Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
1.
Extremophiles ; 28(2): 29, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900286

RESUMO

Hot spring environments encompass broad physicochemical ranges, in which temperature and pH account for crucial factors shaping hot spring microbial community and diversity. However, the presence of photosynthetic microbial mats adjacent to boiling hot spring vents, where fluid temperatures extend beyond photosynthetic capability, questions the microbial profiles and the actual temperatures of such adjacent mats. Therefore, this study aims to characterize thermophilic microbial communities at Pong Dueat Pa Pae hot spring using next-generation sequencing, including investigating hot spring mineralogy. Results suggest that Pong Dueat Pa Pae hot spring precipitates comprise mainly silica which also acts as the main preservative medium for microbial permineralization. Molecular results revealed the presence of cyanobacterial and Chloroflexi species in the thick, orange and green subaerial mats surrounding the vents, suggesting the mats would be at least 30 °C cooler than source vents despite constantly receiving geyser splashes. Bacterial abundance was considerably higher than archaeal (97.9% versus 2.1%). Cyanobacterial (mainly Synechococcus and Leptolygbya) and Chloroflexi species (mainly Roseiflexus) accounted for almost half (40.04%) of the bacterial community, while DHVEG-6 and Thaumarchaeota comprised dominant members (> 90%) of the archaeal fraction. This study updates and provides insights into thermophilic microbial community composition and mineralogy of hot springs in Thailand.


Assuntos
Fontes Termais , Microbiota , Fontes Termais/microbiologia , Tailândia , Cianobactérias/metabolismo , Cianobactérias/genética , Chloroflexi/genética , Chloroflexi/metabolismo
2.
Nat Commun ; 15(1): 4066, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744885

RESUMO

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Assuntos
Archaea , Genoma Arqueal , Fontes Termais , Metagenoma , Metagenômica , Filogenia , Fontes Termais/microbiologia , Archaea/genética , Archaea/classificação , China , Metagenômica/métodos , Biodiversidade , Concentração de Íons de Hidrogênio , Enxofre/metabolismo , Temperatura , Ecossistema
3.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38625060

RESUMO

High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present "oases" of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing their impact on trace gas-oxidizers in the surrounding soils. We assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy/carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.


Assuntos
Bactérias , Clima Desértico , Fontes Termais , Oxirredução , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fontes Termais/microbiologia , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Microbiota , Altitude , Solo/química
4.
Braz J Microbiol ; 55(2): 1465-1476, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38662153

RESUMO

Due to their distinctive physicochemical characteristics, hot springs are extremely important. The whole genome metagenomic sequencing technology can be utilized to analyze the diverse microbial community that thrives in this habitat due to the particular selection pressure that prevails there. The current investigation emphasizes on culture-independent metagenomic study of the Panamik hot spring and its nearby areas from Ladakh, India. Based on different diversity indices, sequence analysis of the soil reservoir showed higher species richness and diversity in comparison to water and sediment samples. The mineral content and various physicochemical pameters like temperature, pH had an impact on the composition of the microbial community of the geothermal springs. The phyla Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacter, Firmicutes, and Verrucomicrobia in bacterial domain dominate the thermos-alkaline spring at Panamik in different concentrations. Economically significant microbes from the genera Actinobacter, Thermosynechoccus, Candidatus Solibacter, Chthoniobacter, Synechoccus, Pseudomonas and Sphingomonas, were prevalent in hot spring. In the archaeal domain, the most dominant phylum and genera were Euryarchaeota and Thermococcus in all the samples. Further, the most abundant species were Methanosarcina barkeri, Nitrospumilus maritimus and Methanosarcina acetivorans. The present study which only examined one of the several thermal springs present in the Himalayan geothermal area, should be regarded as a preliminary investigation of the microbiota that live in the hot springs on these remote areas. These findings suggest that further investigations should be undertaken to characterize the ecosystems of the Panamik hot spring, which serve as a repository for unidentified microbial lineages.


Assuntos
Archaea , Bactérias , Sequenciamento de Nucleotídeos em Larga Escala , Fontes Termais , Metagenômica , Microbiota , Fontes Termais/microbiologia , Índia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Archaea/genética , Archaea/classificação , Archaea/isolamento & purificação , Filogenia , Biodiversidade
5.
PLoS One ; 19(3): e0299532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451953

RESUMO

Radon springs, characterized by their high concentrations of radon gas (Rn222), are extreme environments with unique physicochemical conditions distinct from conventional aquatic ecosystems. Our research aimed to investigate microbial life in radon springs, focusing on isolating extremophilic bacteria and assessing their resistance to adverse conditions. Our study revealed the prevalence of Actinomycetia species in the radon spring environment. We conducted various tests to evaluate the resistance of these isolates to oxidative stress, irradiation, desiccation, and metal ion content. These extremophilic bacteria showed overall higher resistance to these stresses compared to control strains. Lipidomic analysis was also employed to provide insights into the adaptive mechanisms of these bacteria which were found mainly in the correlations among individual clusters and changes in content of fatty acids (FA) as well as differences between content and type of FAs of environmental isolates and type strains.


Assuntos
Fontes Termais , Nascentes Naturais , Radônio , Radônio/análise , Ecossistema , Bactérias , Fontes Termais/microbiologia
6.
PeerJ ; 12: e16827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406272

RESUMO

Yellowstone National Park thermal features regularly discharge various heavy metals and metalloids. These metals are taken up by microorganisms that often form mats in thermal springs. These microbial mats also serve as food sources for invertebrate assemblages. To examine how heavy metals move through insect food webs associated with hot springs, two sites were selected for this study. Dragon-Beowulf Hot Springs, acid-sulfate chloride springs, have a pH of 2.9, water temperatures above 70 °C, and populations of thermophilic bacterial, archaeal, and algal mats. Rabbit Creek Hot Springs, alkaline springs, have a pH of up to 9, some water temperatures in excess of 60 °C, and are populated with thermophilic and phototrophic bacterial mats. Mats in both hydrothermal systems form the trophic base and support active metal transfer to terrestrial food chains. In both types of springs, invertebrates bioaccumulated heavy metals including chromium, manganese, cobalt, nickel, copper, cadmium, mercury, tin and lead, and the metalloids arsenic, selenium, and antimony resulting from consuming the algal and bacterial mat biomass. At least two orders of magnitude increase in concentrations were observed in the ephydrid shore fly Paracoenia turbida, as compared to the mats for all metals except antimony, mercury, and lead. The highest bioaccumulation factor (BAF) of 729 was observed for chromium. At the other end of the food web, the invertebrate apex predator, Cicindelidia haemorrhagica, had at least a 10-fold BAF for all metals at some location-year combinations, except with antimony. Of other taxa, high BAFs were observed with zinc for Nebria sp. (2180) and for Salda littoralis (1080). This accumulation, occurring between primary producer and primary consumer trophic levels at both springs, is biomagnified through the trophic web. These observations suggest trace metals enter the geothermal food web through the microbial mat community and are then transferred through the food chain. Also, while bioaccumulation of arsenic is uncommon, we observed five instances of increases near or exceeding 10-fold: Odontomyia sp. larvae (13.6), P. turbida (34.8), C. haemorrhagica (9.7), Rhagovelia distincta (16.3), and Ambrysus mormon (42.8).


Assuntos
Arsênio , Dípteros , Fontes Termais , Mercúrio , Metais Pesados , Animais , Coelhos , Cadeia Alimentar , Fontes Termais/microbiologia , Antimônio , Parques Recreativos , Bactérias , Insetos , Invertebrados , Cromo , Água
7.
Braz J Microbiol ; 55(2): 1545-1555, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421596

RESUMO

In light of their unique and challenging environment, the high-altitude Chumathang geothermal springs in Ladakh, India, are undeniably intriguing for microbiological study. The purpose of this study was to employ a culture-independent sequencing approach to give a comprehensive characterization of the unknown bacterial and archaeal community structure, composition and networks in water and soil from the Chumathang geothermal spring. A total of 50%, and 42.86% bacterial phyla were found in the water, and soil samples respectively and this analysis also showed a total of 9.62% and 7.94% of archaeal phyla in both the samples, respectively. Further, the presence of unclassified (derived from other sequences, water: 17.31%, and soil: 19.05%) and unclassified (derived from bacteria, water: 13.46%, and soil: 12.70%) were also observed in the current metagenomics investigation. Firmicutes and Proteobacteria were the most abundant bacterial phyla in water, whereas Proteobacteria and Bacteroidetes were the most abundant bacterial phyla in geothermal soil. Crenarchaeota and Euryarchaeota dominated archeal communities in soil and water, respectively. This metagenomic study gave a detailed insight into the microbial diversity found in Chumathang geothermal spring and surrounding area, located in Ladakh, India. Surprisingly, this finding indicated the existence of geographically distinct microbial communities that were suited to various geothermal water habitats along the Himalayan Geothermal Belt. Future studies must take into account the metabolic pathways of these microbial communities that exist in these extreme environments. This will allow us to obtain a better knowledge of the microbial metabolisms that are common at these geothermal locations, which have a lot of potential for biotechnological applications. They will also enable us to establish links between the microbial community composition and the physicochemical environment of geothermal water and area.


Assuntos
Archaea , Bactérias , Biodiversidade , Fontes Termais , Metagenômica , Filogenia , Microbiologia do Solo , Fontes Termais/microbiologia , Índia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , RNA Ribossômico 16S/genética , Microbiota , Microbiologia da Água
8.
Microbiol Spectr ; 12(3): e0371023, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38294247

RESUMO

Hot springs are potential sources of diverse arrays of microbes and their thermostable hydrolytic enzymes. Water and sediment samples were collected from three hot springs of Ethiopia and enriched on nutrient and thermus agar media to isolate pure cultures of potential microbes. A total of 252 bacterial isolates were screened and evaluated for the production of amylase, protease, cellulase, and lipase. About 95.23%, 84.12%, 76.58%, and 65.07% of the isolates displayed promising amylase, proteases, cellulase, and lipase activities, respectively. Based on the diameter of the clear zone formed, 45 isolates were further screened and identified to species level using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. Five of the 45 isolates showed significantly high (P < 0.05) clear zone ratios as compared to others. The identified isolates were categorized under five bacterial species, namely, Bacillus licheniformis, Bacillus cereus, Paenibacillus thiaminolyticus, Paenibacillus dendritiformis, and Brevibacillus borstelensis. The most dominant species (66.7%) was B. licheniformis. It could be concluded that hot springs of Ethiopia are potential sources of thermostable extracellular hydrolytic enzymes for various industrial applications. Further optimization of the growth conditions and evaluation for better productivity of the desired products is recommended before attempting for large-scale production of the hydrolytic enzymes. IMPORTANCE: Thermostable microbial enzymes play an important role in industries due to their stability under harsh environmental conditions, including extreme temperatures. Despite their huge application in different industries, however, the thermostable enzymes of thermophilic microorganism origin have not yet been fully explored in Ethiopia. Here, we explored thermophilic bacteria and their enzymes from selected hot spring water and sediment samples. Accordingly, thermophilic bacteria were isolated and screened for the production of extracellular hydrolytic enzymes. Promising numbers of isolates were found as producers of the enzymes. The potent enzyme producers were further identified using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. The findings revealed the presence of potential hydrolytic enzyme-producing thermophilic bacteria in hot springs of Ethiopia and necessitate further comprehensive study involving other extreme environments. Our findings also revealed the potential of Ethiopian hot springs in the production of thermostable enzymes of significant application in different industries, including food industries.


Assuntos
Celulases , Fontes Termais , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Etiópia , Lipase , Peptídeo Hidrolases , Endopeptidases , Amilases , Água
9.
Nat Microbiol ; 9(2): 514-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233646

RESUMO

Metatranscriptome sequencing expanded the known diversity of the bacterial RNA virome, suggesting that additional riboviruses infecting bacterial hosts remain to be discovered. Here we employed double-stranded RNA sequencing to recover complete genome sequences of two ribovirus groups from acidic hot springs in Japan. One group, denoted hot spring riboviruses (HsRV), consists of viruses with distinct RNA-directed RNA polymerases (RdRPs) that seem to be intermediates between typical ribovirus RdRPs and viral reverse transcriptases. This group forms a distinct phylum, Artimaviricota, or even kingdom within the realm Riboviria. We identified viruses encoding HsRV-like RdRPs in marine water, river sediments and salt marshes, indicating that this group is widespread beyond extreme ecosystems. The second group, denoted hot spring partiti-like viruses (HsPV), forms a distinct branch within the family Partitiviridae. The genome architectures of HsRV and HsPV and their identification in bacteria-dominated habitats suggest that these viruses infect thermoacidophilic bacteria.


Assuntos
Fontes Termais , Vírus de RNA , Fontes Termais/microbiologia , RNA de Cadeia Dupla , Ecossistema , Filogenia , Japão , Archaea/genética , Bactérias/genética , Vírus de RNA/genética
10.
Antonie Van Leeuwenhoek ; 117(1): 23, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217803

RESUMO

A survey for bacteria of the genus Thiothrix indicated that they inhabited the area where the water of the Zmeiny geothermal spring (northern basin of Lake Baikal, Russia) mixed with the lake water. In the coastal zone of the lake oxygen (8.25 g/L) and hydrogen sulfide (up to 1 mg/L) were simultaneously present at sites of massive growth of these particular Thiothrix bacteria. Based on the analysis of the morphological characteristics and sequence of individual genes (16S rRNA, rpoB and tilS), we could not attribute the Thiothrix from Lake Baikal to any of the known species of this genus. To determine metabolic capabilities and phylogenetic position of the Thiothrix sp. from Lake Baikal, we analyzed their whole genome. Like all members of this genus, the bacteria from Lake Baikal were capable of organo-heterotrophic, chemolithoheterotrophic, and chemolithoautotrophic growth and differed from its closest relatives in the spectrum of nitrogen and sulfur cycle genes as well as in the indices of average nucleotide identity (ANI < 75-94%), amino acid identity (AAI < 94%) and in silico DNA-DNA hybridization (dDDH < 17-57%), which were below the boundary of interspecies differences, allowing us to identify them as novel candidate species.


Assuntos
Fontes Termais , Thiothrix , Thiothrix/genética , Thiothrix/metabolismo , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Filogenia , Baías , Federação Russa , Bactérias/genética , Lagos/microbiologia , Água , Sulfetos/metabolismo , Genômica , DNA
11.
Biotechnol Appl Biochem ; 71(3): 536-552, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225871

RESUMO

This study investigates the thermotolerant fungal biodiversity in caves and hot springs, focusing on their potential for extracellular enzyme production, specifically proteases. Samples were collected from the Cardonal region in Hidalgo, Mexico, using three different isolation methods. The study characterizes the morphological diversity of the isolated fungi and identifies various genera, including Aspergillus, Penicillium, Trichoderma, Cladosporium, and Fusarium, based on morphology. The isolated fungi were screened for their ability to produce extracellular enzymes on solid media, with a particular emphasis on proteases due to their industrial significance. Among the 35 isolated fungi, 20 exhibited proteolytic activity, and 12 strains were identified as good protease producers based on enzymatic index values. The study also evaluated the formation of fungal pellets by proteolytic fungi and found certain strains to display significant pellet formation. Additionally, protease production was examined by fungal pellets in submerged cultures, with isolate 6 demonstrating the highest protease activity. The findings highlight the diverse thermotolerant fungal biodiversity in extreme environments, and emphasize their potential for enzymatic production. This research contributes to our understanding of fungal ecology and provides insights into the biotechnological applications of these enzymes. The study recommends further molecular investigations to enhance biodiversity studies in such extreme environments.


Assuntos
Fungos , Fontes Termais , Peptídeo Hidrolases , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/metabolismo , Fungos/enzimologia , Fungos/isolamento & purificação , Fungos/metabolismo , Fontes Termais/microbiologia , Cavernas/microbiologia , Biotecnologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/biossíntese
12.
Res Microbiol ; 175(5-6): 104180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38199600

RESUMO

The continuous increase in global temperature and ultraviolet radiation (UVR) causes profound impacts on the growth and physiology of photosynthetic microorganisms. The hot-spring cyanobacteria have a wide range of mitigation mechanisms to cope up against current unsustainable environmental conditions. In the present investigation, we have explored the indispensable mitigation strategies of an isolated hot-spring cyanobacterium Nostoc sp. strain VKB02 under simulated ultraviolet (UV-A, UV-B) and photosynthetically active radiation (PAR). The adaptive morphological changes were more significantly observed under PAB (PAR, UV-A, and UV-B) exposure as compared to P and PA (PAR and UV-A) irradiations. PAB exposure also exhibited a marked decline in pigment composition and photosynthetic efficiency by multi-fold increment of free radicals. To counteract the oxidative stress, enzymatic and non-enzymatic antioxidants defense were significantly enhanced many folds under PAB exposure as compared to the control. In addition, the cyanobacterium has also produced shinorine as a strong free radicals scavenger and excellent UV absorber for effective photoprotection against UV radiation. Therefore, the hot-spring cyanobacterium Nostoc sp. strain VKB02 has unique defense strategies for survival under prolonged lethal UVR conditions. This study will help in the understanding of environment-induced defense strategies and production of highly value-added green photo-protectants for commercial applications.


Assuntos
Antioxidantes , Fontes Termais , Nostoc , Fotossíntese , Raios Ultravioleta , Nostoc/efeitos da radiação , Nostoc/metabolismo , Nostoc/crescimento & desenvolvimento , Nostoc/fisiologia , Antioxidantes/metabolismo , Fontes Termais/microbiologia , Estresse Oxidativo
13.
Nat Prod Res ; 38(5): 819-828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37074678

RESUMO

Thermophiles are the microorganisms which thrive under extreme conditions such as high temperature, making them significant for scientific interest. This study provides information based on isolation of thermophilic strain from Surajkund and Ramkund, hot spring of Jharkhand at 50, 60 and 70 °C. Two of the best isolates were used for the extraction of exopolysaccharides. Additionally, the lyophilized product obtained was further analyzed for protein and total sugar estimation. The FTIR analysis revealed the presence of different functional groups such as hydroxyl, C-H stretching, vibration of aliphatic CH2 and glycosidic linkage, thus proving the product obtained from bacteria was an exopolysaccharides The FESEM analysis of exopolysaccharides show varying surface morphology that is from porous to globular structure. Based on 16S rRNA sequences, the isolates from Surajkund (ON795919) and Ramkund (ON795916) were different strains of Bacillus licheniformis. This is the first report on exopolysaccharide secreting thermophilic strain from these hot springs.


Assuntos
Bacillus licheniformis , Fontes Termais , Bacillus licheniformis/genética , Fontes Termais/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Filogenia , Temperatura Alta
14.
Braz J Microbiol ; 54(4): 2927-2937, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801222

RESUMO

Hyperthermophile microorganisms have been discovered worldwide, and several studies regarding biodiversity and the potential biotechnological applications have been reported. In this work, we describe for the first time the diversity of hyperthermophile communities in the Calientes Geothermal Field (CGF) located 4400 m above sea level in Tacna Region, Perú. Three hot springs were monitored and showed a temperature around 84 to 88 °C, for the microbiome analyzed was taken by sampling of sediment and water (pH 7.3-7.6). The hyperthermophile diversity was determined by PCR, DGGE, and DNA sequencing. The sediments analyzed showed a greater diversity than water samples. Sediments showed a more abundant population of bacteria than archaea, with the presence of at least 9 and 5 phylotypes, respectively. Most interestingly, in some taxa of bacteria (Bacillus) and archaea (Haloarcula and Halalkalicoccus), any of operational taxonomic units (OTUs) have not been observed before in hyperthermophile environments. Our results provide insight in the hyperthermophile diversity and reveal the possibility to develop new biotechnological applications based on the kind of environments.


Assuntos
Halobacteriaceae , Fontes Termais , Microbiota , Peru , Archaea/genética , Bactérias/genética , Halobacteriaceae/genética , Fontes Termais/microbiologia , Biodiversidade , Água , Filogenia , RNA Ribossômico 16S/genética
15.
Environ Res ; 238(Pt 1): 117144, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716381

RESUMO

A hot spring is a distinctive aquatic environment that provides an excellent system to investigate microorganisms and their function in elemental cycling processes. Previous studies of terrestrial hot springs have been mostly focused on the microbial community, one special phylum or category, or genes involved in a particular metabolic step, while little is known about the overall functional metabolic profiles of microorganisms inhabiting the terrestrial hot springs. Here, we analyzed the microbial community structure and their functional genes based on metagenomic sequencing of six selected hot springs with different temperature and pH conditions. We sequenced a total of 11 samples from six hot springs and constructed 162 metagenome-assembled genomes (MAGs) with completeness above 70% and contamination lower than 10%. Crenarchaeota, Euryarchaeota and Aquificae were found to be the dominant phyla. Functional annotation revealed that bacteria encode versatile carbohydrate-active enzymes (CAZYmes) for the degradation of complex polysaccharides, while archaea tend to assimilate C1 compounds through carbon fixation. Under nitrogen-deficient conditions, there were correspondingly fewer genes involved in nitrogen metabolism, while abundant and diverse set of genes participating in sulfur metabolism, particularly those associated with sulfide oxidation and thiosulfate disproportionation. In summary, archaea and bacteria residing in the hot springs display distinct carbon metabolism fate, while sharing the common energy preference through sulfur metabolism. Overall, this research contributes to a better comprehension of biogeochemistry of terrestrial hot springs.


Assuntos
Fontes Termais , Fontes Termais/química , Fontes Termais/microbiologia , Metagenoma , Archaea/genética , Archaea/metabolismo , Bactérias/metabolismo , China , Carboidratos , Enxofre/metabolismo , Nitrogênio/metabolismo , Filogenia
17.
Arch Microbiol ; 205(9): 305, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572166

RESUMO

An obligately anaerobic bacterium XHS1971T, capable of degrading cellulose and xylan, was isolated from a sediment sample of Aravali hot spring, Ratnagiri, India. Cells of strain XHS1971T were Gram-stain-negative, spore-forming, motile, long-rods. Growth was observed at temperatures 30-50 °C (optimum 40-45 °C), pH 5.0-10.0 (optimum pH 8.0) and NaCl concentrations 0-0.5% (optimum 0%). Generation time of strain XHS1971T was 5 h under optimised growth conditions. Strain XHS1971T showed the ability to metabolise different complex and simple sugars constituting lignocellulosic biomass. Glucose was fermented majorly into hydrogen, formic acid, acetic acid, and ethanol, whereas carbon dioxide, butyric acid, lactic acid and succinic acid were produced in traces. 16S rRNA gene analysis of strain XHS1971T revealed < 94.5% homology with Cellulosilyticum lentocellum DSM5427T followed by Cellulosilyticum ruminicola JCM14822T, identifying strain as a distinct member of family Lachnospiraceae. The major cellular fatty acids (> 5%) were C14:0, C16:0, C18:0, and C16:1 ω7c. The genome size of the strain was 3.74 Mb with 35.3 mol% G + C content, and genes were annotated to carbohydrate metabolism, including genes involved in the degradation of cellulose and xylan and the production of hydrogen, ethanol and acetate. The uniqueness of strain was further validated by digital DNA-DNA hybridisation (dDDH), Average Nucleotide Identity (ANI), and Average Amino Acid Identity (AAI) values of 22%, 80%, and 63%, respectively, with nearest phylogenetic affiliates. Based on the detailed analyses, we propose a new genus and species, Sporanaerobium hydrogeniformans gen. nov., sp. nov., for strain XHS1971T (= MCC3498T = KCTC15729T = JCM32657T) within family Lachnospiraceae.


Assuntos
Fontes Termais , Fontes Termais/microbiologia , Anaerobiose , Filogenia , Composição de Bases , RNA Ribossômico 16S/genética , Hidrogênio/metabolismo , Xilanos , Análise de Sequência de DNA , Bactérias Anaeróbias/genética , Ácidos Graxos/análise , Celulose/metabolismo , Etanol , DNA , DNA Bacteriano/genética , DNA Bacteriano/química , Técnicas de Tipagem Bacteriana
18.
Syst Appl Microbiol ; 46(4): 126438, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263084

RESUMO

A novel facultatively anaerobic moderately thermophilic bacterium, strain B-154 T, was isolated from a terrestrial hot spring in the Baikal lake region (Russian Federation). Gram-negative, motile, spherical cells were present singly, in pairs, or aggregates, and reproduced by binary fission. The strain grew at 30-57 °C and within a pH range of 5.1-8.4 with the optimum at 50 °C and pH 6.8-7.1. Strain B-154 T was a chemoorganoheterotroph, growing on mono-, di- and polysaccharides (xylan, starch, galactan, galactomannan, glucomannan, xyloglucan, pullulan, arabinan, lichenan, beta-glucan, pachyman, locust bean gum, xanthan gum). It did not require sodium chloride or yeast extract for growth. Major cellular fatty acids were anteiso-C15:0, iso-C16:0 and iso-C14:0. The respiratory quinone was MK-7. The complete genome of strain B-154 T was 4.73 Mbp in size; its G + C content was 61%. According to the phylogenomic analysis strain B-154 T forms a separate family-level phylogenetic lineage. Moreover, together with Limisphaera ngatamarikiensis and "Pedosphaera parvula" this strain forms a separate order-level phylogenetic lineage within Verrucomicrobiae class. Hence, we propose a novel order, Limisphaerales ord. nov., with two families Limisphaeraceae fam. nov. and Fontisphaeraceae fam. nov., and a novel genus and species Fontisphaera persica gen. nov., sp. nov. with type strain B-154 T. Ecogenomic analysis showed that representatives of the Limisphaerales are widespread in various environments. Although some of them were detected in hot springs the majority of Limisphaerales (54% of the studied metagenome-assembled genomes) were found in marine habitats. This study allowed a better understanding of physiology and ecology of Verrucomicrobiota - a rather understudied bacterial phylum.


Assuntos
Fontes Termais , Humanos , Fontes Termais/microbiologia , Filogenia , Lagos/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Bactérias Anaeróbias , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
19.
World J Microbiol Biotechnol ; 39(7): 179, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133792

RESUMO

Here we present the construction and characterization of metagenome assembled genomes (MAGs) from two hot springs residing in the vicinity of Indian Himalayan Geothermal Belt (IHGB). A total of 78 and 7 taxonomic bins were obtained for Old Yume Samdong (OYS) and New Yume Samdong (NYS) hot springs respectively. After passing all the criteria only 21 and 4 MAGs were further studied based on the successful prediction of their 16 S rRNA. Various databases were used such as GTDB, Kaiju, EzTaxon, BLAST XY Plot and NCBI BLAST to get the taxonomic classification of various 16 S rRNA predicted MAGs. The bacterial genomes found were from both thermophilic and mesophilic bacteria among which Proteobacteria, Chloroflexi, Bacteroidetes and Firmicutes were the abundant phyla. However, in case of OYS, two genomes belonged to archaeal Methanobacterium and Methanocaldococcus. Functional characterization revealed the richness of CAZymes such as Glycosyl Transferase (GT) (56.7%), Glycoside Hydrolase (GH) (37.4%), Carbohydrate Esterase family (CE) (8.2%), and Polysaccharide Lyase (PL) (1.9%). There were negligible antibiotic resistance genes in the MAGs however, a significant heavy metal tolerance gene was found in the MAGs. Thus, it may be assumed that there is no coexistence of antibiotic and heavy metal resistance genes in these hot spring microbiomes. Since the selected hot springs possess good sulfur content thus, we also checked the presence of genes for sulfur and nitrogen metabolism. It was found that MAGs from both the hot springs possess significant number of genes related to sulfur and nitrogen metabolism.


Assuntos
Fontes Termais , Metagenoma , Fontes Termais/microbiologia , Siquim , Bactérias/genética , Archaea/genética , Filogenia
20.
Environ Sci Technol ; 57(19): 7410-7420, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37134202

RESUMO

Hot springs represent a major source of arsenic release into the environment. Speciation is typically reported to be dominated by arsenite, arsenate, and inorganic thiolated arsenates. Much less is known about the relevance and formation of methylated thioarsenates, a group with species of high mobility and toxicity. In hot spring samples taken from the Tengchong volcanic region in China, methylated thioarsenates contributed up to 13% to total arsenic. Enrichment cultures were obtained from the corresponding sediment samples and incubated to assess their capability to convert arsenite into methylated thioarsenates over time and in the presence of different microbial inhibitors. In contrast to observations in other environmental systems (e.g., paddy soils), there was no solid evidence, supporting that the sulfate-reducing bacteria contributed to the arsenic methylation. Methanosarcina, the sole genus of methanogens detected in the enrichment cultures, as well as Methanosarcina thermophila TM-1, a pure strain within the genus, did methylate arsenic. We propose that methylated thioarsenates in a typical sulfide-rich hot spring environment like Tengchong form via a combination of biotic arsenic methylation driven by thermophilic methanogens and arsenic thiolation with either geogenic sulfide or sulfide produced by sulfate-reducing bacteria.


Assuntos
Arsênio , Arsenitos , Fontes Termais , Fontes Termais/microbiologia , Metilação , Sulfetos , Sulfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...