Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.323
Filtrar
1.
Methods Mol Biol ; 2823: 253-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052225

RESUMO

Targeted proteomics enables sensitive and specific quantification of proteins and post-translational modifications. By coupling peptide immunoaffinity enrichment with targeted mass spectrometry, we have developed the methodology for multiplexed quantification of proteins and phosphosites involved in the RAS/MAPK signaling network. The method uses anti-peptide antibodies to enrich analytes and heavy stable isotope-labeled internal standards, spiked in at known concentrations. The enriched peptides are directly measured by multiple-reaction monitoring (MRM), a well-characterized quantitative mass spectrometry-based method. The analyte (light) peptide response is measured relative to the heavy standard. The method described provides quantitative measurements of phospho-signaling and is generally applicable to other phosphopeptides and sample types.


Assuntos
Espectrometria de Massas , Proteômica , Transdução de Sinais , Proteômica/métodos , Humanos , Espectrometria de Massas/métodos , Receptores Proteína Tirosina Quinases/metabolismo , Marcação por Isótopo/métodos , Fosforilação , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos
2.
Methods Mol Biol ; 2823: 129-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39052218

RESUMO

Analyzing the phosphoproteome at nanoscale poses a significant challenge, mainly due to the substantial sample loss from nonspecific surface adsorption during the enrichment of low stoichiometric phosphopeptides. Here, we describe a tandem tip-based phosphoproteomics sample preparation method capable of sequential sample cleanup and enrichment without the need for additional sample transfer, thereby minimizing sample loss. Integration of this method to our recently developed SOP (surfactant-assisted one-pot sample preparation) and iBASIL (improved boosting to amplify signal with isobaric labeling) approaches creates a streamlined workflow, enabling sensitive, high-throughput nanoscale phosphoproteomics measurements.


Assuntos
Fosfopeptídeos , Fosfoproteínas , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Fosfopeptídeos/análise , Humanos , Espectrometria de Massas em Tandem/métodos
3.
J Proteome Res ; 23(8): 3294-3309, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39038167

RESUMO

Compared to advancements in single-cell proteomics, phosphoproteomics sensitivity has lagged behind due to low abundance, complex sample preparation, and substantial sample input requirements. We present a simple and rapid one-pot phosphoproteomics workflow (SOP-Phos) integrated with data-independent acquisition mass spectrometry (DIA-MS) for microscale phosphoproteomic analysis. SOP-Phos adapts sodium deoxycholate based one-step lysis, reduction/alkylation, direct trypsinization, and phosphopeptide enrichment by TiO2 beads in a single-tube format. By reducing surface adsorptive losses via utilizing n-dodecyl ß-d-maltoside precoated tubes and shortening the digestion time, SOP-Phos is completed within 3-4 h with a 1.4-fold higher identification coverage. SOP-Phos coupled with DIA demonstrated >90% specificity, enhanced sensitivity, lower missing values (<1%), and improved reproducibility (8%-10% CV). With a sample size-comparable spectral library, SOP-Phos-DIA identified 33,787 ± 670 to 22,070 ± 861 phosphopeptides from 5 to 0.5 µg cell lysate and 30,433 ± 284 to 6,548 ± 21 phosphopeptides from 50,000 to 2,500 cells. Such sensitivity enabled mapping key lung cancer signaling sites, such as EGFR autophosphorylation sites Y1197/Y1172 and drug targets. The feasibility of SOP-Phos-DIA was demonstrated on EGFR-TKI sensitive and resistant cells, revealing the interplay of multipathway Hippo-EGFR-ERBB signaling cascades underlying the mechanistic insight into EGFR-TKI resistance. Overall, SOP-Phos-DIA is an efficient and robust protocol that can be easily adapted in the community for microscale phosphoproteomic analysis.


Assuntos
Fosfopeptídeos , Fosfoproteínas , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Humanos , Fosfopeptídeos/análise , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/química , Reprodutibilidade dos Testes , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Fosforilação , Titânio/química , Neoplasias Pulmonares/metabolismo , Espectrometria de Massas/métodos
4.
Mikrochim Acta ; 191(8): 487, 2024 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-39060411

RESUMO

A porphyrin-based titanium-rich porous organic polymer (Th-PPOPs@Ti4+) was designed based on immobilized metal ion affinity chromatography technique and successfully applied to phosphopeptide enrichment with 5,10,15,20-tetrakis(4-carboxyphenyl) porphine tetramethyl ester (TCPTE), 2,3-dihydroxyterephthalaldehyde (DHTA), and 2,3,4-trihydroxybenzaldehyde (THBA) as raw materials. Th-PPOPs@Ti4+ exhibited remarkable sensitivity (0.5 fmol), high selectivity (ß-casein: BSA = 1:2000, molar ratio), outstanding recovery (95.0 ± 1.9%), reusability (10 times), and superior loading capacity (143 mg·g-1). In addition, Th-PPOPs@Ti4+ exhibited excellent ability to specifically capture phosphopeptides from the serum of colorectal cancer (CRC) individuals and normal subjects. Sixty phosphopeptides assigned to 35 phosphoproteins were obtained from the serum of CRC individuals, and 43 phosphopeptides allocated to 28 phosphoproteins were extracted in the serum of healthy individuals via nano-LC-MS/MS. Gene ontology assays revealed that the detected phosphoproteins may be inextricably tied to CRC-associated events, including response to estrogen, inflammatory response, and heparin binding, suggesting that it is possible that these correlative pathways may be implicated in the pathogenesis of CRC.


Assuntos
Neoplasias Colorretais , Fosfopeptídeos , Porfirinas , Titânio , Humanos , Neoplasias Colorretais/sangue , Titânio/química , Fosfopeptídeos/sangue , Fosfopeptídeos/isolamento & purificação , Fosfopeptídeos/química , Porosidade , Porfirinas/química , Polímeros/química
5.
Food Funct ; 15(15): 8104-8115, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39007353

RESUMO

Calcium is the most abundant mineral in the human body and is involved in critical physiological and cellular processes. It is essential for the development, maintenance, and integrity of bone tissue throughout life. Identifying new natural food-grade chelating agents to improve calcium uptake is of increasing interest. Casein phosphopeptides (CPPs), highly phosphorylated peptides obtained after enzymatic hydrolysis of caseins, represent promising calcium-chelating candidates. The aim of this study was to investigate, using cell culture models, the ability of a digested milk matrix enriched in CPPs to regulate calcium transport through the intestinal barrier and elucidate the involved mechanisms. To this end, a CPP-preparation underwent in vitro static digestion and was subsequently incubated with an intestinal barrier model to monitor calcium uptake and transport. Our results demonstrated that the digested CPP preparation enhanced the trans-epithelial calcium transport via paracellular pathways and that CPPs, identified by peptidomics, crossed the intestinal barrier in the same time.


Assuntos
Cálcio , Caseínas , Mucosa Intestinal , Fosfopeptídeos , Caseínas/farmacologia , Caseínas/metabolismo , Caseínas/química , Fosfopeptídeos/farmacologia , Fosfopeptídeos/metabolismo , Fosfopeptídeos/química , Humanos , Cálcio/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Células CACO-2 , Transporte Biológico , Animais , Digestão , Absorção Intestinal/efeitos dos fármacos
6.
J Chromatogr A ; 1730: 465173, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025024

RESUMO

A dipeptide-based bifunctional material immobilized with Ti4+ (denoted as APE-MBA-VPA-Ti4+) was developed using precipitation polymerization. This polymer combines hydrophilic interaction liquid chromatography (HILIC) and immobilized metal affinity chromatography (IMAC) enrichment strategies, allowing for the individual and simultaneous enrichment of glycopeptides and phosphopeptides. It demonstrated high sensitivity (0.1 fmol µL-1 for glycopeptides, 0.005 fmol µL-1 for phosphopeptides), strong selectivity (molar ratio HRP: BSA = 1:1000, ß-casein: BSA = 1:2500), consistent reusability (10 cycles) and satisfactory recovery rate (93.5 ± 1.8 % for glycopeptides, 91.6 ± 0.6 % for phosphopeptides) in the individual enrichment. Utilizing nano LC-MS/MS technology, the serum of liver cancer patients was analyzed after enrichment individually, resulting in the successful capture of 333 glycopeptides covering 262 glycosylation sites, corresponding to 131 glycoproteins, as well as 67 phosphopeptides covering 57 phosphorylation sites, related to 48 phosphoproteins. In comparison, the serum of normal healthy individuals yielded a total of 283 glycopeptides covering 244 glycosylation sites corresponding to 126 glycoproteins, as well as 66 phosphopeptides covering 56 phosphorylation sites related to 37 phosphoproteins. Label-free quantification identified 10 differentially expressed glycoproteins and 8 differentially expressed phosphoproteins in the serum of liver cancer patients. Among them, glycoproteins (HP, BCHE, AGT, C3, and PROC) and phosphoproteins (ZYX, GOLM1, GP1BB, CLU, and TNXB) showed upregulation and displayed potential as biomarkers for liver cancer.


Assuntos
Dipeptídeos , Glicopeptídeos , Neoplasias Hepáticas , Fosfopeptídeos , Espectrometria de Massas em Tandem , Glicopeptídeos/sangue , Glicopeptídeos/química , Humanos , Fosfopeptídeos/sangue , Fosfopeptídeos/química , Fosfopeptídeos/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Neoplasias Hepáticas/sangue , Dipeptídeos/sangue , Dipeptídeos/química , Cromatografia de Afinidade/métodos , Polímeros/química , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Titânio/química
7.
Talanta ; 277: 126399, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876030

RESUMO

The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.


Assuntos
Técnicas Biossensoriais , Fosfopeptídeos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Técnicas de Microbalança de Cristal de Quartzo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/análise , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Técnicas de Microbalança de Cristal de Quartzo/métodos , Fosfopeptídeos/análise , Técnicas Biossensoriais/métodos , Fosforilação , Humanos , Zircônio/química , Fatores de Tempo , Ouro/química , Ensaios Enzimáticos/métodos
8.
Mol Syst Biol ; 20(8): 972-995, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38907068

RESUMO

Mass spectrometry has revolutionized cell signaling research by vastly simplifying the analysis of many thousands of phosphorylation sites in the human proteome. Defining the cellular response to perturbations is crucial for further illuminating the functionality of the phosphoproteome. Here we describe µPhos ('microPhos'), an accessible phosphoproteomics platform that permits phosphopeptide enrichment from 96-well cell culture and small tissue amounts in <8 h total processing time. By greatly minimizing transfer steps and liquid volumes, we demonstrate increased sensitivity, >90% selectivity, and excellent quantitative reproducibility. Employing highly sensitive trapped ion mobility mass spectrometry, we quantify ~17,000 Class I phosphosites in a human cancer cell line using 20 µg starting material, and confidently localize ~6200 phosphosites from 1 µg. This depth covers key signaling pathways, rendering sample-limited applications and perturbation experiments with hundreds of samples viable. We employ µPhos to study drug- and time-dependent response signatures in a leukemia cell line, and by quantifying 30,000 Class I phosphosites in the mouse brain we reveal distinct spatial kinase activities in subregions of the hippocampal formation.


Assuntos
Fosfopeptídeos , Fosfoproteínas , Proteômica , Proteômica/métodos , Humanos , Animais , Camundongos , Fosfoproteínas/metabolismo , Fosforilação , Linhagem Celular Tumoral , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Espectrometria de Massas/métodos , Transdução de Sinais , Proteoma/metabolismo , Reprodutibilidade dos Testes , Hipocampo/metabolismo , Hipocampo/citologia
9.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38944032

RESUMO

SUMMARY: Identification and quantification of phosphorylation sites are essential for biological interpretation of a phosphoproteomics experiment. For data independent acquisition mass spectrometry-based (DIA-MS) phosphoproteomics, extracting a site-level report from the output of current processing software is not straightforward as multiple peptides might contribute to a single site, multiple phosphorylation sites can occur on the same peptides, and protein isoforms complicate site specification. Currently only limited support is available from a commercial software package via a platform-specific solution with a rather simple site quantification method. Here, we present sitereport, a software tool implemented in an extendable Python package called msproteomics to report phosphosites and phosphopeptides from a DIA-MS phosphoproteomics experiment with a proven quantification method called MaxLFQ. We demonstrate the use of sitereport for downstream data analysis at site level, allowing benchmarking different DIA-MS processing software tools. AVAILABILITY AND IMPLEMENTATION: sitereport is available as a command line tool in the Python package msproteomics, released under the Apache License 2.0 and available from the Python Package Index (PyPI) at https://pypi.org/project/msproteomics and GitHub at https://github.com/tvpham/msproteomics.


Assuntos
Fosfoproteínas , Proteômica , Software , Proteômica/métodos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Espectrometria de Massas/métodos , Fosforilação , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo
10.
Anal Bioanal Chem ; 416(19): 4289-4299, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839685

RESUMO

The reasonable design of metal-organic framework (MOF)-derived nanomaterial has important meaning in increasing the enrichment efficiency in the study of protein phosphorylation. In this work, a polyoxometalate (POM) functionalized magnetic MOF nanomaterial (Fe3O4@MIL-125-POM) was designed and fabricated. The nanomaterial with multi-affinity sites (unsaturated metal sites and metal oxide clusters) was used for the enrichment of phosphopeptides. Fe3O4@MIL-125-POM had high-efficient enrichment performance towards phosphopeptides (selectivity, a mass ratio of bovine serum albumin/α-casein/ß-casein at 5000:1:1; sensitivity, 0.1 fmol; satisfactory repeatability, ten times). Furthermore, Fe3O4@MIL-125-POM was employed to enrich phosphopeptides from non-fat milk digests, saliva, serum, and A549 cell lysate. The enrichment results illustrated the great potential of Fe3O4@MIL-125-POM for efficient identification of low-abundance phosphopeptides.


Assuntos
Estruturas Metalorgânicas , Fosfopeptídeos , Compostos de Tungstênio , Fosfopeptídeos/química , Estruturas Metalorgânicas/química , Humanos , Compostos de Tungstênio/química , Animais , Leite/química , Bovinos , Células A549 , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Saliva/química
11.
J Proteomics ; 303: 105214, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823442

RESUMO

Small ORF-encoded peptides (SEPs) are a class of low molecular weight proteins and peptides comprising <100 amino acids with important functions in various life activities. Although the sequence length is short, SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins. In this work, we enriched phosphopeptides with IMAC and TiO2 materials and analyzed the phosphorylated SEPs in Hep3B cells. A total of 24 phosphorylated SEPs were identified, and 11 SEPs were coded by ncRNA. For the sequence analysis, we found that the general characteristics of phosphorylated SEPs are roughly the same as canonical proteins. Besides, two phosphorylation SEPs have the Stathmin family signature 2 motif, which can regulate the microtubule cytoskeleton. Some SEPs have domains or signal peptides, indicating their specific functions and subcellular locations. Kinase network analysis found a small number of kinases that may be a clue to the specific functions of some SEPs. However, only one-fifth of the predicted phosphorylation sites were identified by LC/MS/MS, indicating that many SEP PTMs are hidden in the dark, waiting to be uncovered and verified. This study helps expand our understanding of SEP and provides information for further SEP function investigation. SIGNIFICANCE: Small ORF-encoded peptides (SEPs) are important in various life activities. Although the sequence length is short (<100AA), SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins. We enriched phosphopeptides and analyzed the phosphorylated SEPs in Hep3B cells. That is the first time to explore the PTM of SPEs systematically. Kinase network analysis found a small number of kinases that may be a clue to the specific functions of SEPs. More SEP PTMs are hidden in the dark and waiting to be uncovered and verified. This study helps expand our understanding of SEP and provides information for further SEP function investigation.


Assuntos
Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Humanos , Fosforilação , Cromatografia Líquida , Fases de Leitura Aberta , Linhagem Celular Tumoral , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Proteômica/métodos , Peptídeos/metabolismo , Peptídeos/química , Micropeptídeos
12.
Se Pu ; 42(6): 564-571, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38845517

RESUMO

Protein phosphorylation plays an important role in cellular signaling and disease development. Advances in mass spectrometry-based proteomics have enabled qualitative and quantitative phosphorylation studies as well as in-depth biological explorations for biomarker discovery and signaling pathway analysis. However, the dynamic changes that occur during phosphorylation and the low abundance of target analytes render direct analysis difficult because mass spectral detection offers no selectivity, unlike immunoassays such as Western blot and enzyme-linked immunosorbent assay (ELISA). The present study aimed to solve one of the key problems in the specific and efficient isolation of phosphorylated peptides. A method based on a magnetic carbon nitride composite coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was developed for the enrichment and analysis of phosphopeptides with low abundance in complex samples. Magnetic carbon nitride composite was synthesized and characterized by electron microscopy, infrared spectroscopy, and X-ray diffractometry. The composite showed a well-distributed two-dimensional layered structure and functional groups with excellent paramagnetic performance. Two classical phosphoproteins, namely, α- and ß-caseins, were selected as model phosphorylated samples to assess the performance of the proposed enrichment technique. The magnetic carbon nitride composite exhibited high selectivity and sensitivity for phosphopeptide enrichment. The limit of detection was determined by MALDI-TOF-MS analysis to be 0.1 fmol. The selectivity of the method was investigated using the digest mixtures of α-casein, ß-casein, and bovine serum albumin (BSA) with different mass ratios (1∶1∶1000, 1∶1∶2000, and 1∶1∶5000). Direct analysis of the samples revealed the dominance of spectral signals from the abundant peptides in BSA. After enrichment with the magnetic carbon nitride composite, the high concentration of background proteins was washed away and only the signals of the phosphopeptides were captured. The signals from the casein proteins were clearly observed with little background noise, indicating the high selectivity of the composite material. The robustness of the method was tested by assessing the reusability of the same batch of magnetic carbon nitride materials over 20 cycles of enrichment. The composite showed nearly the same enrichment ability even after several cycles of reuse, demonstrating its potential applicability for a large number of clinical samples. Finally, the method was applied to the analysis of phosphopeptides from several commonly used phosphoprotein-containing samples, including skimmed milk digest, human serum, and human saliva; these samples are significant in the analysis of food quality, disease biomarkers, and liquid biopsies for cancer. Without enrichment, no phosphopeptide was detected because of the high abundance of nonphosphopeptide materials dominating the spectral signals obtained. After pretreatment with the developed magnetic carbon nitride composite, most of the phosphosites were identified with high selectivity and sensitivity via MALDI-TOF-MS. These results revealed the practicality of the developed approach for clinical applications. In addition, our method may potentially be employed for phosphoproteomics with real complex biological samples.


Assuntos
Nitrilas , Fosfopeptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fosfopeptídeos/análise , Fosfopeptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Nitrilas/química , Caseínas/química , Caseínas/análise , Fosforilação , Proteômica/métodos , Magnetismo
13.
Anal Bioanal Chem ; 416(20): 4491-4501, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877148

RESUMO

In the present study, click chemistry and Schiff base reactions were simultaneously applied to prepare polymer brush (PEG)-functionalized MOF materials (UiO-66-NH2) and immobilized with Ti4+ (MOF-Brush-THBA-Ti4+) for phosphopeptide analysis. The material has a detection limit of 0.5 fmol, a selectivity of 2000:1, and a loading capacity of 133 mg/g for phosphopeptides. It also demonstrated great repeatability (10 cycles) and recovery rate (96.7 ± 1.4%). During the analysis of bio-samples, 4 specific phosphopeptides were identified in endogenous breast cancer serum, while 11 phosphopeptides were identified in skimmed milk. Moreover, 47 phosphopeptides correlated with 29 phosphorylated proteins were selectively identified from normal control serum, and 66 phosphopeptides correlated with 26 phosphorylated proteins were identified from breast cancer serum. Further analysis of gene ontology (GO) revealed that the detected phosphorylated proteins associated with breast cancer included positive regulation of receptor-mediated endocytosis, proteolysis, extracellular exosome, heparin binding, and chaperone binding. These findings suggest that these associated pathways might contribute to the etiology of breast cancer. Overall, this application exhibits enormous potential in the identification of phosphorylated peptides within bio-samples.


Assuntos
Estruturas Metalorgânicas , Leite , Fosfopeptídeos , Titânio , Zircônio , Humanos , Fosfopeptídeos/sangue , Fosfopeptídeos/química , Titânio/química , Zircônio/química , Estruturas Metalorgânicas/química , Leite/química , Animais , Polímeros/química , Feminino , Neoplasias da Mama/sangue , Limite de Detecção , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
14.
Anal Chem ; 96(21): 8254-8262, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728223

RESUMO

Detection of endogenous peptides, especially those with modifications (such as phosphorylation) in biofluids, can serve as an indicator of intracellular pathophysiology. Although great progress has been made in phosphoproteomics in recent years, endogenous phosphopeptidomics has largely lagged behind. One main hurdle in endogenous phosphopeptidomics analysis is the coexistence of proteins and highly abundant nonmodified peptides in complex matrices. In this study, we developed an approach using zirconium(IV)-grafted mesoporous beads to enrich phosphopeptides, followed by analysis with a high resolution nanoRPLC-MS/MS system. The bifunctional material was first tested with digests of standard phosphoproteins and HeLa cell lysates, with excellent enrichment performance achieved. Given the size exclusion nature, the beads were directly applied for endogenous phosphopeptidomic analysis of serum samples from pancreatic ductal adenocarcinoma (PDAC) patients and controls. In total, 329 endogenous phosphopeptides (containing 113 high confidence sites) were identified across samples, by far the largest endogenous phosphopeptide data set cataloged to date. In addition, the method was readily applied for phosphoproteomics of the same set of samples, with 172 phosphopeptides identified and significant changes in dozens of phosphopeptides observed. Given the simplicity and robustness of the proposed method, we envision that it can be readily used for comprehensive phosphorylation studies of serum and other biofluid samples.


Assuntos
Fosfopeptídeos , Dióxido de Silício , Zircônio , Zircônio/química , Humanos , Dióxido de Silício/química , Fosfopeptídeos/sangue , Fosfopeptídeos/análise , Fosfopeptídeos/química , Porosidade , Células HeLa , Proteômica/métodos , Espectrometria de Massas em Tandem
15.
J Proteome Res ; 23(7): 2518-2531, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38810119

RESUMO

Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have reanalyzed publicly available mass spectrometry proteomics data sets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,565 phosphosites on serine, threonine, and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety and clustered the data to identify groups of sites with similar patterns across rice family groups. The data has been loaded into UniProt Knowledge-Base─enabling researchers to visualize sites alongside other data on rice proteins, e.g., structural models from AlphaFold2, PeptideAtlas, and the PRIDE database─enabling visualization of source evidence, including scores and supporting mass spectra.


Assuntos
Genoma de Planta , Oryza , Fosfoproteínas , Proteínas de Plantas , Proteômica , Transdução de Sinais , Oryza/genética , Oryza/metabolismo , Oryza/química , Proteômica/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/química , Fosfoproteínas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Bases de Dados de Proteínas , Motivos de Aminoácidos , Espectrometria de Massas
16.
Mol Cell Proteomics ; 23(7): 100790, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777088

RESUMO

Protein identification and quantification is an important tool for biomarker discovery. With the increased sensitivity and speed of modern mass spectrometers, sample preparation remains a bottleneck for studying large cohorts. To address this issue, we prepared and evaluated a simple and efficient workflow on the Opentrons OT-2 robot that combines sample digestion, cleanup, and loading on Evotips in a fully automated manner, allowing the processing of up to 192 samples in 6 h. Analysis of 192 automated HeLa cell sample preparations consistently identified ∼8000 protein groups and ∼130,000 peptide precursors with an 11.5 min active liquid chromatography gradient with the Evosep One and narrow-window data-independent acquisition (nDIA) with the Orbitrap Astral mass spectrometer providing a throughput of 100 samples per day. Our results demonstrate a highly sensitive workflow yielding both reproducibility and stability at low sample inputs. The workflow is optimized for minimal sample starting amount to reduce the costs for reagents needed for sample preparation, which is critical when analyzing large biological cohorts. Building on the digesting workflow, we incorporated an automated phosphopeptide enrichment step using magnetic titanium-immobilized metal ion affinity chromatography beads. This allows for a fully automated proteome and phosphoproteome sample preparation in a single step with high sensitivity. Using the integrated digestion and Evotip loading workflow, we evaluated the effects of cancer immune therapy on the plasma proteome in metastatic melanoma patients.


Assuntos
Proteômica , Fluxo de Trabalho , Humanos , Proteômica/métodos , Células HeLa , Cromatografia Líquida , Automação , Proteoma/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Reprodutibilidade dos Testes , Melanoma/metabolismo , Fosfopeptídeos/metabolismo
17.
J Proteome Res ; 23(7): 2355-2366, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38819404

RESUMO

High-throughput tissue proteomics has great potential in the advancement of precision medicine. Here, we investigated the combined sensitivity of trap-elute microflow liquid chromatography with a ZenoTOF for DIA proteomics and phosphoproteomics. Method optimization was conducted on HEK293T cell lines to determine the optimal variable window size, MS2 accumulation time and gradient length. The ZenoTOF 7600 was then compared to the previous generation TripleTOF 6600 using eight rat organs, finding up to 23% more proteins using a fifth of the sample load and a third of the instrument time. Spectral reference libraries generated from Zeno SWATH data in FragPipe (MSFragger-DIA/DIA-NN) contained 4 times more fragment ions than the DIA-NN only library and quantified more proteins. Replicate single-shot phosphopeptide enrichments of 50-100 µg of rat tryptic peptide were analyzed by microflow HPLC using Zeno SWATH without fractionation. Using Spectronaut we quantified a shallow phosphoproteome containing 1000-3000 phosphoprecursors per organ. Promisingly, clear hierarchical clustering of organs was observed with high Pearson correlation coefficients >0.95 between replicate enrichments and median CV of 20%. The combined sensitivity of microflow HPLC with Zeno SWATH allows for the high-throughput quantitation of an extensive proteome and shallow phosphoproteome from small tissue samples.


Assuntos
Fosfoproteínas , Proteômica , Animais , Proteômica/métodos , Ratos , Humanos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Células HEK293 , Fosfopeptídeos/análise , Cromatografia Líquida de Alta Pressão/métodos , Proteoma/análise , Proteoma/metabolismo
18.
J Am Soc Mass Spectrom ; 35(7): 1556-1566, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38806410

RESUMO

Protein phosphorylation, a common post-translational modification (PTM), is fundamental in a plethora of biological processes, most importantly in modulating cell signaling pathways. Matrix-assisted laser desorption/ionization (MALDI) coupled to tandem mass spectrometry (MS/MS) is an attractive method for phosphopeptide characterization due to its high speed, low limit of detection, and surface sampling capabilities. However, MALDI analysis of phosphopeptides is constrained by relatively low abundances in biological samples and poor relative ionization efficiencies in positive ion mode. Additionally, MALDI tends to produce singly charged ions, generally limiting the accessible MS/MS techniques that can be used for peptide sequencing. For example, collision induced dissociation (CID) is readily amendable to the analysis of singly charged ions, but results in facile loss of phosphoric acid, precluding the localization of the PTM. Electron-based dissociation methods (e.g., electron capture dissociation, ECD) are well suited for PTM localization, but require multiply charged peptide cations to avoid neutralization during ECD. Conversely, phosphopeptides are readily ionized using MALDI in negative ion mode. If the precursor ions are first formed in negative ion mode, a gas-phase charge inversion ion/ion reaction could then be used to transform the phosphopeptide anions produced via MALDI into multiply charged cations that are well-suited for ECD. Herein we demonstrate a multistep workflow combining a charge inversion ion/ion reaction that first transforms MALDI-generated phosphopeptide monoanions into multiply charged cations, and then subjects these multiply charged phosphopeptide cations to ECD for sequence determination and phosphate bond localization.


Assuntos
Fosfopeptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Fosfopeptídeos/química , Fosfopeptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Análise de Sequência de Proteína/métodos , Íons/química , Sequência de Aminoácidos , Humanos
19.
Food Chem ; 454: 139752, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815330

RESUMO

Ferritin, a vital protein required to store iron in a cage-like structure, is critical for maintaining iron balance. Ferritin can be attacked by free radicals during iron reduction and release, thereby leading to oxidative damage. Whether other biomacromolecules such as casein phosphopeptides (CPP) could influence the ferritin's function in iron oxidation and release and affect the ferritin stability remains unclear. This study aims to investigate the effect of CPP on the ferritin­iron ion interaction, thereby focusing on role of CPP on ferritin stability. Results showed that CPP weakened the iron oxidation activity of ferritin but promoted iron release. Moreover, CPP could effectively chelate iron, capture hydroxyl radicals, and reduce the degradation of ferritin. This study highlights the role of CPP in the ferritin­iron relationship, and lays a foundation for understanding the interaction between ferritin, peptides, and metal ions.


Assuntos
Caseínas , Ferritinas , Ferro , Fosfopeptídeos , Ferritinas/química , Ferritinas/metabolismo , Caseínas/química , Caseínas/metabolismo , Fosfopeptídeos/química , Ferro/metabolismo , Ferro/química , Oxirredução , Animais , Humanos , Ligação Proteica
20.
ACS Biomater Sci Eng ; 10(6): 3739-3746, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38814242

RESUMO

For mass spectrometry (MS)-based phosphoproteomics studies, sample pretreatment is an essential step for efficient identification of low-abundance phosphopeptides. Herein, a cobalt phthalocyanine-modified magnetic metal-organic framework (MOF) (Fe3O4@MIL-101-CoPc) was prepared and applied to enrich phosphopeptides before MS analysis. Fe3O4@MIL-101-CoPc exhibited an excellent magnetic response (74.98 emu g-1) and good hydrophilicity (7.75°), which were favorable for the enrichment. Fe3O4@MIL-101-CoPc showed good enrichment performance with high selectivity (1:1:5000), sensitivity (0.1 fmol), reusability (10 circles), and recovery (91.3%). Additionally, the Fe3O4@MIL-101-CoPc-based MS method was able to successfully detect 827 phosphopeptides from the A549 cell lysate, demonstrating a high enrichment efficiency (89.3%). This study promotes the application of postfunctionalized MOFs for phosphoproteomics analysis.


Assuntos
Indóis , Estruturas Metalorgânicas , Compostos Organometálicos , Fosfopeptídeos , Estruturas Metalorgânicas/química , Indóis/química , Compostos Organometálicos/química , Humanos , Fosfopeptídeos/química , Fosfopeptídeos/isolamento & purificação , Fosfopeptídeos/análise , Células A549
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...