Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.880
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38865183

RESUMO

A Gram-stain-negative, aerobic, non-spore-forming, nonmotile, rod-shaped, and yellow-pigmented bacterium, designated strain JXAS1T, was isolated from a freshwater sample collected from Poyang Lake in China. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the isolate belonged to the genus Flavobacterium, being closest to Flavobacterium pectinovorum DSM 6368T (98.61 %). The genome size of strain JXAS1T was 4.66 Mb with DNA G+C content 35.7 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain JXAS1T and its closest relatives were below the threshold values of 95 and 70 %, respectively. The strain contained menaquinone 6 (MK-6) as the predominant menaquinone and the major polar lipids were phosphatidylethanolamine, one unidentified glycolipid, and one unidentified polar lipid. The major fatty acids (>5 %) were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C15 : 0, iso-C17 : 0 3OH, iso-C15 : 0 3OH, and summed feature 9 (iso-C17 : 1 ω9c and/or 10-methyl C16 : 0). Based on phylogenetic, genotypic, and phenotypic evidence, the isolated strain represents a new species in the genus Flavobacterium, and the name Flavobacterium poyangense is proposed. The type strain is JXAS1T (=GDMCC 1.1378T=KCTC 62719T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Flavobacterium , Lagos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Lagos/microbiologia , China , RNA Ribossômico 16S/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , DNA Bacteriano/genética , Fosfatidiletanolaminas , Glicolipídeos/análise , Fosfolipídeos/análise
2.
Int J Nanomedicine ; 19: 5193-5211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859958

RESUMO

Purpose: Ovarian cancer is a fatal gynecologic malignancy with a high rate of abdominal metastasis. Chemotherapy still has a poor clinical prognosis for ovarian cancer patients, with cell proliferation and angiogenesis leading to invasion, migration, and recurrence. To overcome these obstacles, we constructed a novel HA-modified paclitaxel and diosgenin liposome (PEG-TK-HA-PDLPs) using two novel functional materials, DSPE-PEG2000-HA and DSPE-PEG2000-TK-PEG5000, to specifically deliver the drugs to the tumor site in order to reduce OC cell proliferation and anti-angiogenic generation, thereby inhibiting invasion and migration. Methods and Results: PEG-TK-HA-PDLPs were prepared by film dispersion, with ideal physicochemical properties and exhibits active targeting for enhanced cellular uptake. The ZIP synergy score for PTX and Dios was calculated using the online SynergyFinder software to be 3.15, indicating synergy. In vitro results showed that PEG-TK-HA-PDLPs were highly cytotoxic to ID8 cells, induced ID8 cell apoptosis, and inhibited ID8 cell migration and invasion. In vivo studies showed that PEG-TK-HA-PDLPs could prolong the circulation time in the blood, accumulate significantly in the tumor site, and effectively fight against angiogenesis with significant anti-tumor effects. Conclusion: The production of PEG-TK-HA-PDLPs is an effective strategy for the treatment of OC.


Assuntos
Apoptose , Diosgenina , Ácido Hialurônico , Lipossomos , Neoplasias Ovarianas , Paclitaxel , Polietilenoglicóis , Espécies Reativas de Oxigênio , Feminino , Lipossomos/química , Lipossomos/farmacocinética , Paclitaxel/farmacologia , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Diosgenina/farmacologia , Diosgenina/química , Diosgenina/farmacocinética , Diosgenina/administração & dosagem , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Linhagem Celular Tumoral , Polietilenoglicóis/química , Animais , Espécies Reativas de Oxigênio/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidiletanolaminas
3.
J Colloid Interface Sci ; 669: 844-855, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38749223

RESUMO

Lamellarity and shape are important factors in the formation of vesicles and determine their role in biological systems and pharmaceutical applications. Cardiolipin (CL) is a major lipid in many biological membranes and exerts a great influence on their structural organization due to its particular structure and physico-chemical properties. Here, we used small-angle X-ray and neutron scattering to study the effects of CL with different acyl chain lengths and saturations (CL14:0, CL18:1, CL18:2) on vesicle morphology and lamellarity in membrane models containing mixtures of phosphatidylcholine and phosphatidylethanolamine with different acyl chain lengths and saturations (C14:0 and C 18:1). Measurements were performed in the presence of Phosphate Buffer Saline (PBS), at 37°C, to better reflect physiological conditions, which resulted in strong effects on vesicle morphology, depending on the type and amount of CL used. The presence of small quantities of CL (from 2.5%) reduced inter-membrane correlations and increased perturbation of the membrane, an effect which is enhanced in the presence of matched shorter saturated acyl chains, and mainly unilamellar vesicles (ULV) are formed. In extruded vesicles, employed for SANS experiments, flattened vesicles are observed partly due to the hypertonic effect of PBS, but also influenced by the type of CL added. Our experimental data from SAXS and SANS revealed a strong dependence on CL content in shaping the membrane microstructure, with an apparent optimum in the PC:CL mixture in terms of promoting reduced correlations, preferred curvature and elongation. However, the use of PBS caused distinct differences from previously published studies in water in terms of vesicle shape, and highlights the need to investigate vesicle formation under physiological conditions in order to be able to draw conclusions about membrane formation in biological systems.


Assuntos
Cardiolipinas , Lipossomos , Espalhamento a Baixo Ângulo , Cardiolipinas/química , Lipossomos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Difração de Raios X , Tamanho da Partícula , Difração de Nêutrons
4.
Nature ; 629(8012): 710-716, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693265

RESUMO

Phosphatidylcholine and phosphatidylethanolamine, the two most abundant phospholipids in mammalian cells, are synthesized de novo by the Kennedy pathway from choline and ethanolamine, respectively1-6. Despite the essential roles of these lipids, the mechanisms that enable the cellular uptake of choline and ethanolamine remain unknown. Here we show that the protein encoded by FLVCR1, whose mutation leads to the neurodegenerative syndrome posterior column ataxia and retinitis pigmentosa7-9, transports extracellular choline and ethanolamine into cells for phosphorylation by downstream kinases to initiate the Kennedy pathway. Structures of FLVCR1 in the presence of choline and ethanolamine reveal that both metabolites bind to a common binding site comprising aromatic and polar residues. Despite binding to a common site, FLVCR1 interacts in different ways with the larger quaternary amine of choline in and with the primary amine of ethanolamine. Structure-guided mutagenesis identified residues that are crucial for the transport of ethanolamine, but dispensable for choline transport, enabling functional separation of the entry points into the two branches of the Kennedy pathway. Altogether, these studies reveal how FLVCR1 is a high-affinity metabolite transporter that serves as the common origin for phospholipid biosynthesis by two branches of the Kennedy pathway.


Assuntos
Colina , Etanolamina , Proteínas de Membrana Transportadoras , Humanos , Sítios de Ligação , Transporte Biológico/genética , Colina/química , Colina/metabolismo , Etanolamina/química , Etanolamina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosforilação , Mutagênese
5.
J Proteome Res ; 23(6): 2054-2066, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38775738

RESUMO

The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.


Assuntos
Neoplasias Colorretais , Lipidômica , Fosfatidiletanolaminas , Espectrometria de Massas em Tandem , Língua , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Lipidômica/métodos , Masculino , Feminino , Língua/microbiologia , Língua/metabolismo , Língua/patologia , Língua/química , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem/métodos , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/análise , Idoso , Cromatografia Líquida , Lipídeos/análise , Lipídeos/química , Triglicerídeos/metabolismo , Triglicerídeos/análise , Adenoma/metabolismo , Adenoma/microbiologia , Esfingomielinas/análise , Esfingomielinas/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/química , Plasmalogênios/análise , Plasmalogênios/metabolismo , Plasmalogênios/química , Estudos de Casos e Controles , Etanolaminas/metabolismo , Etanolaminas/análise , Etanolaminas/química , Ceramidas/metabolismo , Ceramidas/análise , Adulto
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124462, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754204

RESUMO

Membrane fusion is closely related to plasma membrane domains rich in cone-shaped phosphatidylethanolamine (PE) lipids that can reverse membrane curvature under certain conditions. The phase transition of PE-based lipid membranes from the lamellar fluid phase (Lα) to the inverse hexagonal phase (HII) is commonly taken as a general model in reconstructing the membrane fusion pathway, and whose structural features have been mostly described so far using structural and microscopic techniques. The aim of this paper is to decipher the optical and molecular features of Lߠ→ Lα and especially of Lα â†’ HII transition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) lipids at pH = 7.0 when they are initially prepared in the form of both multi- and unilamellar liposomes (MLVs and LUVs). The distinction between optical properties of MLS- and LUVs-derived HII phase, provided from turbidity-sensitive temperature-dependent UV-Vis spectra, was attributed to different formation mechanisms of HII phase. Most importantly, from FTIR spectroscopic data of POPE lipids in Lß (15 °C), Lα (50 °C) and HII (85 °C) phases we identified the changes in molecular features of POPE lipids during phase transitions. Among the latter, by far the most significant is different hydration pattern of POPE lipids in MLVs- and LUVs-derived HII phase which extends from the polar-apolar interface all the way to the terminal amino group of the POPE lipid, along with the changes in the conformation of glycerol backbone as evidenced by the signature of α-methylene groups. Molecular dynamics simulations confirmed higher water penetration in HII phase and provided insight into hydrogen bonding patterns.


Assuntos
Transição de Fase , Fosfatidiletanolaminas , Fosfatidiletanolaminas/química , Lipossomos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrofotometria Ultravioleta , Temperatura
7.
Biochim Biophys Acta Biomembr ; 1866(6): 184338, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763269

RESUMO

The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, 16:0-18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PAPG, 16:0-20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.


Assuntos
Proteínas de Bactérias , Bicamadas Lipídicas , Fosfatidilgliceróis , Canais de Potássio , Bicamadas Lipídicas/química , Canais de Potássio/química , Canais de Potássio/metabolismo , Fosfatidilgliceróis/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fosfatidiletanolaminas/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membrana Celular/química , Termodinâmica , Lipossomos/química , Fosfatidilcolinas/química
8.
Artigo em Inglês | MEDLINE | ID: mdl-38713185

RESUMO

An aerobic, Gram-stain-negative and short rod-shaped bacterial strain, designated M6-31T, was isolated from rice paddy soil sampled in Miryang, Republic of Korea. Growth was observed at 4-35 °C (optimum, 28 °C), pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 0-4 % (w/v) NaCl (optimum, 0 % w/v). Phylogenetic analysis based on 16S rRNA gene sequences grouped strain M6-31T with Sphingobacterium bambusae IBFC2009T, Sphingobacterium griseoflavum SCU-B140T and Sphingobacterium solani MLS-26-JM13-11T in the same clade, with the 16S rRNA gene sequence similarities ranging from 95.8 to 96.6 %. A genome-based phylogenetic tree reconstructed by using all publicly available Sphingobacterium genomes placed strain M6-31T with S. bambusae KACC 22910T, 'Sphingobacterium deserti' ACCC 05744T, S. griseoflavum CGMCC 1.12966T and Sphingobacterium paludis CGMCC 1.12801T. Orthologous average nucleotide identity and digital DNA-DNA hybridization values between strain M6-31T and its closely related strains were lower than 74.6 and 22.0 %, respectively. The respiratory quinone was menaquinone-7, and the major polar lipid was phosphatidylethanolamine. The major fatty acids (>10 %) were C15 : 0 iso, C17 : 0 iso 3OH and summed feature 3. The phenotypic, chemotaxonomic and genotypic data obtained in this study showed that strain M6-31T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium oryzagri sp. nov. (type strain M6-31T=KACC 22765T=JCM 35893T) is proposed.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Oryza , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Sphingobacterium , Vitamina K 2 , Vitamina K 2/análogos & derivados , Oryza/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Sphingobacterium/genética , Sphingobacterium/isolamento & purificação , Sphingobacterium/classificação , DNA Bacteriano/genética , República da Coreia , Vitamina K 2/análise , Composição de Bases , Fosfatidiletanolaminas
9.
Artigo em Inglês | MEDLINE | ID: mdl-38747693

RESUMO

The use of algae as feedstock for industrial purposes, such as in bioethanol production, is desirable. During a search for new agarolytic marine bacteria, a novel Gram-stain-negative, strictly aerobic, and agarolytic bacterium, designated as TS8T, was isolated from algae in the harbour of the island of Susak, Croatia. The cells were rod-shaped and motile. The G+C content of the sequenced genome was 38.6 mol%. Growth was observed at 11-37 °C, with 0.5-13 % (w/v) NaCl, and at pH 6.0-9.0. The main fatty acids were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and C16 : 0. The main respiratory quinone was ubiquinone-8. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. Analysis of 16S rRNA gene sequences indicated that the newly isolated strain belongs to the genus Catenovulum. Based on 16S rRNA gene sequence data, strain TS8T is closely related to Catenovulum sediminis D2T (95.7 %), Catenovulum agarivorans YM01T (95.0 %), and Catenovulum maritimum Q1T (93.2 %). Digital DNA-DNA hybridization values between TS8T and the other Catenovulum strains were below 25 %. Based on genotypic, phenotypic, and phylogenetic data, strain TS8T represents a new species of the genus Catenovulum, for which the name Catenovulum adriaticum sp. nov. is proposed. The type strain is TS8T (=DSM 114830T=NCIMB 15451T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Ubiquinona , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Croácia , DNA Bacteriano/genética , Fosfolipídeos/química , Fosfolipídeos/análise , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas
10.
Artigo em Inglês | MEDLINE | ID: mdl-38747701

RESUMO

Two Gram-stain-negative strains, designed SYSU M86414T and SYSU M84420, were isolated from marine sediment samples of the South China Sea (Sansha City, Hainan Province, PR China). These strains were aerobic and could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C), and in the presence of 0-10 % NaCl (w/v; optimum 3 %). The predominant respiratory menaquinone of strains SYSU M86414T and SYSU M84420 was MK-6. The primary cellular polar lipid was phosphatidylethanolamine. The major cellular fatty acids (>10 %) in both strains were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The DNA G+C content of strains SYSU M86414T and SYSU M84420 were both 42.10 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that these novel strains belonged to the genus Flagellimonas and strain SYSU M86414T showed the highest 16S rRNA gene sequence similarity to Flagellimonas marinaquae JCM 11811T (98.83 %), followed by Flagellimonas aurea BC31-1-A7T (98.62 %), while strain SYSU M84420 had highest 16S rRNA gene sequence similarity to F. marinaquae JCM 11811T (98.76 %) and F. aurea BC31-1-A7T (98.55 %). Based on the results of polyphasic analyses, strains SYSU M86414T and SYSU M84420 should be considered to represent a novel species of the genus Flagellimonas, for which the name Flagellimonas halotolerans sp. nov. is proposed. The type strain of the proposed novel isolate is SYSU M86414T (=GDMCC 1.3806T=KCTC 102040T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S , Água do Mar , Análise de Sequência de DNA , Vitamina K 2 , China , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , Ácidos Graxos/análise , Água do Mar/microbiologia , DNA Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfatidiletanolaminas , Dados de Sequência Molecular
11.
Lipids Health Dis ; 23(1): 138, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734619

RESUMO

BACKGROUND: Skin barrier alterations play a crucial function in melasma development. Past researches have demonstrated variations in lipid content between the epidermis of melasma lesions and normal tissues, along with the varied expression of lipid-related genes in melasma. This study aimed to analyze the lipidome profiles of skin surface lipids (SSL) in patients with melasma before and after treatment to understand associated abnormalities. METHODS: Melasma was treated with tranexamic acid orally and hydroquinone cream topically. Disease was assessed using the Melasma Area and Severity Index (MASI), and the impact to life was evaluated with Melasma Quality of Life (MELASQoL) score. Epidermal melanin particles were observed using reflection confocal microscopy (RCM), whereas epidermal pigment and blood vessel morphology were observed using dermoscopy, and SSL samples were collected. Specific information regarding alterations in lipid composition was obtained through multivariate analysis of the liquid chromatography-mass spectrometry data. RESULTS: After treatment, patients with melasma exhibited decreased MASI and MELASQoL scores (P < 0.001); RCM revealed reduced melanin content in the lesions, and dermoscopy revealed fewer blood vessels. Fifteen lipid subclasses and 382 lipid molecules were identified using lipidomic assays. The expression levels of total lipids, phosphatidylcholine, and phosphatidylethanolamine in the melasma lesions decreased after treatment (P < 0.05). CONCLUSION: This study revealed alterations in the SSL composition after effective melasma treatment, suggesting a compensatory role for lipids in melasma barrier function. The mechanism involving SSL and the lipid barrier, which influences melasma's occurrence, needs further elucidation.


Assuntos
Hidroquinonas , Lipidômica , Melanose , Qualidade de Vida , Humanos , Melanose/tratamento farmacológico , Feminino , Adulto , Hidroquinonas/uso terapêutico , Hidroquinonas/administração & dosagem , Ácido Tranexâmico/uso terapêutico , Pessoa de Meia-Idade , Melaninas/metabolismo , Masculino , Lipídeos/sangue , Lipídeos/análise , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/patologia , Fosfatidiletanolaminas/metabolismo , Fosfatidilcolinas/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38717929

RESUMO

Two yellow-coloured strains, F-29T and F-340T, were isolated from fish farms in Antalya and Mugla in 2015 and 2017 during surveillance studies. The 16S rRNA gene sequence analysis showed that both strains belong to the genus Flavobacterium. A polyphasic approach involving a comprehensive genome analysis was employed to ascertain the taxonomic provenance of the strains. The overall genome-relatedness indices of digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) between the strains and the other members of the genus Flavobacterium were found to be well below the established thresholds of 70 and 95 %, respectively. The whole-genome-based phylogenetic analysis revealed that strain F-29T is closely related to Flavobacterium granuli (dDDH 39.3 % and ANI 89.4 %), while strain F-340T has a close relationship with the type strain of Flavobacterium pygoscelis (dDDH 25.6 % and ANI 81.5 %). Both strains were psychrotolerant with an optimum growth temperature of 25 °C. The chemotaxonomic characteristics of the strains were typical of the genus Flavobacterium. Both strains had phosphatidylethanolamine, aminolipids and unidentified lipids in their polar lipid profile and MK-6 as the isoprenoid quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The genome size of the strains was 3.5 Mb, while G+C contents were 35.3 mol% for strain F-29T and 33.4 mol% for strain F-340T. Overall, the characterizations confirmed that both strains are representatives of two novel species within the genus Flavobacterium, for which the names Flavobacterium acetivorans sp. nov. and Flavobacterium galactosidilyticum sp. nov. are proposed, with F-29T (JCM 34193T=KCTC 82253T) and F-340T (JCM 34203T=KCTC 82263T) as the type strains, respectively.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Peixes , Flavobacterium , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Animais , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Peixes/microbiologia , Genoma Bacteriano , Aquicultura , Fosfatidiletanolaminas
13.
Artigo em Inglês | MEDLINE | ID: mdl-38700930

RESUMO

Four newly discovered Gram-stain-negative bacteria, designated as BL00010T, BL00058, D8-11T and BL00200, were isolated from water samples collected at three hydrological monitoring stations (namely Chiang Saen, Chiang Khan and Nong Khai) located along the Mekong River in Thailand. An investigation encompassing phenotypic, chemotaxonomic and genomic traits was conducted. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that all four isolates represented members of the genus Rhodoferax. These isolates were closely related to Rhodoferax bucti KCTC 62564T with a similarity of 99.59%. The major fatty acids of the four novel isolates included C16:0 and C16:1ω7c and/or C16 : 1ω6c, whereas the major respiratory quinone was identified as ubiquinone Q-8. In addition, phosphatidylethanolamine was identified as a major polar lipid in these bacteria. The genomes of BL00010T, BL00058, D8-11T and BL00200 were similar in size (3.88-4.01 Mbp) and DNA G+C contents (59.5, 59.3, 59.5 and 59.3 mol%, respectively). In contrast to R. bucti KCTC 62564T and Rhodoferax aquaticus KCTC 32394T, the newly discovered species possessed several genes involved in nitrite and nitrile metabolism, which may be related to their unique adaptation to nitrile-rich environments. From the results of the pairwise analysis of average nucleotide identity of the whole genome and digital DNA-DNA hybridisation, it was evident that BL00010T and D8-11T represented two novel species, for which we propose the nomenclature Rhodoferax potami sp. nov., with the type strain BL00010T (TBRC 17198T = NBRC 116413T), and Rhodoferax mekongensis sp. nov., with the type strain D8-11T (TBRC 17307T = NBRC 116415T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Rios , Análise de Sequência de DNA , Ubiquinona , Tailândia , RNA Ribossômico 16S/genética , Rios/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/química , Genoma Bacteriano , Fosfatidiletanolaminas , Hibridização de Ácido Nucleico
14.
Nat Commun ; 15(1): 3711, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697966

RESUMO

The LAT1-4F2hc complex (SLC7A5-SLC3A2) facilitates uptake of essential amino acids, hormones and drugs. Its dysfunction is associated with many cancers and immune/neurological disorders. Here, we apply native mass spectrometry (MS)-based approaches to provide evidence of super-dimer formation (LAT1-4F2hc)2. When combined with lipidomics, and site-directed mutagenesis, we discover four endogenous phosphatidylethanolamine (PE) molecules at the interface and C-terminus of both LAT1 subunits. We find that interfacial PE binding is regulated by 4F2hc-R183 and is critical for regulation of palmitoylation on neighbouring LAT1-C187. Combining native MS with mass photometry (MP), we reveal that super-dimerization is sensitive to pH, and modulated by complex N-glycans on the 4F2hc subunit. We further validate the dynamic assemblies of LAT1-4F2hc on plasma membrane and in the lysosome. Together our results link PTM and lipid binding with regulation and localisation of the LAT1-4F2hc super-dimer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Transportador 1 de Aminoácidos Neutros Grandes , Lipoilação , Proteínas de Membrana , Fosfatidiletanolaminas , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Fosfatidiletanolaminas/metabolismo , Lisossomos/metabolismo , Membrana Celular/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Células HEK293 , Multimerização Proteica , Ligação Proteica , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Concentração de Íons de Hidrogênio
15.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652544

RESUMO

Carbohydrates and lipids provide the majority of substrates to fuel mitochondrial oxidative phosphorylation. Metabolic inflexibility, defined as an impaired ability to switch between these fuels, is implicated in a number of metabolic diseases. Here, we explore the mechanism by which physical inactivity promotes metabolic inflexibility in skeletal muscle. We developed a mouse model of sedentariness, small mouse cage (SMC), that, unlike other classic models of disuse in mice, faithfully recapitulated metabolic responses that occur in humans. Bioenergetic phenotyping of skeletal muscle mitochondria displayed metabolic inflexibility induced by physical inactivity, demonstrated by a reduction in pyruvate-stimulated respiration (JO2) in the absence of a change in palmitate-stimulated JO2. Pyruvate resistance in these mitochondria was likely driven by a decrease in phosphatidylethanolamine (PE) abundance in the mitochondrial membrane. Reduction in mitochondrial PE by heterozygous deletion of phosphatidylserine decarboxylase (PSD) was sufficient to induce metabolic inflexibility measured at the whole-body level, as well as at the level of skeletal muscle mitochondria. Low mitochondrial PE in C2C12 myotubes was sufficient to increase glucose flux toward lactate. We further implicate that resistance to pyruvate metabolism is due to attenuated mitochondrial entry via mitochondrial pyruvate carrier (MPC). These findings suggest a mechanism by which mitochondrial PE directly regulates MPC activity to modulate metabolic flexibility in mice.


Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Fosfatidiletanolaminas , Ácido Pirúvico , Animais , Camundongos , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Mitocôndrias Musculares/metabolismo , Fosfatidiletanolaminas/metabolismo , Comportamento Sedentário , Masculino , Carboxiliases/metabolismo , Carboxiliases/genética , Camundongos Knockout , Estearoil-CoA Dessaturase
16.
J Biol Chem ; 300(5): 107259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582453

RESUMO

Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment.


Assuntos
Homeostase , Metabolismo dos Lipídeos , Bainha de Mielina , Oligodendroglia , Selenoproteínas , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Peroxidação de Lipídeos , Camundongos Knockout , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fosfatidiletanolaminas/metabolismo , Éteres Fosfolipídicos/metabolismo , Plasmalogênios/metabolismo , Selenoproteínas/metabolismo , Selenoproteínas/genética , Paraplegia Espástica Hereditária/metabolismo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia
17.
Microbiol Spectr ; 12(6): e0310323, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38647275

RESUMO

Tail fat deposition of Altay sheep not only increased the cost of feeding but also reduced the economic value of meat. Currently, because artificial tail removal and gene modification methods cannot solve this problem, it is maybe to consider reducing tail fat deposition from the path of intestinal microbiota and metabolite. We measured body weight and tail fat weight, collected the serum for hormone detection by enzyme-linked immunosorbent assay, and collected colon contents to 16S rRNA sequence and liquid chromotography with mass spectrometry detection to obtain colon microbiota and metabolite information, from 12 3-month-old and 6-month-old Altay sheep. Subsequently, we analyzed the correlation between colon microbiota and tail fat weight, hormones, and metabolites, respectively. We identified that the tail fat deposition of Altay sheep increased significantly with the increase of age and body weight, and the main microbiota that changed were Verrucomicrobia, Cyanobacteria, Akkermansia, Bacteroides, Phocaeicola, Escherichia-Shigella, and Clostridium_sensu_stricto_1. The results indicated that the diversities of metabolites in the colon contents of 3-months old and 6-months old were mainly reflected in phosphocholine (PC) and phosphatidylethanolamine (PE) in the lipid metabolism pathway. The correlations analyzed showed that Verrucomicrobia, Chlamydiae, Akkermansia, Ruminococcaceae_UCG-005, Bacteroides, and Phocaeicola were negatively correlated with tail fat deposition. Verrucomicrobia, Akkermansia, and Bacteroides were negatively correlated with growth hormone (GH). Verrucomicrobia was positively correlated with L-a-lysophosphatidylserine and PE(18:1(9Z)/0:0). Our results showed that tail fat deposition of Altay sheep was probably correlated with the abundance of Verrucomicrobia, Akkermansia, Bacteroides of colon microbiota, PC, PE of metabolites, and GH of serum. IMPORTANCE: Excessive tail fat deposition of Altay sheep caused great economic losses, and the current research results could not solve this problem well. Now, our research speculates that the tail fat deposition of Aletay sheep may be related to the abundance of Verrucomicrobia, Akkermansia, Bacteroides, metabolites phosphocholine, phosphatidylethanolamine, and growth hormone of serum. Further investigation of the interaction mechanism between these microbiota or metabolites and tail fat deposition is helpful in reducing tail fat deposition of Altay sheep and increasing the economic benefits of breeding farms.


Assuntos
Bactérias , Colo , Microbioma Gastrointestinal , RNA Ribossômico 16S , Cauda , Animais , Ovinos/microbiologia , Microbioma Gastrointestinal/fisiologia , Colo/microbiologia , Colo/metabolismo , Cauda/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Fosfatidiletanolaminas/metabolismo , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Fosfatidilcolinas/metabolismo
18.
Cell Mol Life Sci ; 81(1): 180, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613672

RESUMO

Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.


Assuntos
Amarelo de Eosina-(YS)/análogos & derivados , Interleucina-8 , Fosfatidiletanolaminas , Pré-Eclâmpsia , Gravidez , Humanos , Feminino , Interleucina-8/genética , Fosfatidilinositol 3-Quinases , Pré-Eclâmpsia/genética , Placenta , Artérias , Meios de Cultivo Condicionados , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose
19.
Artigo em Inglês | MEDLINE | ID: mdl-38634861

RESUMO

Three Gram-stain-negative, aerobic, non-motile and coccobacilli-shaped bacterial strains, designated as NPKOSM-4T, NPKOSM-8 and MO-31T, were isolated from rice paddy soil. They had 96.5-100 % 16S rRNA gene sequence similarity to each other, and strains NPKOSM-4T and NPKOSM-8 showed 100 % 16S rRNA gene sequence similarity, confirming that they were the same species. Comparative analysis of 16S rRNA genes with closely related type strains showed that three isolates were most closely related to Falsiroseomonas terricola EM0302T (96.1-97.8 %), Falsiroseomonas wooponensis WW53T (95.51-96.3 %) and Falsiroseomonas bella CQN31T (96.0-96.5 %), respectively. The genomes of strains NPKOSM-4T and MO-31T consisted of 4 632 875 and 6 455 771 bps, respectively, with 72.0 and 72.1 mol% G+C content. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strains NPKOSM-4T and MO-31T and type strains of Falsiroseomonas species were lower than the cut-offs (≥95 % for ANI, ≥95-96 % for AAI and ≥ 70 % for dDDH) required to define a bacterial species. The major fatty acids of strains NPKOSM-4T, NPKOSM-8 and MO-31T were C18 : 1 ω7c and C18 : 1 2-OH (<10 %) and the predominant quinone was Q-10. The polar lipids of strain NPKOSM-4T were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified aminophospholipid and three unidentified aminolipids. The polar lipid profiles of strain MO-31T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified aminolipid and three unidentified lipids. Based on their distinctive phenotypic, phylogenetic, and chemotaxonomic characteristics, strains NPKOSM-4T, NPKOSM-8 and MO-31T are considered to represent two novel species of the genus Falsiroseomonas, for which the names Falsiroseomonas oryziterrae sp. nov. [to accommodate strains NPKOSM-4T (= KACC 22135T=JCM 34745T), NPKOSM-8 (=KACC 22134=JCM 34746)] and Falsiroseomonas oryzae sp. nov. [to accommodate strain MO-31T (= KACC 22465T=JCM 35532T)] are proposed.


Assuntos
Oryza , Composição de Bases , Cardiolipinas , Ácidos Graxos/química , Fosfatidiletanolaminas , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Aminoácidos , Nucleotídeos , Fosfatidilcolinas , Fosfatidilgliceróis , Solo
20.
ACS Appl Mater Interfaces ; 16(15): 18252-18267, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581365

RESUMO

Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Fosfatidiletanolaminas , Polietilenoglicóis , Doxorrubicina/farmacologia , Óxido Nítrico , Fototerapia , Nanopartículas/uso terapêutico , Mitocôndrias , Lipídeos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA