Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.701
Filtrar
1.
Sci Rep ; 14(1): 12836, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834660

RESUMO

This study introduces an evaluation methodology tailored for bioreactors, with the aim of assessing the stress experienced by algae due to harmful contaminants released from antifouling (AF) paints. We present an online monitoring system equipped with an ultra-sensitive sensor that conducts non-invasive measurements of algal culture's optical density and physiological stage through chlorophyll fluorescence signals. By coupling the ultra-sensitive sensor with flash-induced chlorophyll fluorescence, we examined the dynamic fluorescence changes in the green microalga Chlamydomonas reinhardtii when exposed to biocides. Over a 24-h observation period, increasing concentrations of biocides led to a decrease in photosynthetic activity. Notably, a substantial reduction in the maximum quantum yield of primary photochemistry (FV/FM) was observed within the first hour of exposure. Subsequently, we detected a partial recovery in FV/FM; however, this recovery remained 50% lower than that of the controls. Integrating the advanced submersible sensor with fluorescence decay kinetics offered a comprehensive perspective on the dynamic alterations in algal cells under the exposure to biocides released from antifouling coatings. The analysis of fluorescence relaxation kinetics revealed a significant shortening of the fast and middle phases,  along with an increase in the duration of the slow phase, for the coating with the highest levels of biocides. Combining automated culturing and measuring methods, this approach has demonstrated its effectiveness as an ultrasensitive and non-invasive tool for monitoring the physiology of photosynthetic cultures. This is particularly valuable in the context of studying microalgae and their early responses to various environmental conditions, as well as the potential to develop an AF system with minimal harm to the environment.


Assuntos
Reatores Biológicos , Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Desinfetantes/farmacologia , Fluorescência , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo , Poluentes Químicos da Água/análise
2.
Sci Rep ; 14(1): 12854, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834735

RESUMO

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Assuntos
Compostos Férricos , Ácido Gálico , Estresse Salino , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Ácido Gálico/metabolismo , Zinco/metabolismo , Fotossíntese/efeitos dos fármacos , Nanopartículas/química , Clorofila/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Salinidade , Solo/química
3.
Physiol Plant ; 176(3): e14369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828612

RESUMO

High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.


Assuntos
Oryza , Fotossíntese , Proteínas de Plantas , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Cloroplastos/metabolismo , Temperatura Alta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Clorofila/metabolismo , Mutação , Resposta ao Choque Térmico/genética , Mutação com Perda de Função , Fenótipo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH
4.
Glob Chang Biol ; 30(6): e17348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822656

RESUMO

Global climate change intensifies the water cycle and makes freshest waters become fresher and vice-versa. But how this change impacts phytoplankton in coastal, particularly harmful algal blooms (HABs), remains poorly understood. Here, we monitored a coastal bay for a decade and found a significant correlation between salinity decline and the increase of Karenia mikimotoi blooms. To examine the physiological linkage between salinity decreases and K. mikimotoi blooms, we compare chemical, physiological and multi-omic profiles of this species in laboratory cultures under high (33) and low (25) salinities. Under low salinity, photosynthetic efficiency and capacity as well as growth rate and cellular protein content were significantly higher than that under high salinity. More strikingly, the omics data show that low salinity activated the glyoxylate shunt to bypass the decarboxylation reaction in the tricarboxylic acid cycle, hence redirecting carbon from CO2 release to biosynthesis. Furthermore, the enhanced glyoxylate cycle could promote hydrogen peroxide metabolism, consistent with the detected decrease in reactive oxygen species. These findings suggest that salinity declines can reprogram metabolism to enhance cell proliferation, thus promoting bloom formation in HAB species like K. mikimotoi, which has important ecological implications for future climate-driven salinity declines in the coastal ocean with respect to HAB outbreaks.


Assuntos
Mudança Climática , Proliferação Nociva de Algas , Salinidade , Fotossíntese , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Carbono/metabolismo , Carbono/análise
5.
Nat Microbiol ; 9(6): 1526-1539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839975

RESUMO

Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.


Assuntos
Ciclo do Carbono , Fontes Hidrotermais , Poliquetos , Simbiose , Fontes Hidrotermais/microbiologia , Animais , Poliquetos/metabolismo , Oxirredução , Ciclo do Ácido Cítrico , Sulfetos/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrogenase/metabolismo , Hidrogenase/genética , Crescimento Quimioautotrófico , Perfilação da Expressão Gênica , Nitratos/metabolismo , Fotossíntese , Bactérias/metabolismo , Bactérias/genética
6.
Physiol Plant ; 176(3): e14367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837234

RESUMO

Inoculation of arbuscular mycorrhizal fungi (AMF) or biochar (BC) application can improve photosynthesis and promote plant growth under saline-alkali stress. However, little is known about the effects of the two combined on growth and physiological characteristics of switchgrass under saline-alkali stress. This study examined the effects of four treatments: (1) no AMF inoculation and no biochar addition (control), (2) biochar (BC) alone, (3) AMF (Rhizophagus irregularis, Ri) alone, and (4) the combination of both (BC+Ri) on the plant biomass, antioxidant enzymes, chlorophyll, and photosynthetic parameters of switchgrass under saline-alkali stress. The results showed that the above-ground, belowground and total biomass of switchgrass in the BC+Ri treatment group was significantly higher (+136.7%, 120.2% and 132.4%, respectively) than in other treatments compared with Control. BC+Ri treatment significantly increased plant leaves' relative chlorophyll content, antioxidant enzyme activity, and photosynthesis parameters. It is worth noting that the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency and other photosynthetic-related indexes of the BC+Ri treatment group were the highest (38% to 54% higher than other treatments). The fitting results of light response and CO2 response curves showed that the light saturation point, light compensation point, maximum carboxylation rate and maximum electron transfer rate of switchgrass in the Ri+BC treatment group were the highest. In conclusion, biochar combined with Ri has potential beneficial effects on promoting switchgrass growth under saline-alkali stress and improving the activity of antioxidant enzymes and photosynthetic characteristics of plants.


Assuntos
Carvão Vegetal , Clorofila , Micorrizas , Panicum , Fotossíntese , Carvão Vegetal/farmacologia , Panicum/fisiologia , Panicum/efeitos dos fármacos , Panicum/crescimento & desenvolvimento , Fotossíntese/fisiologia , Clorofila/metabolismo , Micorrizas/fisiologia , Glomeromycota/fisiologia , Álcalis , Biomassa , Folhas de Planta/fisiologia , Antioxidantes/metabolismo
7.
Environ Monit Assess ; 196(7): 597, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842642

RESUMO

Photosynthesis in vegetation is one of the key processes in maintaining regional ecological balance and climate stability, and it is of significant importance for understanding the health of regional ecosystems and addressing climate change. Based on 2001-2021 Global OCO-2 Solar-Induced Fluorescence (GOSIF) dataset, this study analyzed spatiotemporal variations in Asian vegetation photosynthesis and its response to climate and human activities. Results show the following: (1) From 2001 to 2021, the overall photosynthetic activity of vegetation in the Asian region has shown an upward trend, exhibiting a stable distribution pattern with higher values in the eastern and southern regions and lower values in the central, western, and northern regions. In specific regions such as the Turgen Plateau in northwestern Kazakhstan, Cambodia, Laos, and northeastern Syria, photosynthesis significantly declined. (2) Meteorological factors influencing photosynthesis exhibit differences based on latitude and vertical zones. In low-latitude regions, temperature is the primary driver, while in mid-latitude areas, solar radiation and precipitation are crucial. High-latitude regions are primarily influenced by temperature, and high-altitude areas depend on precipitation and solar radiation. (3) Human activities (56.44%) have a slightly greater impact on the dynamics of Asian vegetation photosynthesis compared to climate change (43.56%). This research deepens our comprehension of the mechanisms behind the fluctuations in Asian vegetation photosynthesis, offering valuable perspectives for initiatives in environmental conservation, sustainability, and climate research.


Assuntos
Mudança Climática , Monitoramento Ambiental , Fotossíntese , Imagens de Satélites , Monitoramento Ambiental/métodos , Ásia , Ecossistema , Plantas
8.
Nat Commun ; 15(1): 4842, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844786

RESUMO

Carbon capture and biochemical storage are some of the primary drivers of photosynthetic yield and productivity. To elucidate the mechanisms governing carbon allocation, we designed a photosynthetic light response test system for genetic and metabolic carbon assimilation tracking, using microalgae as simplified plant models. The systems biology mapping of high light-responsive photophysiology and carbon utilization dynamics between two variants of the same Picochlorum celeri species, TG1 and TG2 elucidated metabolic bottlenecks and transport rates of intermediates using instationary 13C-fluxomics. Simultaneous global gene expression dynamics showed 73% of the annotated genes responding within one hour, elucidating a singular, diel-responsive transcription factor, closely related to the CCA1/LHY clock genes in plants, with significantly altered expression in TG2. Transgenic P. celeri TG1 cells expressing the TG2 CCA1/LHY gene, showed 15% increase in growth rates and 25% increase in storage carbohydrate content, supporting a coordinating regulatory function for a single transcription factor.


Assuntos
Carbono , Luz , Fotossíntese , Fatores de Transcrição , Carbono/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Microalgas/metabolismo , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos da radiação
9.
Sci Rep ; 14(1): 12988, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844823

RESUMO

Salinity stress significantly hinders plant growth by disrupting osmotic balance and inhibiting nutrient uptake, leading to reduced biomass and stunted development. Using saponin (SAP) and boron (B) can effectively overcome this issue. Boron decreases salinity stress by stabilizing cell walls and membranes, regulating ion balance, activating antioxidant enzymes, and enhancing water uptake. SAP are bioactive compounds that have the potential to alleviate salinity stress by improving nutrient uptake, modulating plant hormone levels, promoting root growth, and stimulating antioxidant activity. That's why the current study was planned to use a combination of SAP and boron as amendments to mitigate salinity stress in sweet potatoes. Four levels of SAP (0%, 0.1%, 0.15%, and 0.20%) and B (control, 5, 10, and 20 mg/L B) were applied in 4 replications following a completely randomized design. Results illustrated that 0.15% SAP with 20 mg/L B caused significant enhancement in sweet potato vine length (13.12%), vine weight (12.86%), root weight (8.31%), over control under salinity stress. A significant improvement in sweet potato chlorophyll a (9.84%), chlorophyll b (20.20%), total chlorophyll (13.94%), photosynthetic rate (17.69%), transpiration rate (16.03%), and stomatal conductance (17.59%) contrast to control under salinity stress prove the effectiveness of 0.15% SAP + 20 mg/L B treatment. In conclusion, 0.15% SAP + 20 mg/L B is recommended to mitigate salinity stress in sweet potatoes.


Assuntos
Boro , Ipomoea batatas , Estresse Salino , Saponinas , Ipomoea batatas/crescimento & desenvolvimento , Boro/farmacologia , Saponinas/farmacologia , Estresse Salino/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Clorofila/metabolismo , Sinergismo Farmacológico , Salinidade
10.
Sci Rep ; 14(1): 12897, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839939

RESUMO

An ample amount of water and soil nutrients is required for economic wheat production to meet the current food demands. Nitrogen (N) and zinc (Zn) fertigation in soils can produce a substantial wheat yield for a rapidly increasing population and bring a limelight to researchers. The present study was designed to ascertain N and Zn's synergistic role in wheat growth, yield, and physio-biochemical traits. A pot experiment was laid out under a complete randomized design with four N levels (N1-0, N2-60, N3- 120, and N4-180 kg ha-1), Zn (T1-0, T2-5, T3-10, and T4-15 kg ha-1) with four replications. After the emergence of the plants, N and Zn fertigation was applied in the soil. The growth traits were considerably increased by combined applications as compared to the sole applications of the N and Zn. The photosynthetic pigments were found maximum due to combined applications of N and Zn, which were positively associated with biomass, growth, yield, and wheat grain quality. The combined application also substantially enhances the antioxidant enzyme activities to scavenge the ROS as H2O2 and reduce lipid peroxidation to protect the permeability of the biologic membranes. The combined higher applications of N and Zn were more responsive to ionic balance in a shoot by maintaining the Na+ for osmotic adjustments, accumulating more Ca2+ for cellular signaling; but, combined applications resulted in K+ reduction. Our present results suggest that appropriate sole or combined applications of N and Zn improve wheat's growth, yield, and antioxidant mechanisms. Previous studies lack sufficient information on N and Zn combined fertigation. We intend to investigate both the sole and combined roles of N and Zn to exploit their potential synergistic effects on wheat.


Assuntos
Antioxidantes , Nitrogênio , Triticum , Zinco , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Zinco/metabolismo , Nitrogênio/metabolismo , Antioxidantes/metabolismo , Solo/química , Fotossíntese , Biomassa
11.
Plant Signal Behav ; 19(1): 2359258, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38828703

RESUMO

Tea plantations in Karst regions suffer from the serious effects of frequent temporary karst droughts, leading to a decline in tea production and quality in the region. The close relationship between growth and electrical parameters of plants, including physiological capacitance, resistance and impedance, can be used to accurately monitor their plant water status online, quickly, accurately, timely and nondestructively. In this study, three tea tree cultivars of Zhonghuang No.2 (ZH), Wuniuzao (WNZ), and Longjing 43 (LJ) with different levels of drought resistance were selected as experimental materials, and experiments were carried out under controlled conditions according to control (soil water content of 40-45%, D0), (keeping D0 no watering to 5 days, D5), (keeping D0 no watering to 10 days, D10), (the first day after D10 is rehydrated to D0 is regarded as R1) and (the fifth day after D10 rehydration to D0 is regarded as R5), to determine intracellular water metabolism and nutrient translocation characteristics based on intrinsic electrical parameters. The photosynthetic characteristics and chlorophyll fluorescence parameters were also determined to investigate the response of water metabolism to simulated karst drought in the three tea tree cultivars. The results indicated that the water metabolism patterns responded to environmental water changes with a medium water-holding capacity, medium water transport rate, and low water-use efficiency, and the nutrient patterns in those tea tree varieties demonstrated with a high nutrient flux per unit area, low nutrient transfer rate, and high nutrient transport capacity. After rehydration, only the electrical characteristics of WNZ returned to the D0 levels, but the net photosynthetic rate of all varieties returned to or even exceeded the D0 levels. The chlorophyll fluorescence parameters could not be used to characterize the recoverability of metabolism in tea trees. The electrical characteristics quickly reflected the response of the water metabolism in plants to environmental changes, and the fusion of electrical characteristics and photosynthetic characteristics was able to more quickly, accurately, and comprehensively reflect the response of water metabolism to temporary karst drought.


Assuntos
Camellia sinensis , Secas , Fotossíntese , Água , Fotossíntese/fisiologia , Camellia sinensis/fisiologia , Camellia sinensis/metabolismo , Água/metabolismo , Clorofila/metabolismo
12.
Sci Rep ; 14(1): 10556, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719847

RESUMO

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Assuntos
Fertilizantes , Glycine max , Níquel , Solo , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Fertilizantes/análise , Solo/química , Urease/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogênio/metabolismo , Fotossíntese/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Agricultura/métodos
13.
BMC Plant Biol ; 24(1): 356, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724950

RESUMO

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.


Assuntos
Carvão Vegetal , Secas , Estresse Salino , Solanum lycopersicum , Água , Solanum lycopersicum/fisiologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Água/metabolismo , Irrigação Agrícola , Fotossíntese/efeitos dos fármacos
14.
Physiol Plant ; 176(3): e14329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695156

RESUMO

Although tetraploid wheat has rich genetic variability for cultivar improvement, its physiological mechanisms associated with photosynthetic productivity and resilience under nitrogen (N) deficit stress have not been investigated. In this study, we selected emmer wheat (Kronos, tetraploid), Yangmai 25 (YM25, hexaploid), and Chinese Spring (CS, hexaploid) as materials and investigated the differences in net photosynthetic rate (Pn), carboxylation capacity, electron transfer capacity, photosynthetic product output, and photosynthetic N allocation under normal N (CK) and low N (LN) through hydroponic experiments. Tetraploid emmer wheat (Kronos) had a stronger photosynthetic capacity than hexaploid wheat (YM25, CS) under low N stress, which mainly associated with the higher degree of PSII opening, electron transfer rate, Rubisco content and activity, ATP/ADP ratio, Rubisco activase (Rca) activity and Rubisco activation state, and more leaves N allocation to the photosynthetic apparatus, especially the proportion of N allocation to carboxylation under low N stress. Moreover, Kronos reduced the feedback inhibition of photosynthesis by sucrose accumulation through higher sucrose phosphate synthetase (SPS) activity and triose phosphate utilization rate (VTPU). Overall, Kronos could allocate more N to the photosynthetic components to improve Rubisco content and activity to maintain photosynthetic capacity under low N stress while enhancing triose phosphate output to reduce feedback inhibition of photosynthesis. This study reveals the physiological mechanisms of emmer wheat that maintain the photosynthetic capacity under low N stress, which will provide indispensable germplasm resources for elite low-N-tolerant wheat improvement and breeding.


Assuntos
Nitrogênio , Fotossíntese , Ribulose-Bifosfato Carboxilase , Triticum , Fotossíntese/fisiologia , Triticum/fisiologia , Triticum/genética , Triticum/metabolismo , Nitrogênio/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Estresse Fisiológico , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Adaptação Fisiológica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Glucosiltransferases/metabolismo , Glucosiltransferases/genética
15.
Physiol Plant ; 176(3): e14328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695265

RESUMO

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Assuntos
Acremonium , Homeostase , Oxirredução , Reguladores de Crescimento de Plantas , Tolerância ao Sal , Transdução de Sinais , Acremonium/metabolismo , Acremonium/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/fisiologia , Brassica napus/microbiologia , Brassica napus/metabolismo , Brassica napus/fisiologia , Brassica napus/efeitos dos fármacos , Estresse Salino/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Fotossíntese
16.
PeerJ ; 12: e17191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699184

RESUMO

Context: Exogenous use of potential organic compounds through different modes is a promising strategy for the induction of water stress tolerance in crop plants for better yield. Aims: The present study aimed to explore the potential role of alpha-lipoic acid (ALA) in inducing water stress tolerance in mungbean lines when applied exogenously through various modes. Methods: The experiment was conducted in a field with a split-plot arrangement, having three replicates for each treatment. Two irrigation regimes, including normal and reduced irrigation, were applied. The plants allocated to reduced irrigation were watered only at the reproductive stage. Three levels of ALA (0, 0.1, 0.15 mM) were applied through different modes (seed priming, foliar or priming+foliar). Key results: ALA treatment through different modes manifested higher growth under reduced irrigation (water stress) and normal irrigation. Compared to the other two modes, the application of ALA as seed priming was found more effective in ameliorating the adverse impacts of water stress on growth and yield associated with their better content of leaf photosynthetic pigments, maintenance of plant water relations, levels of non-enzymatic antioxidants, improved activities of enzymatic antioxidants, and decreased lipid peroxidation and H2O2 levels. The maximum increase in shoot fresh weight (29% and 28%), shoot dry weight (27% and 24%), 100-grain weight (24% and 23%) and total grain yield (20% and 21%) in water-stressed mungbean plants of line 16003 and 16004, respectively, was recorded due to ALA seed priming than other modes of applications. Conclusions: Conclusively, 0.1 and 0.15 mM levels of ALA as seed priming were found to reduce the adverse impact of water stress on mungbean yield that was associated with improved physio-biochemical mechanisms. Implications: The findings of the study will be helpful for the agriculturalists working in arid and semi-arid regions to obtain a better yield of mungbean that will be helpful to fulfill the food demand in those areas to some extent.


Assuntos
Antioxidantes , Secas , Fotossíntese , Ácido Tióctico , Vigna , Vigna/crescimento & desenvolvimento , Vigna/efeitos dos fármacos , Vigna/metabolismo , Ácido Tióctico/farmacologia , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Desidratação , Clorofila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
17.
PeerJ ; 12: e17259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699194

RESUMO

Iron (Fe) plays a fundamental role in coral symbiosis, supporting photosynthesis, respiration, and many important enzymatic reactions. However, the extent to which corals are limited by Fe and their metabolic responses to inorganic Fe enrichment remains to be understood. We used respirometry, variable chlorophyll fluorescence, and O2 microsensors to investigate the impact of increasing Fe(III) concentrations (20, 50, and 100 nM) on the photosynthetic capacity of two Mediterranean coral species, Cladocora caespitosa and Oculina patagonica. While the bioavailability of inorganic Fe can rapidly decrease, we nevertheless observed significant physiological effects at all Fe concentrations. In C. caespitosa, exposure to 50 nM Fe(III) increased rates of respiration and photosynthesis, while the relative electron transport rate (rETR(II)) decreased at higher Fe(III) exposure (100 nM). In contrast, O. patagonica reduced respiration, photosynthesis rates, and maximum PSII quantum yield (Fv/Fm) across all iron enrichments. Both corals exhibited increased hypoxia (<50 µmol O2 L-1) within their gastric cavity at night when exposed to 50 and 100 nM Fe(III), leading to increased polyp contraction time and reduced O2 exchange with the surrounding water. Our results indicate that C. caespitosa, but not O. patagonica, might be limited in Fe for achieving maximal photosynthetic efficiency. Understanding the multifaceted role of iron in corals' health and their response to environmental change is crucial for effective coral conservation.


Assuntos
Antozoários , Ferro , Oxigênio , Fotossíntese , Antozoários/efeitos dos fármacos , Antozoários/metabolismo , Animais , Fotossíntese/efeitos dos fármacos , Ferro/metabolismo , Oxigênio/metabolismo , Mar Mediterrâneo , Simbiose
18.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702592

RESUMO

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Assuntos
Antimônio , Micorrizas , Olea , Poluentes do Solo , Micorrizas/fisiologia , Olea/microbiologia , Poluentes do Solo/metabolismo , Antimônio/metabolismo , Adaptação Fisiológica , Resíduos Industriais , Fotossíntese/efeitos dos fármacos , Biodegradação Ambiental , Biomassa
19.
Hereditas ; 161(1): 15, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702800

RESUMO

BACKGROUND: Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that lives in high mountain with strong UV-B radiation, so R. chrysanthum possess resistance to UV-B radiation. The process of stress resistance in plants is closely related to metabolism. Lysine acetylation is an important post-translational modification, and this modification process is involved in a variety of biological processes, and affected the expression of enzymes in metabolic processes. However, little is known about acetylation proteomics during UV-B stress resistance in R. chrysanthum. RESULTS: In this study, R. chrysanthum OJIP curves indicated that UV-B stress damaged the receptor side of the PSII reaction center, with a decrease in photosynthesis, a decrease in sucrose content and an increase in starch content. A total of 807 differentially expressed proteins, 685 differentially acetylated proteins and 945 acetylation sites were identified by quantitative proteomic and acetylation modification histological analysis. According to COG and subcellular location analyses, DEPs with post-translational modification of proteins and carbohydrate metabolism had important roles in resistance to UV-B stress and DEPs were concentrated in chloroplasts. KEGG analyses showed that DEPs were enriched in starch and sucrose metabolic pathways. Analysis of acetylation modification histology showed that the enzymes in the starch and sucrose metabolic pathways underwent acetylation modification and the modification levels were up-regulated. Further analysis showed that only GBSS and SSGBSS changed to DEPs after undergoing acetylation modification. Metabolomics analyses showed that the metabolite content of starch and sucrose metabolism in R. chrysanthum under UV-B stress. CONCLUSIONS: Decreased photosynthesis in R. chrysanthum under UV-B stress, which in turn affects starch and sucrose metabolism. In starch synthesis, GBSS undergoes acetylation modification and the level is upregulated, promotes starch synthesis, making R. chrysanthum resistant to UV-B stress.


Assuntos
Proteínas de Plantas , Proteômica , Rhododendron , Raios Ultravioleta , Acetilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhododendron/genética , Rhododendron/metabolismo , Rhododendron/fisiologia , Estresse Fisiológico , Metabolômica , Processamento de Proteína Pós-Traducional , Regulação da Expressão Gênica de Plantas , Amido/metabolismo , Fotossíntese
20.
Sci Rep ; 14(1): 10131, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698085

RESUMO

Fusarium head blight (FHB) is a significantly important disease in cereals primarily caused by Fusarium species. FHB control is largely executed through chemical strategies, which are costlier to sustainable wheat production, resulting in leaning towards sustainable sources such as resistance breeding and biological control methods for FHB. The present investigation was aimed at evaluating newly identified bacterial consortium (BCM) as biocontrol agents for FHB and understanding the morpho-physiological traits associated with the disease resistance of spring wheat. Preliminary evaluation through antagonistic plate assay and in vivo assessment indicated that BCM effectively inhibited Fusarium growth in spring wheat, reducing area under disease progress curve (AUDPC) and deoxynivalenol (DON), potentially causing type II and V resistance, and improving single spike yield (SSPY). Endurance to FHB infection with the application of BCM is associated with better sustenance of spike photosynthetic performance by improving the light energy harvesting and its utilization. Correlation and path-coefficient analysis indicated that maximum quantum yield (QY_max) is directly influencing the improvement of SSPY and reduction of grain DON accumulation, which is corroborated by principal component analysis. The chlorophyll fluorescence traits identified in the present investigation might be applied as a phenotyping tool for the large-scale identification of wheat sensitivity to FHB.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Triticum/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Consórcios Microbianos/fisiologia , Tricotecenos/metabolismo , Fotossíntese , Bactérias/metabolismo , Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA