Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4790, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839752

RESUMO

Cancer cells are often addicted to serine synthesis to support growth. How serine synthesis is regulated in cancer is not well understood. We recently demonstrated protein arginine methyltransferase 1 (PRMT1) is upregulated in hepatocellular carcinoma (HCC) to methylate and activate phosphoglycerate dehydrogenase (PHGDH), thereby promoting serine synthesis. However, the mechanisms underlying PRMT1 upregulation and regulation of PRMT1-PHGDH axis remain unclear. Here, we show the E3 ubiquitin ligase F-box-only protein 7 (FBXO7) inhibits serine synthesis in HCC by binding PRMT1, inducing lysine 37 ubiquitination, and promoting proteosomal degradation of PRMT1. FBXO7-mediated PRMT1 downregulation cripples PHGDH arginine methylation and activation, resulting in impaired serine synthesis, accumulation of reactive oxygen species (ROS), and inhibition of HCC cell growth. Notably, FBXO7 is significantly downregulated in human HCC tissues, and inversely associated with PRMT1 protein and PHGDH methylation level. Overall, our study provides mechanistic insights into the regulation of cancer serine synthesis by FBXO7-PRMT1-PHGDH axis, and will facilitate the development of serine-targeting strategies for cancer therapy.


Assuntos
Carcinoma Hepatocelular , Proteínas F-Box , Neoplasias Hepáticas , Fosfoglicerato Desidrogenase , Proteína-Arginina N-Metiltransferases , Serina , Ubiquitinação , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Serina/metabolismo , Serina/biossíntese , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Linhagem Celular Tumoral , Animais , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Camundongos , Proliferação de Células , Metilação , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Masculino , Células HEK293 , Feminino , Células Hep G2
2.
Sci Adv ; 10(20): eadn2867, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758794

RESUMO

Mitochondrial dysfunction is the pivotal driving factor of multiple inflammatory diseases, and targeting mitochondrial biogenesis represents an efficacious approach to ameliorate such dysfunction in inflammatory diseases. Here, we demonstrated that phosphoglycerate dehydrogenase (PHGDH) deficiency promotes mitochondrial biogenesis in inflammatory macrophages. Mechanistically, PHGDH deficiency boosts mitochondrial reactive oxygen species (mtROS) by suppressing cytoplasmic glutathione synthesis. mtROS provokes hypoxia-inducible factor-1α signaling to direct nuclear specificity protein 1 and nuclear respiratory factor 1 transcription. Moreover, myeloid Phgdh deficiency reverses diet-induced obesity. Collectively, this study reveals that a mechanism involving de novo serine synthesis orchestrates mitochondrial biogenesis via mitochondrial-to-nuclear communication, and provides a potential therapeutic target for tackling inflammatory diseases and mitochondria-mediated diseases.


Assuntos
Macrófagos , Mitocôndrias , Biogênese de Organelas , Fosfoglicerato Desidrogenase , Espécies Reativas de Oxigênio , Serina , Macrófagos/metabolismo , Animais , Mitocôndrias/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Camundongos Knockout , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/metabolismo , Inflamação/patologia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Camundongos Endogâmicos C57BL
3.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710705

RESUMO

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Assuntos
Argininossuccinato Sintase , Proliferação de Células , Fosfoglicerato Desidrogenase , Serina , Neoplasias de Mama Triplo Negativas , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo , Serina/biossíntese , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Animais , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Linhagem Celular Tumoral , Camundongos Nus , Ubiquitinação , Camundongos , Glicina/metabolismo
4.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656254

RESUMO

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Assuntos
Endorribonucleases , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glucose , Glutamina , Fosfoglicerato Desidrogenase , Monoéster Fosfórico Hidrolases , Proteínas Serina-Treonina Quinases , Serina , Transaminases , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Serina/biossíntese , Transdução de Sinais
5.
Cell Mol Immunol ; 21(5): 448-465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409249

RESUMO

Phosphoglycerate dehydrogenase (PHGDH) has emerged as a crucial factor in macromolecule synthesis, neutralizing oxidative stress, and regulating methylation reactions in cancer cells, lymphocytes, and endothelial cells. However, the role of PHGDH in tumor-associated macrophages (TAMs) is poorly understood. Here, we found that the T helper 2 (Th2) cytokine interleukin-4 and tumor-conditioned media upregulate the expression of PHGDH in macrophages and promote immunosuppressive M2 macrophage activation and proliferation. Loss of PHGDH disrupts cellular metabolism and mitochondrial respiration, which are essential for immunosuppressive macrophages. Mechanistically, PHGDH-mediated serine biosynthesis promotes α-ketoglutarate production, which activates mTORC1 signaling and contributes to the maintenance of an M2-like macrophage phenotype in the tumor microenvironment. Genetic ablation of PHGDH in macrophages from tumor-bearing mice results in attenuated tumor growth, reduced TAM infiltration, a phenotypic shift of M2-like TAMs toward an M1-like phenotype, downregulated PD-L1 expression and enhanced antitumor T-cell immunity. Our study provides a strong basis for further exploration of PHGDH as a potential target to counteract TAM-mediated immunosuppression and hinder tumor progression.


Assuntos
Ácidos Cetoglutáricos , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfoglicerato Desidrogenase , Transdução de Sinais , Microambiente Tumoral , Macrófagos Associados a Tumor , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Camundongos , Ácidos Cetoglutáricos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Fenótipo , Linhagem Celular Tumoral , Ativação de Macrófagos
6.
Cell Tissue Res ; 395(3): 271-283, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183459

RESUMO

In skeletal muscle, the Hippo effector Yap promotes satellite cell, myoblast, and rhabdomyoblast proliferation but prevents myogenic differentiation into multinucleated muscle fibres. We previously noted that Yap drives expression of the first enzyme of the serine biosynthesis pathway, phosphoglycerate dehydrogenase (Phgdh). Here, we examined the regulation and function of Phgdh in satellite cells and myoblasts and found that Phgdh protein increased during satellite cell activation. Analysis of published data reveal that Phgdh mRNA in mouse tibialis anterior muscle was highly expressed at day 3 of regeneration after cardiotoxin injection, when markers of proliferation are also robustly expressed and in the first week of synergist-ablated muscle. Finally, siRNA-mediated knockdown of PHGDH significantly reduced myoblast numbers and the proliferation rate. Collectively, our data suggest that Phgdh is a proliferation-enhancing metabolic enzyme that is induced when quiescent satellite cells become activated.


Assuntos
Fosfoglicerato Desidrogenase , Células Satélites de Músculo Esquelético , Camundongos , Animais , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Proliferação de Células/fisiologia , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
7.
Am J Physiol Endocrinol Metab ; 326(1): E73-E91, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37991454

RESUMO

Cells use glycolytic intermediates for anabolism, e.g., via the serine synthesis and pentose phosphate pathways. However, we still understand poorly how these metabolic pathways contribute to skeletal muscle cell biomass generation. The first aim of this study was therefore to identify enzymes that limit protein synthesis, myotube size, and proliferation in skeletal muscle cells. We inhibited key enzymes of glycolysis, the pentose phosphate pathway, and the serine synthesis pathway to evaluate their importance in C2C12 myotube protein synthesis. Based on the results of this first screen, we then focused on the serine synthesis pathway enzyme phosphoglycerate dehydrogenase (PHGDH). We used two different PHGDH inhibitors and mouse C2C12 and human primary muscle cells to study the importance and function of PHGDH. Both myoblasts and myotubes incorporated glucose-derived carbon into proteins, RNA, and lipids, and we showed that PHGDH is essential in these processes. PHGDH inhibition decreased protein synthesis, myotube size, and myoblast proliferation without cytotoxic effects. The decreased protein synthesis in response to PHGDH inhibition appears to occur mainly mechanistic target of rapamycin complex 1 (mTORC1)-dependently, as was evident from experiments with insulin-like growth factor 1 and rapamycin. Further metabolomics analyses revealed that PHGDH inhibition accelerated glycolysis and altered amino acid, nucleotide, and lipid metabolism. Finally, we found that supplementing an antioxidant and redox modulator, N-acetylcysteine, partially rescued the decreased protein synthesis and mTORC1 signaling during PHGDH inhibition. The data suggest that PHGDH activity is critical for skeletal muscle cell biomass generation from glucose and that it regulates protein synthesis and mTORC1 signaling.NEW & NOTEWORTHY The use of glycolytic intermediates for anabolism was demonstrated in both myoblasts and myotubes, which incorporate glucose-derived carbon into proteins, RNA, and lipids. We identify phosphoglycerate dehydrogenase (PHGDH) as a critical enzyme in those processes and also for muscle cell hypertrophy, proliferation, protein synthesis, and mTORC1 signaling. Our results thus suggest that PHGDH in skeletal muscle is more than just a serine-synthesizing enzyme.


Assuntos
Fosfoglicerato Desidrogenase , Serina , Animais , Humanos , Camundongos , Biomassa , Carbono/metabolismo , Proliferação de Células , Glucose/metabolismo , Lipídeos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , RNA/metabolismo , Serina/metabolismo
8.
Int Immunopharmacol ; 127: 111462, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159553

RESUMO

Clinical studies indicated that Serum Amyloid A (SAA) might be a promising biomarker for forecasting the activity, severity, and adverse prognosis of systemic lupus erythematosus (SLE). Simultaneously, a positive correlation has been observed between macrophages, Th17 cells, and SLE disease activity, with both these immune cells being affected by SAA. Presently, the relationship between SAA and the aforementioned immune cell types in SLE remains to be elucidated. To discern the immune cell type most closely associated with SAA, we undertook a single-cell RNA sequencing data analysis via the GEO database. Subsequent results revealed a strong association between macrophages and SAA, a relationship further validated through flow cytometry of spleen macrophages in the MRL/lpr model. We discovered that SAA stimulate M1 macrophage differentiation along with the upregulation of pro-inflammatory cytokines such as IL-6 and IL-1ß. Our findings suggest that SAA may promote M1 macrophage differentiation via the downregulation of phosphoglycerate dehydrogenase (PHGDH). Artesunate (ART), primarily utilized for malaria treatment, was shown to inhibit M1 macrophage differentiation and pro-inflammatory cytokine levels via upregulating the PHGDH expression, thereby attenuating the disease activity in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Proteína Amiloide A Sérica , Humanos , Animais , Camundongos , Artesunato/farmacologia , Artesunato/uso terapêutico , Proteína Amiloide A Sérica/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/uso terapêutico , Macrófagos , Citocinas/metabolismo , Camundongos Endogâmicos MRL lpr
9.
Exp Cell Res ; 433(2): 113820, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879549

RESUMO

The Warburg effect links growth and glycolysis in cancer. A key purpose of the Warburg effect is to generate glycolytic intermediates for anabolic reactions, such as nucleotides → RNA/DNA and amino acids → protein synthesis. The aim of this study was to investigate whether a similar 'glycolysis-for-anabolism' metabolic reprogramming also occurs in hypertrophying skeletal muscle. To interrogate this, we first induced C2C12 myotube hypertrophy with IGF-1. We then added 14C glucose to the differentiation medium and measured radioactivity in isolated protein and RNA to establish whether 14C had entered anabolism. We found that especially protein became radioactive, suggesting a glucose → glycolytic intermediates → non-essential amino acid(s) → protein series of reactions, the rate of which was increased by IGF-1. Next, to investigate the importance of glycolytic flux and non-essential amino acid synthesis for myotube hypertrophy, we exposed C2C12 and primary mouse myotubes to the glycolysis inhibitor 2-Deoxy-d-glucose (2DG). We found that inhibiting glycolysis lowered C2C12 and primary myotube size. Similarly, siRNA silencing of PHGDH, the key enzyme of the serine biosynthesis pathway, decreased C2C12 and primary myotube size; whereas retroviral PHGDH overexpression increased C2C12 myotube size. Together these results suggest that glycolysis is important for hypertrophying myotubes, which reprogram their metabolism to facilitate anabolism, similar to cancer cells.


Assuntos
Fator de Crescimento Insulin-Like I , Neoplasias , Animais , Camundongos , Fator de Crescimento Insulin-Like I/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Neoplasias/metabolismo , RNA/metabolismo , Hipertrofia/metabolismo , Glucose/farmacologia , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/farmacologia
10.
Cell Res ; 33(11): 835-850, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726403

RESUMO

Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Serina/metabolismo , Linhagem Celular Tumoral
11.
J Biol Chem ; 299(9): 105177, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37611825

RESUMO

Translational regulation is one of the decisive steps in gene expression, and its dysregulation is closely related to tumorigenesis. Eukaryotic translation initiation factor 3 subunit i (eIF3i) promotes tumor growth by selectively regulating gene translation, but the underlying mechanisms are largely unknown. Here, we show that eIF3i is significantly increased in colorectal cancer (CRC) and reinforces the proliferation of CRC cells. Using ribosome profiling and proteomics analysis, several genes regulated by eIF3i at the translation level were identified, including D-3-phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in the de novo serine synthesis pathway that participates in metabolic reprogramming of tumor cells. PHGDH knockdown significantly represses CRC cell proliferation and partially attenuates the excessive growth induced by eIF3i overexpression. Mechanistically, METTL3-mediated N6-methyladenosine modification on PHGDH mRNA promotes its binding with eIF3i, ultimately leading to a higher translational rate. In addition, knocking down eIF3i and PHGDH impedes tumor growth in vivo. Collectively, this study not only uncovered a novel regulatory mechanism for PHGDH translation but also demonstrated that eIF3i is a critical metabolic regulator in human cancer.


Assuntos
Neoplasias Colorretais , Fator de Iniciação 3 em Eucariotos , Regulação Neoplásica da Expressão Gênica , Fosfoglicerato Desidrogenase , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Metiltransferases/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , RNA Mensageiro/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação para Cima , Técnicas de Silenciamento de Genes , Regulação Neoplásica da Expressão Gênica/genética , Animais , Camundongos , Camundongos Endogâmicos BALB C , Feminino , Xenoenxertos
12.
Biomed Pharmacother ; 165: 115006, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327589

RESUMO

Metabolic reprogramming is one of the key features of tumors facilitating their rapid proliferation and adaptation to harsh microenvironments. Yin Yang 2 (YY2) has recently been reported as a tumor suppressor downregulated in various types of tumors; however, the molecular mechanisms underlying its tumor-suppressive activity remain poorly understood. Furthermore, the involvement of YY2 in tumor cell metabolic reprogramming remains unclear. Herein, we aimed to elucidate the novel regulatory mechanism of YY2 in the suppression of tumorigenesis. Using transcriptomic analysis, we uncovered an unprecedented link between YY2 and tumor cell serine metabolism. YY2 alteration could negatively regulate the expression level of phosphoglycerate dehydrogenase (PHGDH), the first enzyme in the serine biosynthesis pathway, and consequently, tumor cell de novo serine biosynthesis. Mechanistically, we revealed that YY2 binds to the PHGDH promoter and suppresses its transcriptional activity. This, in turn, leads to decreased production of serine, nucleotides, and cellular reductants NADH and NADPH, which subsequently suppresses tumorigenic potential. These findings reveal a novel function of YY2 as a regulator of the serine metabolic pathway in tumor cells and provide new insights into its tumor suppressor activity. Furthermore, our findings suggest the potential of YY2 as a target for metabolic-based antitumor therapeutic strategies.


Assuntos
Fosfoglicerato Desidrogenase , Serina , Humanos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Yin-Yang , Carcinogênese/genética , Microambiente Tumoral , Fatores de Transcrição/metabolismo
13.
Cell Signal ; 109: 110736, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263462

RESUMO

PURPOSE: Esophageal squamous carcinoma (ESCC) with a high incidence in China, lacks effective therapeutic targets. Phosphoglycerate dehydrogenase (PHGDH) is a key enzyme in serine biosynthesis. However, the biological role of PHGDH in ESCC has not been revealed. METHODS: The expression of PHGDH in ESCC was investigated by UALCAN. The relationship between PHGDH expression and its prognostic value was analyzed by Kaplan-Meier and univariate Cox regression. Further, the potential functions of PHGDH involved in ESCC were explored through DAVID database and GSEA software. In addition, the expression of PHGDH was verified in ESCC. Then, the effects of PHGDH knockdown on ESCC were evaluated in vitro and in vivo by cell proliferation, clone formation, cell cycle, apoptosis, tube formation assays and ESCC cells derived xenograft model. In addition, western blotting and immunohistochemistry were used to detect the expression of Wnt/ß-catenin pathway which was associated with PHGDH. RESULTS: Bioinformatics analysis found that PHGDH was highly expressed in ESCC, and meaningfully, patients with high PHGDH expression had a poor prognosis. Moreover, the overexpression of PHGDH was verified in ESCC. Afterwards, PHGDH knockdown inhibited the cell proliferation, induced cell cycle arrest and apoptosis in ESCC cells, and inhibited the angiogenesis of HUVECs induced by ESCC conditioned medium, as well as inhibited the growth of xenograft tumor. Mechanistically, PHGDH knockdown inhibited Wnt/ß-catenin signaling pathway in ESCC. CONCLUSION: High expression of PHGDH predicts a poor prognosis for ESCC. PHGDH knockdown inhibits ESCC progression by suppressing Wnt/ß-catenin signaling pathway, indicating that PHGDH might be a potential target for ESCC therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas/patologia , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Neoplasias Esofágicas/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular
14.
Proc Natl Acad Sci U S A ; 120(21): e2217826120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192160

RESUMO

Molecular classification of gastric cancer (GC) identified a subgroup of patients showing chemoresistance and poor prognosis, termed SEM (Stem-like/Epithelial-to-mesenchymal transition/Mesenchymal) type in this study. Here, we show that SEM-type GC exhibits a distinct metabolic profile characterized by high glutaminase (GLS) levels. Unexpectedly, SEM-type GC cells are resistant to glutaminolysis inhibition. We show that under glutamine starvation, SEM-type GC cells up-regulate the 3 phosphoglycerate dehydrogenase (PHGDH)-mediated mitochondrial folate cycle pathway to produce NADPH as a reactive oxygen species scavenger for survival. This metabolic plasticity is associated with globally open chromatin structure in SEM-type GC cells, with ATF4/CEBPB identified as transcriptional drivers of the PHGDH-driven salvage pathway. Single-nucleus transcriptome analysis of patient-derived SEM-type GC organoids revealed intratumoral heterogeneity, with stemness-high subpopulations displaying high GLS expression, a resistance to GLS inhibition, and ATF4/CEBPB activation. Notably, coinhibition of GLS and PHGDH successfully eliminated stemness-high cancer cells. Together, these results provide insight into the metabolic plasticity of aggressive GC cells and suggest a treatment strategy for chemoresistant GC patients.


Assuntos
Fosfoglicerato Desidrogenase , Neoplasias Gástricas , Humanos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Glutamina/metabolismo , Nutrientes
15.
FEBS J ; 290(15): 3877-3895, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37012601

RESUMO

De novo l-serine biosynthesis in the mammalian astrocytes proceeds via a linear, three-step pathway (the phosphorylated pathway) catalysed by 3-phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase (PSP). The first reaction, catalysed by PHGDH and using the glycolytic intermediate 3-phosphoglycerate, is strongly shifted towards the reagents, and coupling to the following step by PSAT is required to push the equilibrium towards l-serine formation; the last step, catalysed by PSP, is virtually irreversible and inhibited by the final product l-serine. Very little is known about the regulation of the human phosphorylated pathway and the ability of the three enzymes to organise in a complex with potential regulatory functions. Here, the complex formation was investigated in differentiated human astrocytes, by proximity ligation assay, and in vitro on the human recombinant enzymes. The results indicate that the three enzymes co-localise in cytoplasmic clusters that more stably engage PSAT and PSP. Although in vitro analyses based on native PAGE, size exclusion chromatography and cross-linking experiments do not show the formation of a stable complex, kinetic studies of the reconstituted pathway using physiological enzyme and substrate concentrations support cluster formation and indicate that PHGDH catalyses the rate-limiting step while PSP reaction is the driving force for the whole pathway. The enzyme agglomerate assembly of the phosphorylated pathway (the putative 'serinosome') delivers a relevant level of sophistication to the control of l-serine biosynthesis in human cells, a process strictly related to the modulation of the brain levels of d-serine and glycine, the main co-agonists of N-methyl-d-aspartate receptors and various pathological states.


Assuntos
Encéfalo , Serina , Animais , Humanos , Cinética , Serina/metabolismo , Encéfalo/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Fosforilação , Mamíferos/metabolismo
16.
Adv Sci (Weinh) ; 10(17): e2205818, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078828

RESUMO

Herein, we observed that nuclear localization of phosphoglycerate dehydrogenase (PHGDH) is associated with poor prognosis in liver cancer, and Phgdh is required for liver cancer progression in a mouse model. Unexpectedly, impairment of Phgdh enzyme activity exerts a slight effect in a liver cancer model. In liver cancer cells, the aspartate kinase-chorismate mutase-tyrA prephenate dehydrogenase (ACT) domain of PHGDH binds nuclear cMyc to form a transactivation axis, PHGDH/p300/cMyc/AF9, which drives chemokine CXCL1 and IL8 gene expression. Then, CXCL1 and IL8 promote neutrophil recruitment and enhance tumor-associated macrophage (TAM) filtration in the liver, thereby advancing liver cancer. Forced cytosolic localization of PHGDH or destruction of the PHGDH/cMyc interaction abolishes the oncogenic function of nuclear PHGDH. Depletion of neutrophils by neutralizing antibodies greatly hampers TAM filtration. These findings reveal a nonmetabolic role of PHGDH with altered cellular localization and suggest a promising drug target for liver cancer therapy by targeting the nonmetabolic region of PHGDH.


Assuntos
Neoplasias Hepáticas , Fosfoglicerato Desidrogenase , Animais , Camundongos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Interleucina-8 , Microambiente Tumoral
17.
Lab Invest ; 103(3): 100002, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925195

RESUMO

Resistance to hormone therapy leads to a recurrence of estrogen receptor-positive breast cancer. We have demonstrated that the epithelial splicing regulatory protein 1 (ESRP1) significantly affects cell/tumor growth and metabolism and is associated with a poor prognosis in this breast cancer subtype. In this study, we aimed to investigate the ESRP1 protein-messenger RNA (mRNA) interaction in hormone therapy-resistant breast cancer. RNA-binding protein immunoprecipitation (RIP) followed by Clariom D (Applied Biosystems/Thermo Fisher Scientific) transcriptomics microarray (RIP-Chip) was performed to identify mRNA-binding partners of ESRP1. The integration of RIP-Chip and immunoprecipitation-mass spectrometry analyses identified phosphoglycerate dehydrogenase (PHGDH), a key metabolic enzyme, as a binding partner of ESRP1 in hormone-resistant breast cancer. Bioinformatic analysis showed ESRP1 binding to the 5' untranslated region of PHGDH. RNA electrophoresis mobility shift assay and RIP-quantitative reverse transcription-polymerase chain reaction further validated the ESRP1-PHGDH binding. In addition, knockdown of ESRP1 decreased PHGDH mRNA stability significantly, suggesting the posttranscriptional regulation of PHGDH by ESRP1. The presence or absence of ESRP1 levels significantly affected the stability in tamoxifen-resistant LCC2 and fulvestrant-resistant LCC9 cells. PHGDH knockdown in tamoxifen-resistant cells further reduced the oxygen consumption rate (ranging from P = .005 and P = .02), mimicking the effects of ESRP1 knockdown. Glycolytic parameters were also altered (ranging P = .001 and P = .005). ESRP1 levels did not affect the stability of PHGDH in T-47D cells, although knockdown of PHGDH affected the growth of these cells. In conclusion, to our knowledge, this study, for the first time, reports that ESRP1 binds to the 5' untranslated region of PHGDH, increasing its mRNA stability in hormone therapy-resistant estrogen receptor-positive breast cancer. These findings provide evidence for a novel mechanism of action of RNA-binding proteins such as ESRP1. These new insights could assist in developing novel strategies for the treatment of hormone therapy-resistant breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Regiões 5' não Traduzidas , Tamoxifeno/farmacologia , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Hormônios , Linhagem Celular Tumoral
18.
Nat Commun ; 14(1): 1323, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899022

RESUMO

Vascular endothelial cells (ECs) senescence correlates with the increase of cardiovascular diseases in ageing population. Although ECs rely on glycolysis for energy production, little is known about the role of glycolysis in ECs senescence. Here, we report a critical role for glycolysis-derived serine biosynthesis in preventing ECs senescence. During senescence, the expression of serine biosynthetic enzyme PHGDH is significantly reduced due to decreased transcription of the activating transcription factor ATF4, which leads to reduction of intracellular serine. PHGDH prevents premature senescence primarily by enhancing the stability and activity of pyruvate kinase M2 (PKM2). Mechanistically, PHGDH interacts with PKM2, which prevents PCAF-catalyzed PKM2 K305 acetylation and subsequent degradation by autophagy. In addition, PHGDH facilitates p300-catalyzed PKM2 K433 acetylation, which promotes PKM2 nuclear translocation and stimulates its activity to phosphorylate H3T11 and regulate the transcription of senescence-associated genes. Vascular endothelium-targeted expression of PHGDH and PKM2 ameliorates ageing in mice. Our findings reveal that enhancing serine biosynthesis could become a therapy to promote healthy ageing.


Assuntos
Células Endoteliais , Histonas , Fosfoglicerato Desidrogenase , Piruvato Quinase , Animais , Camundongos , Senescência Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glicólise , Histonas/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Piruvato Quinase/metabolismo , Serina/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia
19.
Protein Sci ; 32(4): e4609, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851825

RESUMO

Organisms from all kingdoms of life synthesize L-serine (L-Ser) from 3-phosphoglycerate through the phosphorylated pathway, a three-step diversion of glycolysis. Phosphoserine aminotransferase (PSAT) catalyzes the intermediate step, the pyridoxal 5'-phosphate-dependent transamination of 3-phosphohydroxypyruvate and L-glutamate to O-phosphoserine (OPS) and α-ketoglutarate. PSAT is particularly relevant in the central nervous system of mammals because L-Ser is the metabolic precursor of D-serine, cysteine, phospholipids, and nucleotides. Several mutations in the human psat gene have been linked to serine deficiency disorders, characterized by severe neurological symptoms. Furthermore, PSAT is overexpressed in many tumors and this overexpression has been associated with poor clinical outcomes. Here, we report the detailed functional and structural characterization of the recombinant human PSAT. The reaction catalyzed by PSAT is reversible, with an equilibrium constant of about 10, and the enzyme is very efficient, with a kcat /Km of 5.9 × 106  M-1  s-1 , thus contributing in driving the pathway towards the products despite the extremely unfavorable first step catalyzed by 3-phosphoglycerate dehydrogenase. The 3D X-ray crystal structure of PSAT was solved in the substrate-free as well as in the OPS-bound forms. Both structures contain eight protein molecules in the asymmetric unit, arranged in four dimers, with a bound cofactor in each subunit. In the substrate-free form, the active site of PSAT contains a sulfate ion that, in the substrate-bound form, is replaced by the phosphate group of OPS. Interestingly, fast crystal soaking used to produce the substrate-bound form allowed the trapping of different intermediates along the catalytic cycle.


Assuntos
Serina , Transaminases , Animais , Humanos , Sistema Nervoso Central/metabolismo , Mamíferos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo , Transaminases/química
20.
Nat Commun ; 14(1): 1011, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823188

RESUMO

Serine synthesis is crucial for tumor growth and survival, but its regulatory mechanism in cancer remains elusive. Here, using integrative metabolomics and transcriptomics analyses, we show a heterogeneity between metabolite and transcript profiles. Specifically, the level of serine in hepatocellular carcinoma (HCC) tissues is increased, whereas the expression of phosphoglycerate dehydrogenase (PHGDH), the first rate-limiting enzyme in serine biosynthesis pathway, is markedly downregulated. Interestingly, the increased serine level is obtained by enhanced PHGDH catalytic activity due to protein arginine methyltransferase 1 (PRMT1)-mediated methylation of PHGDH at arginine 236. PRMT1-mediated PHGDH methylation and activation potentiates serine synthesis, ameliorates oxidative stress, and promotes HCC growth in vitro and in vivo. Furthermore, PRMT1-mediated PHGDH methylation correlates with PHGDH hyperactivation and serine accumulation in human HCC tissues, and is predictive of poor prognosis of HCC patients. Notably, blocking PHGDH methylation with a TAT-tagged nonmethylated peptide inhibits serine synthesis and restrains HCC growth in an HCC patient-derived xenograft (PDX) model and subcutaneous HCC cell-derived xenograft model. Overall, our findings reveal a regulatory mechanism of PHGDH activity and serine synthesis, and suggest PHGDH methylation as a potential therapeutic vulnerability in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfoglicerato Desidrogenase , Proteína-Arginina N-Metiltransferases , Animais , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metilação , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA