Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.180
Filtrar
1.
BMC Plant Biol ; 24(1): 677, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39014327

RESUMO

Climate change is predicted to increase the occurrence of extreme weather events such as heatwaves, which may thereby impact the outcome of plant-herbivore interactions. While elevated temperature is known to directly affect herbivore growth, it remains largely unclear if it indirectly influences herbivore performance by affecting the host plant they feed on. In this study, we investigated how transient exposure to high temperature influences plant herbivory-induced defenses at the transcript and metabolic level. To this end, we studied the interaction between potato (Solanum tuberosum) plants and the larvae of the potato tuber moth (Phthorimaea operculella) under different temperature regimes. We found that P. operculella larvae grew heavier on leaves co-stressed by high temperature and insect herbivory than on leaves pre-stressed by herbivory alone. We also observed that high temperature treatments altered phylotranscriptomic patterns upon herbivory, which changed from an evolutionary hourglass pattern, in which transcriptomic responses at early and late time points after elicitation are more variable than the ones in the middle, to a vase pattern. Specifically, transcripts of many herbivory-induced genes in the early and late defense stage were suppressed by HT treatment, whereas those in the intermediate stage peaked earlier. Additionally, we observed that high temperature impaired the induction of jasmonates and defense compounds upon herbivory. Moreover, using jasmonate-reduced (JA-reduced, irAOC) and -elevated (JA-Ile-elevated, irCYP94B3s) potato plants, we showed that high temperature suppresses JA signaling mediated plant-induced defense to herbivore attack. Thus, our study provides evidences on how temperature reprograms plant-induced defense to herbivores.


Assuntos
Resposta ao Choque Térmico , Herbivoria , Larva , Mariposas , Solanum tuberosum , Solanum tuberosum/fisiologia , Solanum tuberosum/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Animais , Mariposas/fisiologia , Larva/fisiologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta/fisiologia , Folhas de Planta/parasitologia , Temperatura Alta , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Defesa das Plantas contra Herbivoria , Transcriptoma , Mudança Climática
2.
Braz J Biol ; 84: e278187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985058

RESUMO

Zatrephina lineata (Coleoptera: Chrysomelidae) is a phytophagous insect, mainly of plants of the genera Ipomoea and Mikania. The objective was to study the development, survival and to describe the life stages of Z. lineata fed on leaves of Ipomoea pes-caprae. Biological observations were made daily with the aid of a stereoscopic microscope and the instars of this insect identified by the exuvia left between one moulting and the next. The duration of development and survival of the egg, larva and pupa stages and the first, second, third, fourth and fifth instars and of the nymph stage of Z. lineata differed, but not between sexes of this insect. The duration of development of Z. lineata was longer in the larval stage and in the fifth instar, and its survival greater in the egg and pupa stages and in the first and fifth instars. Zatrephina lineata eggs, cream-colored, are ellipsoid and deposited in groups on the adaxial surface of older I. pes-caprae leaves. The larvae of this insect go through five instars, with the first three being gregarious with chemo-behavioral defenses. The exarated pupae of Z. lineata, light yellow in color and with an oval shape flattened dorsoventrally, attach to the abaxial surface of the I. pes-caprae leaves. The shape of adults of this insect is oval, straw yellow in color with lighter longitudinal stripes and females are slightly larger than males.


Assuntos
Besouros , Ipomoea , Larva , Folhas de Planta , Animais , Besouros/classificação , Besouros/crescimento & desenvolvimento , Masculino , Feminino , Folhas de Planta/parasitologia , Larva/crescimento & desenvolvimento , Ipomoea/parasitologia , Pupa/crescimento & desenvolvimento , Estágios do Ciclo de Vida/fisiologia
3.
Sci Rep ; 14(1): 15456, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965317

RESUMO

Medicinal plant microbiomes undergo selection due to secondary metabolite presence. Resident endophytic/epiphytic microorganisms directly influence plant's bioactive compound synthesis. Hypothesizing low microbial diversity in Serjania erecta leaves, we assessed leaf colonization by epiphytic and endophytic fungi. Given its traditional medicinal importance, we estimated diversity in the endophytic fungal microbiome. Analyses included scanning electron microscopy (SEM), isolation of cultivable species, and metagenomics. Epiphytic fungi interacted with S. erecta leaf tissues, horizontally transmitted via stomata/trichome bases, expressing traits for nematode trapping. Cultivable endophytic fungi, known for phytopathogenic habits, didn't induce dysbiosis symptoms. This study confirms low leaf microbiome diversity in S. erecta, with a tendency towards more fungal species, likely due to antibacterial secondary metabolite selection. The classification of Halicephalobus sp. sequence corroborated the presence of nematode eggs on the epidermal surface of S. erecta by SEM. In addition, we confirmed the presence of methanogenic archaea and a considerable number of methanotrophs of the genus Methylobacterium. The metagenomic study of endophytic fungi highlighted plant growth-promoting yeasts, mainly Malassezia, Leucosporidium, Meyerozyma, and Hannaella. Studying endophytic fungi and S. erecta microbiomes can elucidate their impact on beneficial bioactive compound production, on the other hand, it is possible that the bioactive compounds produced by this plant can recruit specific microorganisms, impacting the biological system.


Assuntos
Fungos , Microbiota , Nematoides , Folhas de Planta , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Animais , Nematoides/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Endófitos/genética , Endófitos/isolamento & purificação , Leveduras/classificação , Leveduras/isolamento & purificação , Leveduras/genética , Metagenômica/métodos , Biodiversidade
4.
PeerJ ; 12: e17680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993981

RESUMO

Morphological attributes and chemical composition of host plants shape growth and development of phytophagous insects via influences on their behavior and physiological processes. This research delves into the relationship between Eriogyna pyretorum and various host plants through studuying how feeding on different host tree species affect growth, development, and physiological enzyme activities. We examined E. pyretorum response to three distinct host plants: Camphora officinarum, Liquidambar formosana and Pterocarya stenoptera. Notably, larvae feeding on C. officinarum and L. formosana displayed accelerated development, increased pupal length, and higher survival rates compared to those on P. stenoptera. This underlines the pivotal role of host plant selection in shaping the E. pyretorum's life cycle. The activities of a-amylase, lipase and protective enzymes were the highest in larvae fed on the most suitable host L. formosana which indicated that the increase of these enzyme activities was closely related to growth and development. Furthermore, our investigation revealed a relationship between enzymatic activities and host plants. Digestive enzymes, protective enzymes, and detoxifying enzymes exhibited substantial variations contingent upon the ingested host plant. Moreover, the total phenolics content in the host plant leaves manifested a noteworthy positive correlation with catalase and lipase activities. In contrast, a marked negative correlation emerged with glutathione S-transferase and α-amylase activities. The total developmental duration of larvae exhibited a significant positive correlation with the activities of GST and CarE. The survival rate of larvae showed a significant positive correlation with CYP450. These observations underscore the insect's remarkable adaptability in orchestrating metabolic processes in accordance with available nutritional resources. This study highlights the interplay between E. pyretorum and its host plants, offering novel insights into how different vegetation types influence growth, development, and physiological responses. These findings contribute to a deeper comprehension of insect-plant interactions, with potential applications in pest management and ecological conservation.


Assuntos
Larva , Animais , Larva/crescimento & desenvolvimento , Larva/enzimologia , Folhas de Planta/parasitologia , Folhas de Planta/metabolismo , Mariposas/enzimologia , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia
5.
Braz J Biol ; 84: e281588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38896730

RESUMO

Terminalia argentea tree, native to Brazil, is widely used in landscaping, recovering degraded areas, its wood, coal production, and the bark or leaf extracts has medicinal use. Despite of its importance, the arthropod fauna associated to this plant and its interspecific relationships still needs further studies. The objectives of this study were to evaluate the arthropods, their ecological indices and the distribution in the leaf faces on T. argentea saplings. The numbers of phytophagous insects (e.g., Cephalocoema sp.), pollinators (e.g., Tetragonisca angustula), and natural enemies (e.g., Oxyopidae), and their ecological indices (e.g., species richness), were higher on the adaxial leaf faces on T. argentea saplings. Aggregated distribution of phytophagous insects (e.g., Aphis spiraecola), pollinators (e.g., Trigona spinipes), and natural enemies (e.g., Camponotus sp.) on T. argentea saplings was observed. Abundance, diversity, and species richness of natural enemies correlated, positively, with those of phytophagous and pollinators insects. Predators and tending ants followed their prey and sucking insects, respectively. Tending ants protected sucking insects against predators, and reduced chewing insects. The high number of Cephalocoema sp. on T. argentea saplings is a problem, because this insect can feed on leaves of this plant, but its preference for the adaxial leaf face favors its control. The aggregation behavior of arthropods on T. argentea saplings favors the control of potential pests of this plant. There seems to be competition between tending ants for space and food resources on T. argentea saplings.


Assuntos
Artrópodes , Folhas de Planta , Terminalia , Animais , Folhas de Planta/parasitologia , Artrópodes/classificação , Artrópodes/fisiologia , Terminalia/classificação , Densidade Demográfica , Biodiversidade , Brasil , Insetos/classificação , Insetos/fisiologia
6.
Sci Rep ; 14(1): 14053, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890375

RESUMO

Sorghum aphid, Melanaphis sorghi (Theobald) have become a major economic pest in sorghum causing 70% yield loss without timely insecticide applications. The overarching goal is to develop a monitoring system for sorghum aphids using remote sensing technologies to detect changes in plant-aphid density interactions, thereby reducing scouting time. We studied the effect of aphid density on sorghum spectral responses near the feeding site and on distal leaves from infestation and quantified potential systemic effects to determine if aphid feeding can be detected. A leaf spectrometer at 400-1000 nm range was used to measure reflectance changes by varying levels of sorghum aphid density on lower leaves and those distant to the caged infestation. Our study results demonstrate that sorghum aphid infestation can be determined by changes in reflected light, especially between the green-red range (550-650 nm), and sorghum plants respond systemically. This study serves as an essential first step in developing more effective pest monitoring systems for sorghum aphids, as leaf reflection sensors can be used to identify aphid feeding regardless of infestation location on the plant. Future research should address whether such reflectance signatures can be detected autonomously using small unmanned aircraft systems or sUAS equipped with comparable sensor technologies.


Assuntos
Afídeos , Folhas de Planta , Sorghum , Afídeos/fisiologia , Sorghum/parasitologia , Animais , Folhas de Planta/parasitologia , Tecnologia de Sensoriamento Remoto/métodos , Análise Espectral/métodos
7.
Biol Open ; 13(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885004

RESUMO

Instead of red anthocyanins, birches synthesise colourless (to human eye), UV-absorbing flavonols during autumn senescence. To test if flavonols protect against insects, and if leaves with high or low amounts of flavonols differ in their photosynthetic functions, aphid-free and aphid-infested green and senescing birch leaves were collected from outdoor-grown trees and analysed. Photosynthetic parameters were greatly affected by the leaf chlorophyll content (i.e. the phase of senescence). Photochemical quenching and the amount of functional Photosystem I decreased linearly with chlorophyll content, while FV/FM (Photosystem II functionality) decreased strongly only at the end of senescence. Non-photochemical quenching of excitation energy (NPQ) increased towards the end of senescence. However, no significant differences in the total flavonol amounts, nor in individual flavonol species, were found between aphid-free and aphid-infested leaves, suggesting that flavonols play no role in defence against aphid herbivory. Interestingly, both green and senescing leaves with a high flavonol content showed low FV/FM values. High flavonol content slowed down PSII photoinhibition and improved recovery, but only in green leaves. Previously, we proposed that anthocyanins provide an additional sink for photosynthates at the nitrogen resorption phase during autumn senescence, and the present data may suggest that flavonol synthesis plays a similar role.


Assuntos
Afídeos , Betula , Flavonóis , Fotossíntese , Complexo de Proteína do Fotossistema II , Folhas de Planta , Afídeos/fisiologia , Afídeos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Animais , Complexo de Proteína do Fotossistema II/metabolismo , Flavonóis/metabolismo , Betula/metabolismo , Clorofila/metabolismo
9.
Exp Appl Acarol ; 93(1): 169-195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744726

RESUMO

Trichomes are well-known efficient plant defense mechanisms to limit arthropod herbivory, especially in Solanaceae. The present study aims to evaluate the impact of trichome types on the development, survival and dispersal of Tetranychus urticae, and the phytoseiid predatory mite Typhlodromus (Anthoseius) recki. Six Solanum lycopersicum cultivars and two wild Solanum species, S. cheesmaniae and S. peruvianum, presenting contrasting densities and types of trichomes, were considered. Cultivars and species were characterized by counting each trichome type on leaves, petioles and stems. Mites stuck on petiole and stem and alive mites on the leaflet used for mite release and in the whole plant were counted three weeks after T. urticae plant infestation. Tetranychus urticae settlement and dispersal were differently affected by trichomes. Trichome types V and VI did not affect settlement and dispersal, whereas trichome types I and IV on the petiole had the highest impacton mites. Trichomes on leaves slightly affected mite establishment, there appears to be a repellent effect of trichome types I and IV. The low densities of both T. urticae and its predator detected for the cv. Lancaster could not be clearly associated to the trichome types here considered. The predator did not seem to be affected by plant characteristics, but rather by T. urticae numbers on the plant. The trichome traits unfavorable to T. urticae, did not affect the predator which showed high efficiency to control this pest on all the plant genotypes considered, but at a favorable predator:prey ratio (1:1). Altogether, these results are encouraging for the use of T. (A.) recki as a biological control agent of T. urticae regardless of the trichome structure of the tomato cultivars, but other conditions should be tested to conclude on practical implementations.


Assuntos
Ácaros , Comportamento Predatório , Solanum lycopersicum , Tetranychidae , Tricomas , Animais , Tetranychidae/fisiologia , Ácaros/fisiologia , Solanum lycopersicum/parasitologia , Cadeia Alimentar , Controle Biológico de Vetores , Folhas de Planta/parasitologia , Herbivoria
10.
Appl Environ Microbiol ; 90(6): e0014224, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38775476

RESUMO

Beech leaf disease (BLD) is a newly emerging disease in North America that affects American beech (Fagus grandifolia). It is increasingly recognized that BLD is caused by a subspecies of the anguinid nematode Litylenchus crenatae subsp. mccannii (hereafter L. crenatae), which is likely native to East Asia. How nematode infestation of leaves affects the leaf microbiome and whether changes in the microbiome could contribute to BLD symptoms remain uncertain. In this study, we examined bacterial and fungal communities associated with the leaves of F. grandifolia across nine sites in Ohio and Pennsylvania that were either symptomatic or asymptomatic for BLD and used qPCR to measure relative nematode infestation levels. We found significantly higher levels of infestation at sites visibly symptomatic for BLD. Low levels of nematode infestation were also observed at asymptomatic sites, which suggests that nematodes can be present without visible symptoms evident. Bacterial and fungal communities were significantly affected by sampling site and symptomology, but only fungal communities were affected by nematode presence alone. We found many significant indicators of both bacteria and fungi related to symptoms of BLD, with taxa generally occurring in both asymptomatic and symptomatic leaves, suggesting that microbes are not responsible for BLD but could act as opportunistic pathogens. Of particular interest was the fungal genus Erysiphe, which is common in the Fagaceae and is reported to overwinter in buds-a strategy consistent with L. crenatae. The specific role microbes play in opportunistic infection of leaves affected by L. crenatae will require additional study. IMPORTANCE: Beech leaf disease (BLD) is an emerging threat to American beech (Fagus grandifolia) and has spread quickly throughout the northeastern United States and into southern Canada. This disease leads to disfigurement of leaves and is marked by characteristic dark, interveinal banding, followed by leaf curling and drop in more advanced stages. BLD tends to especially affect understory leaves, which can lead to substantial thinning of the forest understory where F. grandifolia is a dominant tree species. Understanding the cause of BLD is necessary to employ management strategies that protect F. grandifolia and the forests where it is a foundation tree species. Current research has confirmed that the foliar nematode Litylenchus crenatae subsp. mccannii is required for BLD, but whether other organisms are involved is currently unknown. Here, we present a study that investigated leaf-associated fungi and bacteria of F. grandifolia to understand more about how microorganisms may contribute to BLD.


Assuntos
Bactérias , Fagus , Fungos , Doenças das Plantas , Folhas de Planta , Fagus/microbiologia , Fagus/parasitologia , Animais , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Fungos/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Micobioma , Pennsylvania , Ohio , Microbiota , Nematoides/microbiologia
11.
Plant Sci ; 345: 112118, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776983

RESUMO

Understanding the complex interactions between plants and herbivores is essential for improving crop resistance. Aiming to expand the role of cyanogenesis in plant defence, we investigated the response of the cyanogenic Phaseolus lunatus (lima bean) and the non-cyanogenic Phaseolus vulgaris (common bean) to Tetranychus urticae (spider mite) infestation. Despite mite infesting both legumes, leaf damage infringed by this feeder was reduced in lima bean. Comparative transcriptome analyses revealed that both species exhibited substantial metabolic and transcriptional changes upon infestation, although alterations in P. lunatus were significantly more pronounced. Specific differences in amino acid homeostasis and key genes associated with the cyanogenic pathway were observed in these species, as well as the upregulation of the mandelonitrile lyase gene (PlMNL1) following T. urticae feeding. Concomitantly, the PIMNL1 activity increased. Lima bean plants also displayed an induction of ß-cyanoalanine synthase (PlCYSC1), a key enzyme for cyanide detoxification, suggesting an internal regulatory mechanism to manage the toxicity of their defence responses. These findings contribute to our understanding of the legume-herbivore interactions and underscore the potential role of cyanogenesis in the elaboration of specific defensive responses, even within the same genus, which may reflect distinctive evolutionary adaptations or varying metabolic capabilities between species.


Assuntos
Phaseolus , Tetranychidae , Tetranychidae/fisiologia , Animais , Phaseolus/parasitologia , Phaseolus/fisiologia , Phaseolus/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Defesa das Plantas contra Herbivoria , Herbivoria , Regulação da Expressão Gênica de Plantas , Folhas de Planta/parasitologia , Folhas de Planta/metabolismo
12.
Plant J ; 119(1): 84-99, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38578218

RESUMO

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Assuntos
Fenilalanina , Folhas de Planta , Solanum lycopersicum , Compostos Orgânicos Voláteis , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitologia , Fenilalanina/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Benzaldeídos/metabolismo , Benzaldeídos/farmacologia , Acetaldeído/análogos & derivados , Acetaldeído/metabolismo , Acetaldeído/farmacologia , Mariposas/fisiologia , Mariposas/efeitos dos fármacos , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Manduca/fisiologia
13.
Bol. latinoam. Caribe plantas med. aromát ; 23(2): 180-198, mar. 2024. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1538281

RESUMO

India's commercial advancement and development depend heavily on agriculture. A common fruit grown in tropical settings is citrus. A professional judgment is required while analyzing an illness because different diseases have slight variati ons in their symptoms. In order to recognize and classify diseases in citrus fruits and leaves, a customized CNN - based approach that links CNN with LSTM was developed in this research. By using a CNN - based method, it is possible to automatically differenti ate from healthier fruits and leaves and those that have diseases such fruit blight, fruit greening, fruit scab, and melanoses. In terms of performance, the proposed approach achieves 96% accuracy, 98% sensitivity, 96% Recall, and an F1 - score of 92% for ci trus fruit and leave identification and classification and the proposed method was compared with KNN, SVM, and CNN and concluded that the proposed CNN - based model is more accurate and effective at identifying illnesses in citrus fruits and leaves.


El avance y desarrollo comercial de India dependen en gran medida de la agricultura. Un tipo de fruta comunmente cultivada en en tornos tropicales es el cítrico. Se requiere un juicio profesional al analizar una enfermedad porque diferentes enfermedades tienen ligeras variaciones en sus síntomas. Para reconocer y clasificar enfermedades en frutas y hojas de cítricos, se desarrolló e n esta investigación un enfoque personalizado basado en CNN que vincula CNN con LSTM. Al utilizar un método basado en CNN, es posible diferenciar automáticamente entre frutas y hojas más saludables y aquellas que tienen enfermedades como la plaga de frutas , el verdor de frutas, la sarna de frutas y las melanosis. En términos de desempeño, el enfoque propuesto alcanza una precisión del 96%, una sensibilidad del 98%, una recuperación del 96% y una puntuación F1 del 92% para la identificación y clasificación d e frutas y hojas de cítricos, y el método propuesto se comparó con KNN, SVM y CNN y se concluyó que el modelo basado en CNN propuesto es más preciso y efectivo para identificar enfermedades en frutas y hojas de cítricos.


Assuntos
Citrus/classificação , Citrus/parasitologia , Redes Neurais de Computação , Folhas de Planta/classificação , Folhas de Planta/parasitologia , Inteligência Artificial/tendências , Frutas/classificação , Frutas/crescimento & desenvolvimento
14.
Plant Dis ; 108(7): 1964-1968, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38301226

RESUMO

Foliar nematodes (Aphelenchoides spp.) are known to be parasites of tobacco in restricted areas, but symptoms caused by A. besseyi in tobacco are not well characterized, despite the great importance of this nematode worldwide. This study aimed to evaluate the host reaction of four Nicotiana tabacum cultivars (Comum, Xanthi, Samsun, and TNN) and N. benthamiana cultivar Comum to A. besseyi and to characterize the symptoms and the parasitism of this nematode. Two experiments were conducted under greenhouse conditions with controlled humidity and temperature, in which the plants were inoculated with 600 A. besseyi. At 30 days after inoculation (DAI), nematodes present in the soil, roots, and shoot parts were extracted, and roots and shoot tissues were stained with acid fuchsin. A high number of A. besseyi was obtained per gram of shoot tissues (125 to 2,169 nematodes), and severe symptoms were observed in leaves and inflorescences of all cultivars. The symptoms included foliar distortion and deformation, necrotic spots delimited by the veins, flower abortion, and poor development of plants. In addition, A. besseyi was observed to penetrate tobacco roots at 30 DAI, and nematodes were also observed in the foliar mesophyll, inflorescences, and stems, a parasitism that has not been previously reported in tobacco plants. The disease caused by A. besseyi in tobacco could be a concern for growers in southern and northeastern Brazil because this nematode can cause severe damage to the marketable leaves of tobacco, reducing its commercial value.


Assuntos
Nicotiana , Doenças das Plantas , Raízes de Plantas , Nicotiana/parasitologia , Brasil , Doenças das Plantas/parasitologia , Animais , Raízes de Plantas/parasitologia , Folhas de Planta/parasitologia , Interações Hospedeiro-Parasita , Brotos de Planta/parasitologia
15.
Plant Physiol ; 195(1): 698-712, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236304

RESUMO

Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.


Assuntos
Parede Celular , Interações Hospedeiro-Parasita , Tumores de Planta , Vespas , Animais , Parede Celular/metabolismo , Vespas/fisiologia , Tumores de Planta/parasitologia , Quercus/metabolismo , Quercus/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Lignina/metabolismo
17.
BMC Genomics ; 23(1): 512, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836120

RESUMO

BACKGROUND: Chinese chestnut is an economically important tree species whose yield and quality are seriously affected by red spider attack. Tannins is one of the most important class secondary metabolites in plants, and is closely associated with plant defense mechanisms against insect and herbivory. In our previous studies, it was revealed that several low-tannin foxtail millet varieties growing under the Chinese chestnut trees could attract red spiders to feed on their leaves and protect the chestnut trees from the infestation of red spiders, meanwhile, the growth and yield of foxtail millet plants themselves were not greatly affected. RESULTS: To identify genes related to leaf tannin content and selection of foxtail millet germplasm resources with low tannin content for interplanting with Chinese chestnut and preventing the red spider attack, the leaves of 4 varieties with different levels of tannin content were harvested for comparative transcriptome analysis. In total, 335 differentially expressed genes (DEGs) were identified. For acquisition of gene functions and biological pathways they involved in, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were performed, and several DEGs were found to possibly participate in the tannins biosynthesis pathway and transport processes of precursors. In addition, according to the PlantTFDB database, some transcription factors were predicted among the DEGs, suggesting their role in regulation of tannins biosynthesis pathway. CONCLUSION: Our results provide valuable gene resources for understanding the biosynthesis and regulation mechanisms of tannins in foxtail millet, and pave the way for speeding up the breeding of low-tannin varieties through marker-assisted selection, which could be utilized for interplanting with Chinese chestnut trees to confer protection against red spider attack.


Assuntos
Setaria (Planta)/química , Taninos/análise , Transcriptoma/fisiologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/parasitologia , Aranhas/patogenicidade , Taninos/genética , Transcriptoma/genética
18.
Int J Mol Sci ; 23(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35163762

RESUMO

Autophagy is ubiquitously present in eukaryotes. During this process, intracellular proteins and some waste organelles are transported into lysosomes or vacuoles for degradation, which can be reused by the cell to guarantee normal cellular metabolism. However, the function of autophagy-related (ATG) proteins in oomycetes is rarely known. In this study, we identified an autophagy-related gene, PlATG6a, encoding a 514-amino-acid protein in Peronophythora litchii, which is the most destructive pathogen of litchi. The transcriptional level of PlATG6a was relatively higher in mycelium, sporangia, zoospores and cysts. We generated PlATG6a knockout mutants using CRISPR/Cas9 technology. The P. litchii Δplatg6a mutants were significantly impaired in autophagy and vegetative growth. We further found that the Δplatg6a mutants displayed decreased branches of sporangiophore, leading to impaired sporangium production. PlATG6a is also involved in resistance to oxidative and salt stresses, but not in sexual reproduction. The transcription of peroxidase-encoding genes was down-regulated in Δplatg6a mutants, which is likely responsible for hypersensitivity to oxidative stress. Compared with the wild-type strain, the Δplatg6a mutants showed reduced virulence when inoculated on the litchi leaves using mycelia plugs. Overall, these results suggest a critical role for PlATG6a in autophagy, vegetative growth, sporangium production, sporangiophore development, zoospore release, pathogenesis and tolerance to salt and oxidative stresses in P. litchii.


Assuntos
Proteína Beclina-1/genética , Litchi/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Regulação para Cima , Autofagia , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Litchi/parasitologia , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/patogenicidade , Estresse Oxidativo , Phytophthora/genética , Phytophthora/patogenicidade , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/parasitologia , Reprodução Assexuada , Tolerância ao Sal , Fatores de Virulência/genética
19.
PLoS One ; 17(1): e0262671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077467

RESUMO

Alterations in the frequency and intensity of drought events are expected due to climate change and might have consequences for plant metabolism and the development of plant antagonists. In this study, the responses of spring wheat (Triticum aestivum) and one of its major pests, the aphid Sitobion avenae, to different drought regimes were investigated, considering different time points and plant parts. Plants were kept well-watered or subjected to either continuous or pulsed drought. Phloem exudates were collected twice from leaves and once from ears during the growth period and concentrations of amino acids, organic acids and sugars were determined. Population growth and survival of the aphid S. avenae were monitored on these plant parts. Relative concentrations of metabolites in the phloem exudates varied with the time point, the plant part as well as the irrigation regime. Pronounced increases in relative concentrations were found for proline, especially in pulsed drought-stressed plants. Moreover, relative concentrations of sucrose were lower in phloem exudates of ears than in those of leaves. The population growth and survival of aphids were decreased on plants subjected to drought and populations grew twice as large on ears compared to leaves. Our study revealed that changes in irrigation frequency and intensity modulate plant-aphid interactions. These effects may at least partly be mediated by changes in the metabolic composition of the phloem sap.


Assuntos
Afídeos , Floema/metabolismo , Exsudatos de Plantas/metabolismo , Folhas de Planta/metabolismo , Triticum , Aminoácidos/análise , Animais , Carboidratos/análise , Desidratação , Herbivoria , Floema/parasitologia , Exsudatos de Plantas/química , Folhas de Planta/parasitologia , Fatores de Tempo , Triticum/metabolismo , Triticum/parasitologia
20.
Phytopathology ; 112(4): 881-887, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34495679

RESUMO

Ditylenchus gallaeformans is a plant parasitic nematode that induces galls on aboveground parts of Melastomataceae plants. It differs from most gall-inducing nematodes in that it is not an endoparasite and has been considered as a possible biological control agent against invasive species of Miconia. Little is known about D. gallaeformans biology, genetic differences among populations, and host preferences. This study examined the genetic differences among D. gallaeformans populations from different locations and host species and the phylogenetic relationships among them. Nematodes were collected from galls in plants from Costa Rica, Dominica, and Trinidad. The Cytochrome c oxidase 1 (cox1) region was sequenced from a total of 33 individual nematodes isolated from 33 different plant individuals, representing 21 species of Melastomataceae. Phylogenetic reconstructions, haplotype networks, and analysis of molecular variance showed that the species is monophyletic and has three major clades, which were mostly consistent with geographic location but not with host species. The first clade was composed by two subclades, one with individuals from Costa Rica and one with individuals from Dominica. The second and third clades comprised nematodes only from Trinidad. Overall, there is no evidence of host-species specialization in D. gallaeformans. Biocontrol efforts using the nematode against invasive Miconia could focus on geographical location matching but likely will not need to match host species.


Assuntos
Melastomataceae , Nematoides , Tylenchida , Animais , Genética Populacional , Melastomataceae/parasitologia , Nematoides/genética , Filogenia , Doenças das Plantas , Folhas de Planta/parasitologia , Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...