por Emissão de Pósitrons , Humanos , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Artérias Carótidas/diagnóstico por imagem
17.
Methods Mol Biol ; 2785: 195-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427196

RESUMO

The recent progress in the development of in vivo biomarkers is rapidly changing how neurodegenerative diseases are conceptualized and diagnosed and how clinical trials are designed today. Alzheimer's disease (AD) - the most common neurodegenerative disorder - is characterized by a complex neuropathology involving the deposition of extracellular amyloid-ß (Aß) plaques and intracellular neurofibrillary tangles (NFTs) of hyperphosphorylated tau proteins, accompanied by the activation of glial cells, i.e., astrocytes and microglia, and neuroinflammatory response, leading to neurodegeneration and cognitive dysfunction. An increasing diversity of positron emission tomography (PET) imaging radiotracers is available to selectively target the different pathophysiological processes of AD. Along with the success of Aß PET and the more recent tau PET imaging, there is a great interest to develop PET tracers to image glial reactivity and neuroinflammation. While most research to date has focused on imaging microgliosis, there is an upsurge of interest in imaging reactive astrocytes in the AD continuum. There is increasing evidence that reactive astrocytes are morphologically and functionally heterogeneous, with different subtypes that express different markers and display various homeostatic or detrimental roles across disease stages. Therefore, multiple biomarkers are desirable to unravel the complex phenomenon of reactive astrocytosis. In the field of in vivo PET imaging in AD, the research concerning reactive astrocytes has predominantly focused on targeting monoamine oxidase B (MAO-B), most often using either 11C-deuterium-L-deprenyl (11C-DED) or 18F-SMBT-1 PET tracers. Additionally, imidazoline2 binding (I2BS) sites have been imaged using 11C-BU99008 PET. Recent studies in our group using 11C-DED PET imaging suggest that astrocytosis may be present from the early stages of disease development in AD. This chapter provides a detailed description of the practical approach used for the analysis of 11C-DED PET imaging data in a multitracer PET paradigm including 11C-Pittsburgh compound B (11C-PiB) and 18F-fluorodeoxyglucose (18F-FDG). The multitracer PET approach allows investigating the comparative regional and temporal patterns of in vivo brain astrocytosis, fibrillar Aß deposition, glucose metabolism, and brain structural changes. It may also contribute to understanding the potential role of novel plasma biomarkers of reactive astrocytes, in particular the glial fibrillary acidic protein (GFAP), at different stages of disease progression. This chapter attempts to stimulate further research in the field, including the development of novel PET tracers that may allow visualizing different aspects of the complex astrocytic and microglial response in neurodegenerative diseases. Progress in the field will contribute to the incorporation of PET imaging of glial reactivity and neuroinflammation as biomarkers with clinical application and motivate further investigation on glial cells as therapeutic targets in AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Gliose , Humanos , Gliose/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Inflamação/metabolismo , Placa Amiloide/metabolismo , Biomarcadores/metabolismo
18.
J Transl Med ; 22(1): 187, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378655

RESUMO

BACKGROUND: The initial idea of functional tissue replacement has shifted to the concept that injected cells positively modulate myocardial healing by a non-specific immune response of the transplanted cells within the target tissue. This alleged local modification of the scar requires assessment of regional properties of the left ventricular wall in addition to commonly applied measures of global morphological and functional parameters. Hence, we aimed at investigating the effect of cardiac cell therapy with cardiovascular progenitor cells, so-called cardiac induced cells, on both global and regional properties of the left ventricle by a multimodal imaging approach in a mouse model. METHODS: Myocardial infarction was induced in mice by ligation of the left anterior descending artery, the therapy group received an intramyocardial injection of 1 × 106 cardiac induced cells suspended in matrigel, the control group received matrigel only. [18F]FDG positron emission tomography imaging was performed after 17 days, to assess regional glucose metabolism. Three weeks after myocardial infarction, cardiac magnetic resonance imaging was performed for morphological and functional assessment of the left ventricle. Following these measurements, hearts were excised for histological examinations. RESULTS: Cell therapy had no significant effect on global morphological parameters. Similarly, there was no difference in scar size and capillary density between therapy and control group. However, there was a significant improvement in contractile function of the left ventricle - left ventricular ejection fraction, stroke volume and cardiac output. Regional analysis of the left ventricle identified changes of wall properties in the scar area as the putative mechanism. Cell therapy reduced the thinning of the scar and significantly improved its radial contractility. Furthermore, the metabolic defect, assessed by [18F]FDG, was significantly reduced by the cell therapy. CONCLUSION: Our data support the relevance of extending the assessment of global left ventricular parameters by a structured regional wall analysis for the evaluation of therapies targeting at modulation of healing myocardium. This approach will enable a deeper understanding of mechanisms underlying the effect of experimental regenerative therapies, thus paving the way for a successful translation into clinical application.


Assuntos
Fluordesoxiglucose F18 , Infarto do Miocárdio , Animais , Camundongos , Volume Sistólico , Fluordesoxiglucose F18/metabolismo , Cicatriz/patologia , Função Ventricular Esquerda , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Miocárdio/patologia
19.
Clin Transl Med ; 14(2): e1550, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332687

RESUMO

BACKGROUND: Breast cancer is a metabolically heterogeneous disease, and although the concept of heterogeneous cancer metabolism is known, its precise role in human breast cancer is yet to be fully elucidated. METHODS: We investigated in an explorative approach a cohort of 42 primary mamma carcinoma patients with positron emission tomography/magnetic resonance imaging (PET/MR) prior to surgery, followed by histopathology and molecular diagnosis. From a subset of patients, which showed high metabolic heterogeneity based on tracer uptake and pathology classification, tumour centre and periphery specimen tissue samples were further investigated by a targeted breast cancer gene expression panel and quantitative metabolomics by nuclear magnetic resonance (NMR) spectroscopy. All data were analysed in a combinatory approach. RESULTS: [18 F]FDG (2-deoxy-2-[fluorine-18]fluoro-d-glucose) tracer uptake confirmed dominance of glucose metabolism in the breast tumour centre, with lower levels in the periphery. Additionally, we observed differences in lipid and proliferation related genes between luminal A and B subtypes in the centre and periphery. Tumour periphery showed elevated acetate levels and enrichment in lipid metabolic pathways genes especially in luminal B. Furthermore, serine was increased in the periphery and higher expression of thymidylate synthase (TYMS) indicated one-carbon metabolism increased in tumour periphery. The overall metabolic activity based on [18 F]FDG uptake of luminal B subtype was higher than that of luminal A and the difference between the periphery and centre increased with tumour grade. CONCLUSION: Our analysis indicates variations in metabolism among different breast cancer subtypes and sampling locations which details the heterogeneity of the breast tumours. Correlation analysis of [18 F]FDG tracer uptake, transcriptome and tumour metabolites like acetate and serine facilitate the search for new candidates for metabolic tracers and permit distinguishing luminal A and B. This knowledge may help to differentiate subtypes preclinically or to provide patients guide for neoadjuvant therapy and optimised surgical protocols based on individual tumour metabolism.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fluordesoxiglucose F18/metabolismo , Perfilação da Expressão Gênica , Acetatos , Serina , Lipídeos
20.
Arq Bras Cardiol ; 121(2): e20230276, 2024.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38422307

RESUMO

The objective of this case report was to present the progression of chemotherapy-induced cardiotoxicity in a patient with lymphoma, highlighting the importance of myocardial fluor-18-fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography coupled with computed tomography (PET/CT). 43-year-old female patient with uterine lymphoma, who underwent hysterectomy followed by three chemotherapy regimens and radiotherapy. The patient had episodes of acute heart failure two years after chemotherapy. Echocardiogram revealed a reduction in left ventricular ejection fraction (LVEF). A retrospective analysis of 18F-FDG PET/CT showed an increase in myocardial uptake in all tests performed during oncologic treatment. Despite disease remission, the patient developed heart failure with reduced LVEF. During chemotherapy, there was a diffuse, significant increase in myocardial 18F-FDG uptake, which preceded the decrease in myocardial performance and seemed to reflect metabolic changes in cardiomyocytes, related to cardiotoxicity. Would an analysis of myocardial 18F-FDG uptake yield a different cardiac outcome in this patient? This question is relevant, considering that other patients may benefit from the use of PET as an early marker of cardiotoxicity. Imaging tests are essential in the follow-up of patients at risk of cardiotoxicity. Although echocardiography remains the main imaging test in the diagnosis of cardiotoxicity, 18F-FDG PET/CT may be a powerful tool for the early diagnosis of this condition.


O objetivo deste relato é mostrar a evolução da cardiotoxicidade (CTX) por quimioterápicos em paciente com linfoma por exames de imagens, destacando a importância da captação miocárdica de flúor-18 fluordeoxiglicose (18F-FDG) pela tomografia por emissão de pósitrons, acoplada à tomografia computadorizada (PET/CT). Feminino, 43 anos, com linfoma uterino, submetida a histerectomia, três esquemas de quimioterapia (QT), sucessivamente, e radioterapia. Apresentou episódios de insuficiência cardíaca aguda dois anos após QT. Ecocardiograma mostrou redução da fração de ejeção do ventrículo esquerdo (FEVE). Análise retrospectiva do 18F-FDG PET/CT observou elevação da captação miocárdica em todos os exames durante o seguimento oncológico. Apesar da remissão oncológica, a paciente desenvolveu IC com FEVE reduzida. Durante a QT, ocorreu aumento difuso e significativo da captação miocárdica de 18F-FDG, que precedeu a queda do desempenho cardíaco, e pareceu refletir alterações metabólicas nos cardiomiócitos relacionadas à CTX. A análise da captação miocárdica de 18F-FDG modificaria o desfecho cardiológico da paciente? Esse questionamento é relevante, visto que outros pacientes podem se beneficiar desse método como marcador precoce de CTX. Os exames de imagem são imprescindíveis no acompanhamento de pacientes com risco de CTX. O ecocardiograma permanece como principal auxílio diagnóstico, porém o 18F-FDG PET/CT pode estar surgindo como uma poderosa ferramenta para um diagnóstico mais precoce dessa condição clínica.


Assuntos
Insuficiência Cardíaca , Linfoma , Feminino , Humanos , Adulto , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Cardiotoxicidade/diagnóstico por imagem , Cardiotoxicidade/etiologia , Volume Sistólico , Estudos Retrospectivos , Função Ventricular Esquerda , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...