Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
ACS Nano ; 18(25): 16166-16183, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38867485

RESUMO

In the harsh gastrointestinal tract, helical bacteria with hierarchical chiral architectures possess strong abilities. Taking inspirations from nature, we developed a multichiral mesoporous silica nanoscrew (L/D-MCNS) as an efficient oral drug delivery platform by modifying the structural chiral silica nanoscrew (CNS) with L/D-alanine (L/D-Ala) enantiomers via the sequential application of a chiral template and postmodification strategies. We demonstrated that L-MCNS showed differential biological behaviors and superior advantages in oral adsorption compared to those of CNS, D-MCNS, and DL-MCNS. During the delivery, helical L/D-MCNS presenting distinctive topological structures, including small section area, large rough external surface, and a screw-like body, displayed multiple superiorities in mucus diffusion and mucosal adhesion. Meanwhile, the grafted chiral enantiomers enabled positive or negative chiral recognition with the biosystems. Once racemic flurbiprofen (FP) was encapsulated into the nanopores of L/D-MCNS (FP@L/D-MCNS), L/D-MCNS providing highly cross-linked and mesoscopic chiral nanochannels was beneficial for controlling the drug loading/release kinetics with chiral microenvironment sensitivity. Particularly, we noticed enantioselective absorption of FP in vivo, which could be attributed to the differential biological behaviors of L/D-MCNS. By simple design and regulation of the multilevel chirality of nanocarriers, L/D-MCNS can be employed for efficient oral drug delivery from the perspectives of material science, pharmacy, and bionics.


Assuntos
Sistemas de Liberação de Medicamentos , Dióxido de Silício , Dióxido de Silício/química , Administração Oral , Porosidade , Animais , Humanos , Muco/metabolismo , Muco/química , Flurbiprofeno/química , Flurbiprofeno/administração & dosagem , Flurbiprofeno/farmacocinética , Portadores de Fármacos/química , Estereoisomerismo , Tamanho da Partícula , Propriedades de Superfície
2.
ACS Nano ; 18(20): 13117-13129, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727027

RESUMO

The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.


Assuntos
Flurbiprofeno , Osteoartrite , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Flurbiprofeno/química , Flurbiprofeno/administração & dosagem , Flurbiprofeno/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Portadores de Fármacos/química , Lubrificação , Liberação Controlada de Fármacos , Camundongos , Masculino , Anilidas
3.
Analyst ; 149(11): 3204-3213, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38655746

RESUMO

Controlling the enantiomeric purity of chiral drugs is of paramount importance in pharmaceutical chemistry. Isotropic 1H NMR spectroscopy involving chiral agents is a widely used method for discriminating enantiomers and quantifying their relative proportions. However, the relatively weak spectral separation of enantiomers (1H Δδiso(R, S)) in frequency units at low and moderate magnetic fields, as well as the lack of versatility of a majority of those agents with respect to different chemical functions, may limit the general use of this approach. In this article, we investigate the analytical potential of 19F NMR in anisotropic chiral media for the enantiomeric analysis of fluorinated active pharmaceutical ingredients (API) via two residual anisotropic NMR interactions: the chemical shift anisotropy (19F-RCSA) and dipolar coupling ((19F-19F)-RDC). Lyotropic chiral liquid crystals (CLC) based on poly-γ-benzyl-L-glutamate (PBLG) show an interesting versatility and adaptability to enantiodiscrimination as illustrated for two chiral drugs, Flurbiprofen® (FLU) and Efavirenz® (EFA), which have very different chemical functions. The approach has been tested on a routine 300 MHz NMR spectrometer equipped with a standard probe (5 mm BBFO probe) in a high-throughput context (i.e., ≈10 s of NMR experiments) while the performance for enantiomeric excess (ee) measurement is evaluated in terms of trueness and precision. The limits of detection (LOD) determined were 0.17 and 0.16 µmol ml-1 for FLU and EFA, respectively, allow working in dilute conditions even with such a short experimental duration. The enantiodiscrimination capabilities are also discussed with respect to experimental features such as CLC composition and temperature.


Assuntos
Flúor , Espectroscopia de Ressonância Magnética , Estereoisomerismo , Espectroscopia de Ressonância Magnética/métodos , Anisotropia , Preparações Farmacêuticas/química , Preparações Farmacêuticas/análise , Flúor/química , Halogenação , Flurbiprofeno/química , Flurbiprofeno/análise , Cristais Líquidos/química , Princípios Ativos
4.
ChemistryOpen ; 13(6): e202300262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38214691

RESUMO

Drugs that are poorly soluble in water are difficult to absorb orally, resulting in low bioavailability. Flurbiprofen (FLU) is an arylpropionic acid nonsteroidal anti-inflammatory drug belonging to BCS class II, with low water solubility. In this study, a novel flurbiprofen-ethylenediamine salt (FLU-EDA) was successfully prepared via solvent crystallization. Its crystal structure was determined via single-crystal X-ray diffraction (SXRD). Further, the physicochemical properties of FLU-EDA salt were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR). The solubility and intrinsic dissolution rate (IDR) of FLU-EDA salt in water were investigated. The results showed that compared with FLU, the solubility and IDR of FLU-EDA salt increased by 57-fold and 32-fold, respectively. This indicates that FLU-EDA salt can significantly enhance the solubility and dissolution rate of flurbiprofen in water. This study provides basic data and theory for the development of new formulations of flurbiprofen.


Assuntos
Etilenodiaminas , Flurbiprofeno , Solubilidade , Flurbiprofeno/química , Etilenodiaminas/química , Anti-Inflamatórios não Esteroides/química , Sais/química , Água/química , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria , Difração de Raios X , Cristalografia por Raios X
5.
Int J Biol Macromol ; 253(Pt 4): 126928, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37717875

RESUMO

Flurbiprofen (FP) is one of the non-steroidal anti-inflammatory drugs (NSAIDs) commonly used to treat arthritic conditions. FP has two enantiomers: S-FP and R-FP. S-FP has potent anti-inflammatory effects, while R-FP has nearly no such effects. Herein, molecularly imprinted microparticles produced from hydrazidine-cellulose (CHD) biopolymer for the preferential uptake of S-FP and chiral resolution of (±)-FP were developed. First, cyanoethylcellulose (CECN) was synthesized, and the -CN units were transformed into hydrazidine groups. The developed CHD was subsequently shaped into microparticles and ionically interacted with the S-FP enantiomer. The particles were then imprinted after being cross-linked with glutaraldehyde, and then the S-FP was removed to provide the S-FP enantio-selective sorbent (S-FPCHD). After characterization, the optimal removal settings for the S- and R-FP enantiomers were determined. The results indicated a capacity of 125 mg/g under the optimum pH range of 5-7. Also, S-FPCHD displayed a noticeable affinity toward S-FP with a 12-fold increase compared to the R-FP enantiomer. The chiral resolution of the (±)-FP was successfully attempted using separation columns, and the outlet sample of the loading solution displayed an enantiomeric excess (ee) of 93 % related to the R-FP, while the eluent solution displayed an ee value of 95 % related to the S-FP.


Assuntos
Flurbiprofeno , Flurbiprofeno/química , Anti-Inflamatórios não Esteroides , Celulose , Estereoisomerismo
6.
Bioorg Chem ; 141: 106847, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37722268

RESUMO

The anti-inflammatory and analgesic drugs currently used are associated with several adverse effects and found to be highly unsafe for long-term use. Currently, nineteen novel bis-Schiff base derivatives (1-19) of flurbiprofen have been designed, prepared and assessed for in-vivo analgesic, anti-inflammatory and in vivo acute toxicity evaluation. The structures of the acquired compounds were deduced through modern spectroscopic techniques including HR-ESI-MS, 13C-, and 1H NMR. Amongst the series, compounds 7, 9, and 10 attributed potent activities with 93.89, 92.50, and 90.47% decreased edema, respectively compared to flurbiprofen (90.01%), however, compounds 11 and 15 exhibited significant activity of 90.00% decrease. Out of them, fourteen compounds (1-6, 8, 12-14, and 16-19) displayed good activity in the range of 68.96-86.95%. In case of an analgesic study, all the derivatives significantly (p 0.001) increased the pain threshold time particularly compound 7 had the best analgesic effect (24 ± 2.08 s) in comparison with flurbiprofen (21.66 ± 2.02 s) using hot plate test. Similarly, in the acetic acid-induced writhing test, compound 7 determined a potent inhibitory effect (60.47 %) close to flurbiprofen (59.28%). All the synthesized derivatives were found safe up to the dose of 30 mg/kg, in acute toxicity study. On a molecular scale, the synthesized compounds were modeled through a ligand-based pharmacophore study and molecular docking to have insight into the different possible interactions leading to high inhibition levels against the COX-2 enzyme.


Assuntos
Flurbiprofeno , Humanos , Flurbiprofeno/farmacologia , Flurbiprofeno/química , Inibidores de Ciclo-Oxigenase/farmacologia , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2 , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Anti-Inflamatórios/química , Edema/induzido quimicamente , Edema/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Carragenina
7.
Int J Biol Macromol ; 246: 125627, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406912

RESUMO

The use of natural polymeric nanoparticles (Nps) as drug carriers is a highly promising area of research in the field of drug delivery systems because of their high efficiency. In this study, flurbiprofen (FB) loaded chitosan-graphene oxide (CS-GO) blend Nps were synthesized as a controlled delivery system using the emulsion method. The crystalline, molecular, and morphological structures of the prepared CS-GO Nps were characterized using a variety of analytical methods, including Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-Ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was found that the introduction of GO into the CS nanoparticle formulation increased its thermal stability. The range of the average particle size was between 362 ± 5.06 and 718 ± 2.21 nm, with negative zeta potential values between -7.67 ± 4.16 and - 27.93 ± 2.26 mV. The effects of the CS/GO ratio, the FB/polymer ratio, the amount of span 80, and the cross-linker concentration were assessed on FB release profiles. In vitro release studies displayed a two-stage release behaviour with a fast initial release of the FB, followed by sustained and extended release, and the incorporation of GO into the CS Nps made the FB release more sustained and controlled manner. Besides, the cytotoxicity test of the FB-loaded CS-GO Nps was studied through MTT assay, and it was found that they were biocompatible. Based on these findings, it can be inferred that the prepared CS-GO Nps might be a promising candidate drug carrier system for FB.


Assuntos
Quitosana , Flurbiprofeno , Nanopartículas , Flurbiprofeno/química , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Portadores de Fármacos/química , Polímeros , Nanopartículas/química , Tamanho da Partícula
8.
Drug Deliv Transl Res ; 13(12): 3204-3222, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458973

RESUMO

Developing amorphous solid dispersions with good flow properties is always challenging for formulation scientists to convert into tablets. Hence, the present study investigates the impact of the combination of melt-dispersion and surface-adsorption methods to prepare melt-dispersion granules with enhanced dissolution rate and flow properties. This study covers the formulation and pharmacokinetic study of fast-dissolving flurbiprofen tablets using PEG 6000 (hydrophilic carrier) and lactose (adsorbent). Response surface methodology (RSM) using the central composite design (CCD) was used to optimize independent variables like carrier concentrations and adsorbent concentrations, and their interactions with the dependent variables (responses), including solubility, angle of repose, Carr's index, and cumulative % drug release, were investigated. The optimized formulation was selected based on the numerical optimization method and further investigated for FTIR spectroscopy, differential scanning calorimetry, and X-ray diffractometry. Then, the optimized formulation was compressed into tablets and evaluated for both in vitro dissolution and in vivo pharmacokinetics parameters. In vitro dissolution studies revealed that the prepared fast-dissolving tablets released the drug entirely within 15 min (Q15 of F4 tablets: 99.34 ± 1.24%), whereas conventional tablets took around 60 min for complete dissolution. Pharmacokinetic studies in rats revealed that fast-dissolving tablets showed 1.38-fold higher peak-plasma concentration (Cmax) and 1.39-fold higher bioavailability than conventional tablets. Overall, this study revealed the successful fabrication of fast-dissolving tablets via melt-dispersion paired with the surface-adsorption method to enhance the flow properties and the dissolution rate.


Assuntos
Flurbiprofeno , Ratos , Animais , Flurbiprofeno/química , Adsorção , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Solubilidade , Comprimidos/química , Varredura Diferencial de Calorimetria
9.
Phys Chem Chem Phys ; 25(23): 16148-16156, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37279011

RESUMO

The interaction dynamics between flurbiprofen (FBP) and tryptophan (Trp) has been studied in covalently linked dyads and within human serum albumin (HSA) by means of fluorescence and ultrafast transient absorption spectroscopy. The dyads have proven to be excellent models to investigate photoinduced processes such as energy and/or electron transfer that may occur in proteins and other biological media. Since the relative spatial arrangement of the interacting units may affect the yield and kinetics of the photoinduced processes, two spacers consisting of amino and carboxylic groups separated by a cyclic or a long linear hydrocarbon chain (1 and 2, respectively) have been used to link the (S)- or (R)-FBP with the (S)-Trp moieties. The main feature observed in the dyads was a strong intramolecular quenching of the fluorescence, which was more important for the (S,S)- than for the (R,S)- diastereomer in dyads 1, whereas the reverse was true for dyads 2. This was consistent with the results obtained by simple molecular modelling (PM3). The observed stereodifferentiation in (S,S)-1 and (R,S)-1 arises from the deactivation of 1Trp*, while in (S,S)-2 and (R,S)-2 it is associated with 1FBP*. The mechanistic nature of 1FBP* quenching is ascribed to energy transfer, while for 1Trp* it is attributed to electron transfer and/or exciplex formation. These results are consistent with those obtained by ultrafast transient absorption spectroscopy, where 1FBP* was detected as a band with a maximum at ca. 425 nm and a shoulder at ∼375 nm, whereas Trp did not give rise to any noticeable transient. Interestingly, similar photoprocesses were observed in the dyads and in the supramolecular FBP@HSA complexes. Overall, these results may aid to gain a deeper understanding of the photoinduced processes occurring in protein-bound drugs, which may shed light on the mechanistic pathways involved in photobiological damage.


Assuntos
Flurbiprofeno , Humanos , Flurbiprofeno/química , Flurbiprofeno/metabolismo , Triptofano/química , Albumina Sérica Humana , Modelos Moleculares
10.
Mol Pharm ; 19(1): 26-34, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905926

RESUMO

The molecular basis of adhesion leading to sticking was investigated by exploring the correlation between thermal analysis and molecular simulations. It is hypothesized that intermolecular interactions between a drug molecule and a punch face are the first step in the adhesion process and the rank order of adhesion during tablet compression should correspond to the rank order of the energies of these interactions. In the present study, the sticking propensity was investigated using ibuprofen, flurbiprofen, and ketoprofen as model substances. At the intermolecular level, a thermal analysis model was proposed as an experimental technique to estimate the work of adhesion between ibuprofen, flurbiprofen, and ketoprofen in a DSC aluminum pan. The linear relationship was established between the enthalpy of vaporization and sample mass to demonstrate the accuracy of the instruments used. The threshold mass for ibuprofen, flurbiprofen, and ketoprofen was determined to be 107, 112, and 222 µg, respectively, after three replicate measurements consistent with the experimental results. Ketoprofen showed a 2-fold higher threshold mass compared to ibuprofen and flurbiprofen, which predicts that ketoprofen should have the highest sticking propensity. Computationally, the rank order of the work of adhesion between ibuprofen, flurbiprofen, and ketoprofen with the metal surface was simulated to be -75.91, 44.75, and -96.91 kcal/mol, respectively, using Materials Studio. The rank order of the interaction between the drug molecule and the iron superlattice decreases in the order ketoprofen > ibuprofen > flurbiprofen. The results indicate that the thermal model can be successfully implemented to assess the sticking propensity of a drug at the molecular level. Also, a new molecular simulation script was successfully applied to determine the interaction energy of the drug molecule upon contact with iron.


Assuntos
Comprimidos/química , Adesividade , Varredura Diferencial de Calorimetria , Força Compressiva , Flurbiprofeno/química , Ibuprofeno/química , Cetoprofeno/química , Modelos Moleculares
11.
Dalton Trans ; 51(3): 857-869, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877948

RESUMO

For the development of anticancer drugs with higher activity and reduced toxicity, two approaches were combined: preparation of platinum(IV) complexes exhibiting higher stability compared to their platinum(II) counterparts and loading them into mesoporous silica SBA-15 with the aim to utilise the passive enhanced permeability and retention (EPR) effect of nanoparticles for accumulation in tumour tissues. Three conjugates based on a cisplatin scaffold bearing the anti-inflammatory drugs naproxen, ibuprofen or flurbiprofen in the axial positions (1, 2 and 3, respectively) were synthesised and loaded into SBA-15 to afford the mesoporous silica nanoparticles (MSNs) SBA-15|1, SBA-15|2 and SBA-15|3. Superior antiproliferative activity of both free and immobilised conjugates in a panel of four breast cancer cell lines (MDA-MB-468, HCC1937, MCF-7 and BT-474) with markedly increased cytotoxicity with respect to cisplatin was demonstrated. All compounds exhibit highest activity against the triple-negative cell line MDA-MB-468, with conjugate 1 being the most potent. However, against MCF-7 and BT-474 cell lines, the most notable improvement was found, with IC50 values up to 240-fold lower than cisplatin. Flow cytometry assays clearly show that all compounds induce apoptotic cell death elevating the levels of both early and late apoptotic cells. Furthermore, autophagy as well as formation of reactive oxygen species (ROS) and nitric oxide (NO) were elevated to a similar or greater extent than with cisplatin.


Assuntos
Cisplatino/farmacologia , Flurbiprofeno/farmacologia , Ibuprofeno/farmacologia , Naproxeno/farmacologia , Dióxido de Silício/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Flurbiprofeno/química , Humanos , Ibuprofeno/química , Estrutura Molecular , Naproxeno/química , Platina/química
12.
Carbohydr Polym ; 277: 118889, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893291

RESUMO

Anterior uveitis is a sight-threatening inflammation inside the eyes. Conventional eye drops for anti-inflammatory therapy need to be administered frequently owing to the rapid elimination and corneal barrier. To address these issues, polypseudorotaxane hydrogels were developed by mixing Soluplus micelles (99.4 nm) and cyclodextrins solution. The optimized hydrogels exhibited shear-thinning and sustained release properties. The hydrogels exhibited higher transcorneal permeability coefficient (Papp, 1.84 folds) than that of drug solutions. Moreover, animal study indicated that the hydrogels significantly increased the precorneal retention (AUC, 21.2 folds) and intraocular bioavailability of flurbiprofen (AUCAqueous humor, 17.8 folds) in comparison with drug solutions. Importantly, the hydrogels obviously boosted anti-inflammatory efficacy in rabbit model of endotoxin-induced uveitis at a reduced administration frequency. Additionally, the safety of hydrogels was confirmed by cytotoxicity and ocular irritation studies. In all, the present study demonstrates a friendly non-invasive strategy based on γ-CD-based polypseudorotaxane hydrogels for ocular drug delivery.


Assuntos
Ciclodextrinas/uso terapêutico , Flurbiprofeno/uso terapêutico , Hidrogéis/uso terapêutico , Soluções Oftálmicas/uso terapêutico , Poloxâmero/uso terapêutico , Rotaxanos/uso terapêutico , Uveíte Anterior/tratamento farmacológico , gama-Ciclodextrinas/uso terapêutico , Administração Oftálmica , Animais , Ciclodextrinas/administração & dosagem , Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Flurbiprofeno/administração & dosagem , Flurbiprofeno/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/química , Poloxâmero/administração & dosagem , Poloxâmero/química , Coelhos , Rotaxanos/administração & dosagem , Rotaxanos/química , gama-Ciclodextrinas/administração & dosagem , gama-Ciclodextrinas/química
13.
Org Biomol Chem ; 19(45): 9906-9909, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34734958

RESUMO

The copper-catalyzed substitution reaction of diethyl phosphate derived from TMSCCCH(OH)CH2CH2OTBDPS with 3-c-C5H9-4-MeOC6H3MgBr, followed by several transformations, afforded a tumor necrosis factor inhibitor possessing a Ph-acetylene moiety. The inhibitor was also synthesized from phenylacetylene phosphate PhCCCH(OP(O)(OEt)2)CH2CH2OTBDPS. Furthermore, the substitution of phosphates derived from TMSCCCH(OH)CH3 and TMSCCCH(OH)-i-Pr with 3-F-4-PhC6H3MgBr gave the corresponding substitution products, which were transformed to flurbiprofen and its i-Pr analogue, respectively. The copper-catalyzed substitutions in these syntheses proceeded in a regio- and stereoselective manner.


Assuntos
Alcinos/química , Cobre/química , Flurbiprofeno/síntese química , Indicadores e Reagentes/química , Propanóis/química , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Catálise , Flurbiprofeno/química , Flurbiprofeno/farmacologia , Estereoisomerismo
14.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064783

RESUMO

All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer's disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-ß (Aß) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbiprofen (tarenflurbil) was studied in this regard but failed to show significant improvement in AD patients in a phase 3 clinical trial. This was mainly attributed to its low ability to cross the blood-brain barrier (BBB). Here, we present the synthesis and in vitro evaluation of a racemic meta-carborane analogue of flurbiprofen. By introducing the carborane moiety, the hydrophobicity could be shifted into a more favourable range for the penetration of the blood-brain barrier, evident by a logD7.4 value of 2.0. Furthermore, our analogue retained γ-secretase modulator activity in comparison to racemic flurbiprofen in a cell-based assay. These findings demonstrate the potential of carboranes as phenyl mimetics also in AD research.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Compostos de Boro/farmacologia , Flurbiprofeno/análogos & derivados , Compostos de Boro/síntese química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase/farmacologia , Flurbiprofeno/química , Humanos , Concentração Inibidora 50
15.
J Enzyme Inhib Med Chem ; 36(1): 940-953, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33896320

RESUMO

Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds.


Assuntos
Amidas/farmacologia , Amidoidrolases/antagonistas & inibidores , Analgésicos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores Enzimáticos/farmacologia , Flurbiprofeno/farmacologia , Amidas/síntese química , Amidas/química , Amidoidrolases/metabolismo , Analgésicos/síntese química , Analgésicos/química , Animais , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flurbiprofeno/síntese química , Flurbiprofeno/química , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Eletricidade Estática , Relação Estrutura-Atividade
16.
Eur J Pharm Biopharm ; 160: 23-34, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33484866

RESUMO

Over the last 30 years, hot melt extrusion has become a leading technology in the manufacture of amorphous drug delivery systems. Mostly applied as an 'enabling formulation' for poorly soluble compounds, application in the design of sustained-release formulations increasingly attracts the attention of the pharmaceutical industry. The drug candidate TMP-001 is currently under evaluation for the early treatment of Multiple Sclerosis. Although this weak acid falls into class II of the Biopharmaceutics Classification System, the compound exhibits high solubility in the upper intestine resulting in high peroral bioavailability. In the present studies, four different formulation prototypes varying in their sustained-release behavior were developed, using L-arginine as a pore-forming agent in concentrations ranging between 0 and 20%. Initially, biorelevant release testing was applied to assess the dissolution behavior of the prototypes. For these formulations, a total drug release of 44.7%, 64.6%, 75%, and 90.5% was achieved in FaSSIF-v2 after 24 h. Two candidates were selected for further characterization considering the crystal structure and the physical stability of the amorphous state of TMP-001 in the formulations together with the release behavior in Level II biorelevant media. Our findings indicate L-arginine as a valuable excipient in the formulation of hot melt extrudates, as its presence led to a considerable stabilization of the amorphous state and favorably impacted the milling process and release behavior of TMP-001. To properly evaluate the proposed formulations and the importance of colonic dissolution and absorption on the overall bioavailability, a physiologically-based biopharmaceutics model was used.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Flurbiprofeno/farmacocinética , Modelos Biológicos , Administração Oral , Arginina/química , Disponibilidade Biológica , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Flurbiprofeno/administração & dosagem , Flurbiprofeno/química , Humanos , Esclerose Múltipla/tratamento farmacológico , Ácidos Polimetacrílicos/química , Solubilidade , Difração de Raios X
17.
Molecules ; 25(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731527

RESUMO

A flexible two-step, one-pot procedure was developed to synthesize 2-aryl propionic acids including the anti-inflammatory drugs naproxen and flurbiprofen. Optimal results were obtained in the presence of the novel ligand neoisopinocampheyldiphenylphosphine (NISPCPP) (9) which enabled the efficient sequential palladium-catalyzed Heck coupling of aryl bromides with ethylene and hydroxycarbonylation of the resulting styrenes to 2-aryl propionic acids. This cascade transformation leads with high regioselectivity to the desired products in good yields and avoids the need for additional purification steps.


Assuntos
Flurbiprofeno , Naproxeno , Paládio/química , Catálise , Flurbiprofeno/síntese química , Flurbiprofeno/química , Naproxeno/síntese química , Naproxeno/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-32361467

RESUMO

Antibody-Drug Conjugates (ADCs) consist of antibodies attached to cytotoxic small molecules or biological agents (i.e., payloads) through chemical linkers which may be cleavable or non-cleavable. The development of new ADCs is challenging, particularly the process of attaching the linker-payload construct to the antibody (i.e., the conjugation process). One of the major problems associated with conjugation is high hydrophobicity of the payload which can lead to low yields of the ADC through aggregation and/or lower than desired Drug-Antibody Ratios (DARs). We report here a UPLC-based assay that can be used to study the physicochemical properties of ADC payloads at an early stage of development, and to provide information on whether the hydrophilic-hydrophobic balance is suitable for conjugation or further physicochemical optimization is required. The assay is relatively simple to establish and should be of use to those working in the ADC area.


Assuntos
Bioensaio/métodos , Imunoconjugados/química , Espectrometria de Massas em Tandem/métodos , Calicheamicinas/química , Cromatografia Líquida de Alta Pressão , Doxorrubicina/química , Flurbiprofeno/química , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Irinotecano/química , Cetoprofeno/química , Maitansina/química , Conformação Molecular , Norfloxacino/química , Pentaclorofenol/química , Multimerização Proteica , Relação Estrutura-Atividade , Tolnaftato/química
19.
Drug Deliv ; 27(1): 723-735, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32397753

RESUMO

In order to devise more effective penetration enhancers, 4-O-acylterpineol derivatives which were expected to be hydrolyzed into nontoxic metabolites by esterase in the living epidermis, were synthesized from 4-terpineol (4-TER) enantiomers and straight chain fatty acids. Their promoting activities on the SR-flurbiprofen and its enantiomers were tested across full-thickness rabbit skin, as well as to correlate under in vitro and in vivo conditions. The permeation studies indicated that both d-4-O-acylterpineol and l-4-O-acylterpineol had significant enhancing effects, interestingly, d-4-O-aclyterpineol had higher enhancing effects than l-4-O-aclyterpineol with the exception of d-4-methyl-1-(1-methylethyl)-3-cyclohexen-1-yl octadec-9-enoate (d-4-T-dC18). The mechanism of 4-O-acylterpineol facilitating the drug penetration across the skin was confirmed by Attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR) and molecular simulation. The mechanism of penetration enhancers promoting drug release was explored by the in vitro release experiment. Finally, a relative safety skin irritation of enhancers was also investigated by in vivo histological evaluation. The present research suggested that d-4-O-aclyterpineol and l-4-O-aclyterpineol could significantly promote the penetration of SR-flurbiprofen and its enantiomers both in vitro and in vivo, with the superiorities of high flux and low dermal toxicity.


Assuntos
Adjuvantes Farmacêuticos/química , Sistemas de Liberação de Medicamentos/métodos , Flurbiprofeno/administração & dosagem , Absorção Cutânea/efeitos dos fármacos , Pele/efeitos dos fármacos , Adjuvantes Farmacêuticos/síntese química , Adjuvantes Farmacêuticos/farmacologia , Administração Cutânea , Animais , Liberação Controlada de Fármacos , Flurbiprofeno/química , Flurbiprofeno/farmacocinética , Masculino , Coelhos , Pele/metabolismo , Solubilidade , Estereoisomerismo , Adesivo Transdérmico
20.
Biochem Pharmacol ; 178: 114042, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445869

RESUMO

Small molecules targeting the PD-1/PD-L1 immune checkpoint are actively searched to offer anticancer oral treatment modalities. Different small molecules have been designed, such as BMS-202 and BMS-1166 which potently bind to PD-L1, sequestering the protein dimer and thus preventing cancer cells to escape antitumor immune responses. A (top â†’ down) deconvolution of BMS compounds has characterized their central biphenyl unit as the minimal element required for PD-L1 protein binding. On this basis, we searched for approved drugs containing a similar biphenyl unit and endowed with immune modulatory activities. We identified the biphenyl anti-inflammatory drug flurbiprofen (FLB) as a potential candidate for PD-L1 interaction, and then proposed a (bottom â†’ up) convolution to select similar molecules, used in Human, susceptible to engage stable interactions with PD-L1. The hypothesis was tested by molecular modeling using the crystal structure of BMS-202 bound to the PD-L1 dimer. The calculations suggest that both (R) and (S) isomers of FLB can form stable complexes with PD-L1, penetrating deep into the cylindric pocket at the interface of the protein dimer. However, the potential energy of interaction (ΔE) is reduced by ~40% for FLB compared to BMS compounds. Then, we identified three FLB analogues (diflunisal, CHF-5074 and HCT1026) forming stable complexes with PD-L1. The longer FLB derivative HCT1026 appears as a suitable binder of the PD-L1 dimer, sliding well along the BMS binding cavity. Our approach proposes a new strategy to discover PD-L1-binding small molecules and raises the intriguing possibility that FLB can bind transiently to PD-L1, thus possibly explaining some of its biological effects. Our study opens new perspectives for the use of FLB (and analogs) as an immune modulator in oncology and other therapeutic domains.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Antígeno B7-H1/metabolismo , Compostos de Bifenilo/metabolismo , Flurbiprofeno/metabolismo , Multimerização Proteica/fisiologia , Animais , Anti-Inflamatórios não Esteroides/química , Antígeno B7-H1/química , Compostos de Bifenilo/química , Flurbiprofeno/química , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...