Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.229
Filtrar
1.
Se Pu ; 42(6): 564-571, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38845517

RESUMO

Protein phosphorylation plays an important role in cellular signaling and disease development. Advances in mass spectrometry-based proteomics have enabled qualitative and quantitative phosphorylation studies as well as in-depth biological explorations for biomarker discovery and signaling pathway analysis. However, the dynamic changes that occur during phosphorylation and the low abundance of target analytes render direct analysis difficult because mass spectral detection offers no selectivity, unlike immunoassays such as Western blot and enzyme-linked immunosorbent assay (ELISA). The present study aimed to solve one of the key problems in the specific and efficient isolation of phosphorylated peptides. A method based on a magnetic carbon nitride composite coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was developed for the enrichment and analysis of phosphopeptides with low abundance in complex samples. Magnetic carbon nitride composite was synthesized and characterized by electron microscopy, infrared spectroscopy, and X-ray diffractometry. The composite showed a well-distributed two-dimensional layered structure and functional groups with excellent paramagnetic performance. Two classical phosphoproteins, namely, α- and ß-caseins, were selected as model phosphorylated samples to assess the performance of the proposed enrichment technique. The magnetic carbon nitride composite exhibited high selectivity and sensitivity for phosphopeptide enrichment. The limit of detection was determined by MALDI-TOF-MS analysis to be 0.1 fmol. The selectivity of the method was investigated using the digest mixtures of α-casein, ß-casein, and bovine serum albumin (BSA) with different mass ratios (1∶1∶1000, 1∶1∶2000, and 1∶1∶5000). Direct analysis of the samples revealed the dominance of spectral signals from the abundant peptides in BSA. After enrichment with the magnetic carbon nitride composite, the high concentration of background proteins was washed away and only the signals of the phosphopeptides were captured. The signals from the casein proteins were clearly observed with little background noise, indicating the high selectivity of the composite material. The robustness of the method was tested by assessing the reusability of the same batch of magnetic carbon nitride materials over 20 cycles of enrichment. The composite showed nearly the same enrichment ability even after several cycles of reuse, demonstrating its potential applicability for a large number of clinical samples. Finally, the method was applied to the analysis of phosphopeptides from several commonly used phosphoprotein-containing samples, including skimmed milk digest, human serum, and human saliva; these samples are significant in the analysis of food quality, disease biomarkers, and liquid biopsies for cancer. Without enrichment, no phosphopeptide was detected because of the high abundance of nonphosphopeptide materials dominating the spectral signals obtained. After pretreatment with the developed magnetic carbon nitride composite, most of the phosphosites were identified with high selectivity and sensitivity via MALDI-TOF-MS. These results revealed the practicality of the developed approach for clinical applications. In addition, our method may potentially be employed for phosphoproteomics with real complex biological samples.


Assuntos
Nitrilas , Fosfopeptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fosfopeptídeos/análise , Fosfopeptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Nitrilas/química , Caseínas/química , Caseínas/análise , Fosforilação , Proteômica/métodos , Magnetismo
2.
J Proteomics ; 303: 105214, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823442

RESUMO

Small ORF-encoded peptides (SEPs) are a class of low molecular weight proteins and peptides comprising <100 amino acids with important functions in various life activities. Although the sequence length is short, SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins. In this work, we enriched phosphopeptides with IMAC and TiO2 materials and analyzed the phosphorylated SEPs in Hep3B cells. A total of 24 phosphorylated SEPs were identified, and 11 SEPs were coded by ncRNA. For the sequence analysis, we found that the general characteristics of phosphorylated SEPs are roughly the same as canonical proteins. Besides, two phosphorylation SEPs have the Stathmin family signature 2 motif, which can regulate the microtubule cytoskeleton. Some SEPs have domains or signal peptides, indicating their specific functions and subcellular locations. Kinase network analysis found a small number of kinases that may be a clue to the specific functions of some SEPs. However, only one-fifth of the predicted phosphorylation sites were identified by LC/MS/MS, indicating that many SEP PTMs are hidden in the dark, waiting to be uncovered and verified. This study helps expand our understanding of SEP and provides information for further SEP function investigation. SIGNIFICANCE: Small ORF-encoded peptides (SEPs) are important in various life activities. Although the sequence length is short (<100AA), SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins. We enriched phosphopeptides and analyzed the phosphorylated SEPs in Hep3B cells. That is the first time to explore the PTM of SPEs systematically. Kinase network analysis found a small number of kinases that may be a clue to the specific functions of SEPs. More SEP PTMs are hidden in the dark and waiting to be uncovered and verified. This study helps expand our understanding of SEP and provides information for further SEP function investigation.


Assuntos
Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Humanos , Fosforilação , Cromatografia Líquida , Fases de Leitura Aberta , Linhagem Celular Tumoral , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Proteômica/métodos , Peptídeos/metabolismo , Peptídeos/química , Micropeptídeos
3.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38944032

RESUMO

SUMMARY: Identification and quantification of phosphorylation sites are essential for biological interpretation of a phosphoproteomics experiment. For data independent acquisition mass spectrometry-based (DIA-MS) phosphoproteomics, extracting a site-level report from the output of current processing software is not straightforward as multiple peptides might contribute to a single site, multiple phosphorylation sites can occur on the same peptides, and protein isoforms complicate site specification. Currently only limited support is available from a commercial software package via a platform-specific solution with a rather simple site quantification method. Here, we present sitereport, a software tool implemented in an extendable Python package called msproteomics to report phosphosites and phosphopeptides from a DIA-MS phosphoproteomics experiment with a proven quantification method called MaxLFQ. We demonstrate the use of sitereport for downstream data analysis at site level, allowing benchmarking different DIA-MS processing software tools. AVAILABILITY AND IMPLEMENTATION: sitereport is available as a command line tool in the Python package msproteomics, released under the Apache License 2.0 and available from the Python Package Index (PyPI) at https://pypi.org/project/msproteomics and GitHub at https://github.com/tvpham/msproteomics.


Assuntos
Fosfoproteínas , Proteômica , Software , Proteômica/métodos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Espectrometria de Massas/métodos , Fosforilação , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo
4.
Talanta ; 277: 126399, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876030

RESUMO

The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.


Assuntos
Técnicas Biossensoriais , Fosfopeptídeos , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Técnicas de Microbalança de Cristal de Quartzo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/análise , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Técnicas de Microbalança de Cristal de Quartzo/métodos , Fosfopeptídeos/análise , Técnicas Biossensoriais/métodos , Fosforilação , Humanos , Zircônio/química , Fatores de Tempo , Ouro/química , Ensaios Enzimáticos/métodos
5.
J Am Soc Mass Spectrom ; 35(7): 1556-1566, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38806410

RESUMO

Protein phosphorylation, a common post-translational modification (PTM), is fundamental in a plethora of biological processes, most importantly in modulating cell signaling pathways. Matrix-assisted laser desorption/ionization (MALDI) coupled to tandem mass spectrometry (MS/MS) is an attractive method for phosphopeptide characterization due to its high speed, low limit of detection, and surface sampling capabilities. However, MALDI analysis of phosphopeptides is constrained by relatively low abundances in biological samples and poor relative ionization efficiencies in positive ion mode. Additionally, MALDI tends to produce singly charged ions, generally limiting the accessible MS/MS techniques that can be used for peptide sequencing. For example, collision induced dissociation (CID) is readily amendable to the analysis of singly charged ions, but results in facile loss of phosphoric acid, precluding the localization of the PTM. Electron-based dissociation methods (e.g., electron capture dissociation, ECD) are well suited for PTM localization, but require multiply charged peptide cations to avoid neutralization during ECD. Conversely, phosphopeptides are readily ionized using MALDI in negative ion mode. If the precursor ions are first formed in negative ion mode, a gas-phase charge inversion ion/ion reaction could then be used to transform the phosphopeptide anions produced via MALDI into multiply charged cations that are well-suited for ECD. Herein we demonstrate a multistep workflow combining a charge inversion ion/ion reaction that first transforms MALDI-generated phosphopeptide monoanions into multiply charged cations, and then subjects these multiply charged phosphopeptide cations to ECD for sequence determination and phosphate bond localization.


Assuntos
Fosfopeptídeos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Fosfopeptídeos/química , Fosfopeptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Análise de Sequência de Proteína/métodos , Íons/química , Sequência de Aminoácidos , Humanos
6.
J Proteome Res ; 23(7): 2355-2366, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38819404

RESUMO

High-throughput tissue proteomics has great potential in the advancement of precision medicine. Here, we investigated the combined sensitivity of trap-elute microflow liquid chromatography with a ZenoTOF for DIA proteomics and phosphoproteomics. Method optimization was conducted on HEK293T cell lines to determine the optimal variable window size, MS2 accumulation time and gradient length. The ZenoTOF 7600 was then compared to the previous generation TripleTOF 6600 using eight rat organs, finding up to 23% more proteins using a fifth of the sample load and a third of the instrument time. Spectral reference libraries generated from Zeno SWATH data in FragPipe (MSFragger-DIA/DIA-NN) contained 4 times more fragment ions than the DIA-NN only library and quantified more proteins. Replicate single-shot phosphopeptide enrichments of 50-100 µg of rat tryptic peptide were analyzed by microflow HPLC using Zeno SWATH without fractionation. Using Spectronaut we quantified a shallow phosphoproteome containing 1000-3000 phosphoprecursors per organ. Promisingly, clear hierarchical clustering of organs was observed with high Pearson correlation coefficients >0.95 between replicate enrichments and median CV of 20%. The combined sensitivity of microflow HPLC with Zeno SWATH allows for the high-throughput quantitation of an extensive proteome and shallow phosphoproteome from small tissue samples.


Assuntos
Fosfoproteínas , Proteômica , Animais , Proteômica/métodos , Ratos , Humanos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Células HEK293 , Fosfopeptídeos/análise , Cromatografia Líquida de Alta Pressão/métodos , Proteoma/análise , Proteoma/metabolismo
7.
ACS Biomater Sci Eng ; 10(6): 3739-3746, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38814242

RESUMO

For mass spectrometry (MS)-based phosphoproteomics studies, sample pretreatment is an essential step for efficient identification of low-abundance phosphopeptides. Herein, a cobalt phthalocyanine-modified magnetic metal-organic framework (MOF) (Fe3O4@MIL-101-CoPc) was prepared and applied to enrich phosphopeptides before MS analysis. Fe3O4@MIL-101-CoPc exhibited an excellent magnetic response (74.98 emu g-1) and good hydrophilicity (7.75°), which were favorable for the enrichment. Fe3O4@MIL-101-CoPc showed good enrichment performance with high selectivity (1:1:5000), sensitivity (0.1 fmol), reusability (10 circles), and recovery (91.3%). Additionally, the Fe3O4@MIL-101-CoPc-based MS method was able to successfully detect 827 phosphopeptides from the A549 cell lysate, demonstrating a high enrichment efficiency (89.3%). This study promotes the application of postfunctionalized MOFs for phosphoproteomics analysis.


Assuntos
Indóis , Estruturas Metalorgânicas , Compostos Organometálicos , Fosfopeptídeos , Estruturas Metalorgânicas/química , Indóis/química , Compostos Organometálicos/química , Humanos , Fosfopeptídeos/química , Fosfopeptídeos/isolamento & purificação , Fosfopeptídeos/análise , Células A549
8.
Talanta ; 276: 126212, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723475

RESUMO

As a popular nutritional enhancer, casein phosphopeptides (CPPs) have attracted growing attention in food industry. However, conventional methods for CPPs detection are usually less precise or requires expensive instruments. Herein, a nanozyme-based colorimetric method was developed to achieve the quantitative detection of CPPs in food samples. This method is based on a facilely fabricated peroxidase-like nanozyme (Fe@UiO-66), which combines the specific binding of CPPs, as well as the nanozyme-catalyzed colorimetric sensing that can be easily detected by spectrometer. The method displayed good quantitative ability toward CPPs with the linear range of 2-30 µg/mL, the low limit of detection of 0.267 µg/mL and limit of quantification of 1.335 µg/mL. We highlighted the specificity, anti-interference and practicability of this method, by investigating the performances toward food samples. Besides, a smartphone-based colorimetric sensing platform was also established, which is conducive to the portable detection. The developed nanozyme-based colorimetric sensing method provides a promising strategy for CPPs detection in food samples.


Assuntos
Caseínas , Colorimetria , Fosfopeptídeos , Colorimetria/métodos , Caseínas/análise , Caseínas/química , Fosfopeptídeos/análise , Análise de Alimentos/métodos , Limite de Detecção , Estruturas Metalorgânicas/química , Animais
9.
J Proteome Res ; 23(7): 2518-2531, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38810119

RESUMO

Phosphorylation is the most studied post-translational modification, and has multiple biological functions. In this study, we have reanalyzed publicly available mass spectrometry proteomics data sets enriched for phosphopeptides from Asian rice (Oryza sativa). In total we identified 15,565 phosphosites on serine, threonine, and tyrosine residues on rice proteins. We identified sequence motifs for phosphosites, and link motifs to enrichment of different biological processes, indicating different downstream regulation likely caused by different kinase groups. We cross-referenced phosphosites against the rice 3,000 genomes, to identify single amino acid variations (SAAVs) within or proximal to phosphosites that could cause loss of a site in a given rice variety and clustered the data to identify groups of sites with similar patterns across rice family groups. The data has been loaded into UniProt Knowledge-Base─enabling researchers to visualize sites alongside other data on rice proteins, e.g., structural models from AlphaFold2, PeptideAtlas, and the PRIDE database─enabling visualization of source evidence, including scores and supporting mass spectra.


Assuntos
Genoma de Planta , Oryza , Fosfoproteínas , Proteínas de Plantas , Proteômica , Transdução de Sinais , Oryza/genética , Oryza/metabolismo , Oryza/química , Proteômica/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/química , Fosfoproteínas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Bases de Dados de Proteínas , Motivos de Aminoácidos , Espectrometria de Massas
10.
Anal Chem ; 96(21): 8254-8262, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728223

RESUMO

Detection of endogenous peptides, especially those with modifications (such as phosphorylation) in biofluids, can serve as an indicator of intracellular pathophysiology. Although great progress has been made in phosphoproteomics in recent years, endogenous phosphopeptidomics has largely lagged behind. One main hurdle in endogenous phosphopeptidomics analysis is the coexistence of proteins and highly abundant nonmodified peptides in complex matrices. In this study, we developed an approach using zirconium(IV)-grafted mesoporous beads to enrich phosphopeptides, followed by analysis with a high resolution nanoRPLC-MS/MS system. The bifunctional material was first tested with digests of standard phosphoproteins and HeLa cell lysates, with excellent enrichment performance achieved. Given the size exclusion nature, the beads were directly applied for endogenous phosphopeptidomic analysis of serum samples from pancreatic ductal adenocarcinoma (PDAC) patients and controls. In total, 329 endogenous phosphopeptides (containing 113 high confidence sites) were identified across samples, by far the largest endogenous phosphopeptide data set cataloged to date. In addition, the method was readily applied for phosphoproteomics of the same set of samples, with 172 phosphopeptides identified and significant changes in dozens of phosphopeptides observed. Given the simplicity and robustness of the proposed method, we envision that it can be readily used for comprehensive phosphorylation studies of serum and other biofluid samples.


Assuntos
Fosfopeptídeos , Dióxido de Silício , Zircônio , Zircônio/química , Humanos , Dióxido de Silício/química , Fosfopeptídeos/sangue , Fosfopeptídeos/análise , Fosfopeptídeos/química , Porosidade , Células HeLa , Proteômica/métodos , Espectrometria de Massas em Tandem
11.
Curr Protoc ; 4(4): e1028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646944

RESUMO

Proteomics and phosphoproteomics play crucial roles in elucidating the dynamics of post-transcriptional processes. While experimental methods and workflows have been established in this field, a persistent challenge arises when dealing with small samples containing a limited amount of protein. This limitation can significantly impact the recovery of peptides and phosphopeptides. In response to this challenge, we have developed a comprehensive experimental workflow tailored specifically for small-scale samples, with a special emphasis on neuronal tissues like the trigeminal ganglion. Our proposed workflow consists of seven steps aimed at optimizing the preparation of limited tissue samples for both proteomic and phosphoproteomic analyses. One noteworthy innovation in our approach involves the utilization of a dual enrichment strategy for phosphopeptides. Initially, we employ Fe-NTA Magnetic beads, renowned for their specificity and effectiveness in capturing phosphopeptides. Subsequently, we complement this approach with the TiO2-based method, which offers a broader spectrum of phosphopeptide recovery. This innovative workflow not only overcomes the challenges posed by limited sample sizes but also establishes a new benchmark for precision and efficiency in proteomic investigations. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Protein extraction and digestion Basic Protocol 2: TMT labeling and peptide cleanup Basic Protocol 3: IMAC Fe-NTA magnetic beads phosphopeptide enrichment Basic Protocol 4: TiO2 enrichment Basic Protocol 5: Fe-NTA phosphopeptide Enrichment Basic Protocol 6: High pH peptide fractionation Basic protocol 7: LC-MS/MS analysis and database search.


Assuntos
Fosfopeptídeos , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Fosfopeptídeos/análise , Fosfopeptídeos/isolamento & purificação , Animais , Espectrometria de Massas em Tandem , Gânglio Trigeminal/metabolismo , Cromatografia Líquida/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38603891

RESUMO

The specific enrichment of multi-phosphopeptides in the presence of non-phosphopeptides and mono-phosphopeptides was still a challenge for phosphoproteomics research. Most of these enrichment materials relied on Zn, Ti, Sn, and other rare precious metals as the bonding center to enrich multi-phosphopeptides while ignoring the use of common metal elements. The addition of rare metals increased the cost of the experiment, which was not conducive to their large-scale application in biomedical proteomics laboratories. In addition, multiple high-speed centrifugation steps also resulted in the loss of low-abundance multi-phosphopeptides in the treatment procedure of biological samples. This study proposed the use of calcium, a common element, as the central bonding agent for synthesizing magnetic calcium phosphate materials (designated as CaP-Fe3O4). These materials aim to capture multi-phosphopeptides and identifying phosphorylation sites. The current results demonstrate that CaP-Fe3O4 exhibited excellent selection specificity, high sensitivity, and stability in the enrichment of multi-phosphopeptides and the identification of phosphorylation sites. Additionally, the introduction of magnetic separation not only reduced the time required for multi-phosphopeptides enrichment but also prevented the loss of these peptides during high-speed centrifugation. These findings contribute to the widespread application and advancement of phosphoproteomics research.


Assuntos
Fosfatos de Cálcio , Fosfopeptídeos , Fosfopeptídeos/análise , Fosfopeptídeos/isolamento & purificação , Fosfopeptídeos/química , Fosfatos de Cálcio/química , Humanos , Proteômica/métodos , Fosforilação , Espectrometria de Massas em Tandem/métodos
13.
J Am Soc Mass Spectrom ; 35(5): 1040-1054, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626331

RESUMO

Mass-spectrometry-based methods have made significant progress in the characterization of post-translational modifications (PTMs) in peptides and proteins; however, room remains to improve fragmentation methods. Ideal MS/MS methods are expected to simultaneously provide extensive sequence information and localization of PTM sites and retain labile PTM groups. This collection of criteria is difficult to meet, and the various activation methods available today offer different capabilities. In order to examine the specific case of phosphorylation on peptides, we investigate electron transfer dissociation (ETD), electron-activated dissociation (EAD), and 193 nm ultraviolet photodissociation (UVPD) and compare all three methods with classical collision-induced dissociation (CID). EAD and UVPD show extensive backbone fragmentation, comparable in scope to that of CID. These methods provide diverse backbone fragmentation, producing a/x, b/y, and c/z ions with substantial sequence coverages. EAD displays a high retention efficiency of the phosphate modification, attributed to its electron-mediated fragmentation mechanisms, as observed in ETD. UVPD offers reasonable retention efficiency, also allowing localization of the PTM site. EAD experiments were also performed in an LC-MS/MS workflow by analyzing phosphopeptides spiked in human plasma, and spectra allow accurate identification of the modified sites and discrimination of isomers. Based on the overall performance, EAD and 193 nm UVPD offer alternative options to CID and ETD for phosphoproteomics.


Assuntos
Fosfopeptídeos , Espectrometria de Massas em Tandem , Raios Ultravioleta , Fosfopeptídeos/química , Fosfopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Fosforilação , Elétrons , Sequência de Aminoácidos , Humanos , Processamento de Proteína Pós-Traducional , Cromatografia Líquida/métodos
14.
Mol Cell Proteomics ; 23(5): 100762, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608839

RESUMO

Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.


Assuntos
Arabidopsis , Cromatografia de Afinidade , Fosfoproteínas , Proteômica , Fluxo de Trabalho , Proteômica/métodos , Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/análise , Cromatografia de Afinidade/métodos , Proteínas de Arabidopsis/metabolismo , Glicopeptídeos/metabolismo , Glicopeptídeos/análise , Interações Hidrofóbicas e Hidrofílicas , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Fosforilação , Fosfopeptídeos/metabolismo , Fosfopeptídeos/análise , Espectrometria de Massas em Tandem , Proteínas de Plantas/metabolismo
15.
Methods Mol Biol ; 2787: 293-303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656498

RESUMO

Phosphopeptide enrichment is the main bottleneck of every phosphorylation study. Therefore, in this chapter, a general workflow tries to overbridge the hurdles of plant sample handling from sample collection to protein extraction, protein solubilization, enzymatic digestion, and enrichment step prior to mass spectrometry. The workflow provides information to perform global proteomics as well as phosphoproteomics enabling the researcher to use the protocol in both fields.


Assuntos
Espectrometria de Massas , Fosfopeptídeos , Fosfoproteínas , Proteínas de Plantas , Proteômica , Fosfopeptídeos/análise , Fosfopeptídeos/isolamento & purificação , Proteômica/métodos , Fosfoproteínas/análise , Fosfoproteínas/isolamento & purificação , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Espectrometria de Massas/métodos , Fosforilação , Plantas/química , Plantas/metabolismo , Fluxo de Trabalho , Proteoma/análise
16.
ACS Biomater Sci Eng ; 10(4): 2143-2150, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38442336

RESUMO

Highly selective extraction of phosphopeptides is necessary before mass spectrometry (MS) analysis. Herein, zirconium phthalocyanine-modified magnetic nanoparticles were prepared through a simple method. The Fe-O groups on Fe3O4 and the zirconium ions on phthalocyanine had a strong affinity for phosphopeptides based on immobilized metal ion affinity chromatography (IMAC). The enrichment platform exhibited low detection limit (0.01 fmol), high selectivity (α-/ß-casein/bovine serum albumin, 1/1/5000), good reusability (10 circles), and recovery (91.1 ± 1.1%) toward phosphopeptides. Nonfat milk, human serum, saliva, and A549 cell lysate were employed as actual samples to assess the applicability of the enrichment protocol. Metallo-phthalocyanine will be a competitive compound for designing highly efficient adsorbents and offers a new approach to phosphopeptide analysis.


Assuntos
Isoindóis , Nanopartículas de Magnetita , Fosfopeptídeos , Humanos , Fosfopeptídeos/análise , Fosfopeptídeos/química , Zircônio/química , Adsorção
17.
Mol Cell Proteomics ; 23(5): 100754, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548019

RESUMO

Improving coverage, robustness, and sensitivity is crucial for routine phosphoproteomics analysis by single-shot liquid chromatography-tandem mass spectrometry (LC-MS/MS) from minimal peptide inputs. Here, we systematically optimized key experimental parameters for automated on-bead phosphoproteomics sample preparation with a focus on low-input samples. Assessing the number of identified phosphopeptides, enrichment efficiency, site localization scores, and relative enrichment of multiply-phosphorylated peptides pinpointed critical variables influencing the resulting phosphoproteome. Optimizing glycolic acid concentration in the loading buffer, percentage of ammonium hydroxide in the elution buffer, peptide-to-beads ratio, binding time, sample, and loading buffer volumes allowed us to confidently identify >16,000 phosphopeptides in half-an-hour LC-MS/MS on an Orbitrap Exploris 480 using 30 µg of peptides as starting material. Furthermore, we evaluated how sequential enrichment can boost phosphoproteome coverage and showed that pooling fractions into a single LC-MS/MS analysis increased the depth. We also present an alternative phosphopeptide enrichment strategy based on stepwise addition of beads thereby boosting phosphoproteome coverage by 20%. Finally, we applied our optimized strategy to evaluate phosphoproteome depth with the Orbitrap Astral MS using a cell dilution series and were able to identify >32,000 phosphopeptides from 0.5 million HeLa cells in half-an-hour LC-MS/MS using narrow-window data-independent acquisition (nDIA).


Assuntos
Fosfopeptídeos , Fosfoproteínas , Proteômica , Espectrometria de Massas em Tandem , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Proteômica/métodos , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fosfoproteínas/metabolismo , Fosfoproteínas/análise , Células HeLa , Proteoma/análise , Fosforilação , Automação
18.
J Proteomics ; 297: 105128, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382841

RESUMO

Investigating site-specific protein phosphorylation remains a challenging task. The present study introduces a two-step chemical derivatization method for accurate identification of phosphopeptides. Methylamine neutralizes carboxyl groups, thus reducing the adsorption of non-phosphorylated peptides during enrichment, while dimethylamine offers a cost-effective reagent for stable isotope labeling of phosphorylation sites. The derivatization improves the mass spectra obtained through liquid chromatography-tandem mass spectrometry. The product ions at m/z 58.07 and 64.10 Da, resulting from dimethylamine-d0 and dimethylamine-d6 labeled phosphorylation sites respectively, can serve as report ions. Derivatized phosphopeptides from casein demonstrate enhanced ionization and formation of product ions, yielding a significant increase in the number of identifiable peptides. When using the parallel reaction monitoring technique, it is possible to distinguish isomeric phosphopeptides with the same amino acid sequence but different phosphorylation sites. By employing a proteomic software and screening the report ions, we identified 29 endogenous phosphopeptides in 10 µL of human saliva with high reliability. These findings indicate that the two-step derivatization strategy has great potential in site-specific phosphorylation and large-scale phosphoproteomics research. SIGNIFICANCE: There is a significant need to improve the accuracy of identifying phosphoproteins and phosphopeptides and analyzing them quantitatively. Several chemical derivatization techniques have been developed to label phosphorylation sites, thus enabling the identification and relative quantification of phosphopeptides. Nevertheless, these methods have limitations, such as incomplete conversion or the need for costly isotopic reagents. Building upon previous contributions, our study moves the field forward due to high efficiency in site-specific labeling, cost-effectiveness, improved sensitivity, and comprehensive product ion coverage. Using the two-step derivatization approach, we successfully identified 29 endogenous phosphopeptides in 10 µL of human saliva with high reliability. The outcomes underscore the possibility of the method for site-specific phosphorylation and large-scale phosphoproteomics investigations.


Assuntos
Fosfopeptídeos , Proteômica , Humanos , Fosfopeptídeos/análise , Marcação por Isótopo/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Indicadores e Reagentes , Fosforilação , Íons , Dimetilaminas
19.
Anal Methods ; 16(12): 1785-1792, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38421231

RESUMO

One of the most crucial and prevalent post-translational modifications is the phosphorylation of proteins. The study and examination of protein phosphorylation hold immense importance in comprehending disease mechanisms and discovering novel biomarkers. However, the inherent low abundance, low ionization efficiency, and coexistence with non phosphopeptides seriously affect the direct analysis of phosphopeptides by mass spectrometry. In order to tackle these problems, it is necessary to carry out selective enrichment of phosphopeptides prior to conducting mass spectrometry analysis. Herein, magnetic chitosan nanoparticles were developed by incorporating arginine, and were then utilized for phosphopeptide enrichment. A tryptic digest of ß-casein was chosen as the standard substance. After enrichment, combined with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), the detection limit of the method was 0.4 fmol. The synthesized magnetic material demonstrated great potential in the detection of phosphopeptides in complex samples, as proven by its successful application in detecting phosphopeptides in skim milk and human saliva samples.


Assuntos
Quitosana , Nanopartículas , Humanos , Quitosana/química , Fosfopeptídeos/análise , Fosfopeptídeos/química , Caseínas , Nanopartículas/química , Fenômenos Magnéticos
20.
J Colloid Interface Sci ; 663: 123-131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394817

RESUMO

Polyoxometalate-based metal-organic frameworks (POMOFs) have become a promising affinity material for separation and enrichment. The analysis of protein phosphorylation represents a challenge for the development of efficient enrichment materials. Here, a novel zirconium-rich magnetic POMOF was successfully designed and prepared for the enrichment of phosphopeptides. The binding affinity of the nanomaterial partly came from Fe-O clusters in the MOF. The Lewis acid-base interactions between V-O clusters and zirconium ions in V10O28-Zr4+ and phosphate groups in phosphopeptides further strengthened the enrichment ability. The zirconium-rich magnetic POMOF was employed to capture phosphopeptides from non-fat milk, human saliva, and serum. Additionally, 748 unique phosphopeptide peaks were detected from the tryptic digests of lung cancer A549 cell proteins with a high specificity (86.9 %). POMOFs will become an active competitor for the design of protein affinity materials and will provide a new approach for phosphopeptide analysis.


Assuntos
Ânions , Neoplasias Pulmonares , Fosfopeptídeos , Polieletrólitos , Humanos , Fosfopeptídeos/análise , Zircônio , Células A549 , Proteínas , Fenômenos Magnéticos , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...