Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 526
Filtrar
1.
BMC Plant Biol ; 24(1): 1038, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39482621

RESUMO

BACKGROUND: This study examines the effects of various complementary light spectra on the growth, development, antioxidant activity, and nutrient absorption in strawberry plants under stress conditions. Light-emitting diodes (LEDs) were used to provide specific wavelengths, including monochromatic blue (460 nm), monochromatic red (660 nm), a dichromatic mix of blue and red (1:3 ratio), full-spectrum white light (400-700 nm), and ambient light as a control (no LED treatment). The stress treatments applied were: control (no stress), salinity (80 mM NaCl), alkalinity (40 mM NaHCO3), and a combined salinity/alkalinity condition. RESULTS: Our results indicated that complementary light spectra, especially red and blue/red, helped mitigate the adverse effects of stress on plant growth and development. These spectra improved plant tolerance by enhancing the activity of polyphenol oxidase and peroxidase enzymes and increasing starch accumulation in the leaves. Furthermore, under stress conditions, red and blue-red light significantly boosted fruit anthocyanin levels. Although stress elevated antioxidant activity, supplementary light reduced this activity by alleviating stress compared to ambient light. While stress led to increased Na and Cl ion concentrations in leaves, treatments with blue, red, and blue-red light minimized these harmful effects and promoted the absorption of beneficial ions such as K, Mg, Fe, and Cu. CONCLUSIONS: Adjusting light quality significantly influences the morphology and physiology of strawberry plants, underscoring the role of specific light spectra in promoting optimal growth under stress conditions. CLINICAL TRIAL NUMBER: Not applicable.


Assuntos
Fragaria , Luz , Fragaria/crescimento & desenvolvimento , Fragaria/efeitos da radiação , Fragaria/metabolismo , Fragaria/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/metabolismo , Osmose , Estresse Fisiológico , Antioxidantes/metabolismo , Salinidade , Cloreto de Sódio/farmacologia , Frutas/efeitos da radiação , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Antocianinas/metabolismo , Amido/metabolismo , Nutrientes/metabolismo , Catecol Oxidase/metabolismo
2.
Planta ; 260(5): 118, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39419853

RESUMO

MAIN CONCLUSION: Heat stress reduces strawberry growth and fruit quality by impairing photosynthesis, disrupting hormone regulation, and altering mineral nutrition. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic and metabolomic under high temperatures. Garden strawberry is a globally cultivated, economically important fruit crop highly susceptible to episodic heat waves and chronically rising temperatures associated with climate change. Heat stress negatively affects the growth, development, and quality of strawberries. Elevated temperatures affect photosynthesis, respiration, water balance, hormone signaling, and carbohydrate metabolism in strawberries. Heat stress reduces the size and number of leaves, the number of crowns, the differentiation of flower buds, and the viability of pollen and fruit set, ultimately leading to a lower yield. On a physiological level, heat stress reduces membrane stability, increases the production of reactive oxygen species, and reduces the antioxidant capacity of strawberries. Heat-tolerant varieties have better physiological and biochemical adaptation mechanisms compared to heat-sensitive varieties. Breeding heat-tolerant strawberry cultivars involves selection for traits such as increased leaf temperature, membrane thermostability, and chlorophyll content. Multi-omics studies show extensive transcriptional, post-transcriptional, proteomic, metabolomic, and ionomic reprogramming at high temperatures. Integrative-omics approaches combine multiple omics datasets to obtain a systemic understanding of the responses to heat stress in strawberries. This article summarizes the deciphering of strawberry responses to heat stress using physiological, biochemical, and molecular approaches that will enable the development of resilient adaptation strategies that sustain strawberry production under global climate change.


Assuntos
Fragaria , Resposta ao Choque Térmico , Fragaria/genética , Fragaria/fisiologia , Fragaria/metabolismo , Fragaria/crescimento & desenvolvimento , Resposta ao Choque Térmico/fisiologia , Fotossíntese , Mudança Climática , Proteômica/métodos , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Frutas/genética , Frutas/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética
3.
Funct Plant Biol ; 512024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39413063

RESUMO

Bassinosteroids (BRs) can induce plant defence responses and promote plant growth. In this work, we evaluated the effect of a natural (EP24) and a synthetic (BB16) brassinosteroid on strawberry (Fragaria vesca ) plants exposed to saline stress. Treated plants showed higher shoot dry weight and root growth compared to untreated control plants. In BR-treated plants, crown diameters increased 66% and 40%, leaf area 148% and 112%, relative water content in leaves 84% and 61%, and SPAD values 24% and 26%, in response to BB16 and EP24, respectively. A marked stomatal closure, increased leaflet lignification, and a decrease in cortex thickness, root diameter and stele radius were also observed in treated plants. Treatments also reduces stress-induced damage, as plants showed a 34% decrease in malondialdehyde content and a lower proline content compared to control plants. A 22% and 15% increase in ascorbate peroxidase and total phenolic compound activities was observed in response to BB16, and a 24% increase in total flavonoid compound in response to both BRs, under stress conditions. These results allow us to propose the use of BRs as an environmentally safe crop management strategy to overcome salinity situations that severely affect crop yield.


Assuntos
Brassinosteroides , Fragaria , Estresse Salino , Fragaria/efeitos dos fármacos , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Estresse Salino/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Malondialdeído/metabolismo
4.
BMC Genomics ; 25(1): 952, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39396954

RESUMO

BACKGROUND: MYB transcription factors regulate anthocyanin biosynthesis across numerous plant species. However, comprehensive genome-wide investigations regarding the R2R3-MYB gene family and its involvement in regulating anthocyanin biosynthesis in the red and white fruit color morphs of Fragaria pentaphylla remain scarce. RESULTS: A total of 101 FpR2R3-MYB genes were identified from the F. pentaphylla genome and were divided into 34 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were particularly conserved among the FpR2R3-MYB genes, especially members within the same subgroup. The FpR2R3-MYB genes were distributed over seven F. pentaphylla chromosomes. Analysis of gene duplication events revealed five pairs of tandem duplication genes and 16 pairs of segmental duplication genes, suggesting that segmental duplications are the major pattern for expansion of the FpR2R3-MYB gene family expansion in F. pentaphylla. Cis-regulatory elements of the FpR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponse. Based on the analysis of the FpR2R3-MYB gene family and transcriptome sequencing (RNA-seq) data, FpMYB9 was identified as a key transcription factor involved in the regulation of anthocyanin synthesis in F. pentaphylla fruits. The expression of FpMYB9 increases significantly during the ripening stage of red fruits, as confirmed by reverse transcription quantitative real-time PCR. In addition, subcellular localization experiments further confirmed the nuclear presence of FpMYB9, supporting its role as a transcription factor involved in anthocyanin biosynthesis. CONCLUSION: Our results showed that the FpR2R3-MYB genes are highly conserved and play important roles in the anthocyanin biosynthesis in F. pentaphylla fruits. Our results also provide a compelling basis for further understanding of the regulatory mechanism underlying the role of FpMYB9 in anthocyanin formation in F. pentaphylla fruits.


Assuntos
Antocianinas , Fragaria , Regulação da Expressão Gênica de Plantas , Filogenia , Fatores de Transcrição , Antocianinas/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fragaria/genética , Fragaria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Duplicação Gênica , Genoma de Planta , Família Multigênica , Regiões Promotoras Genéticas
5.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337577

RESUMO

Plants may encounter abiotic stresses, such as drought, flooding, salinity, and extreme temperatures, thereby negatively affecting their growth, development, and reproduction. In order to enhance their tolerance to such stresses, plants have developed intricate signaling networks that regulate stress-responsive gene expression. For example, Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS 11 (AtEDT1/HDG11), one of the transcription factor genes from the group IV of homeodomain-leucine zipper (HD-ZIP) gene family, has been shown to increase drought tolerance in various transgenic plants. However, the underlying molecular mechanisms of enhanced stress tolerance remain unclear. In this study, we identified a homologous gene related to AtEDT1/HDG11, named FaTEDT1L, from the transcriptome sequencing database of cultivated strawberry. Phylogenetic analysis revealed the close relationship of FaTEDT1L with AtEDT1/HDG11, which is one of the group IV members of the HD-ZIP gene family. Yeast one-hybrid analysis showed that FaTEDT1L functions as a transcriptional activator. Transgenic Arabidopsis plants overexpressing FaTEDT1L under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited significantly enhanced tolerance to osmotic stress (both drought and salinity) when compared to the wild-type (WT) plants. Under osmotic stress, the average root length was 3.63 ± 0.83 cm, 4.20 ± 1.03 cm, and 4.60 ± 1.14 cm for WT, 35S::FaTEDT1L T2 #3, and 35S:: FaTEDT1L T2 #5, respectively. Substantially increased root length in 35S::FaTEDT1L T2 #3 and 35S::FaTEDT1L T2 #5 was noted when compared to the WT. In addition, the average water loss rates were 64%, 57.1%, and 55.6% for WT, 35S::FaTEDT1L T2 #3, and 35S::FaTEDT1L T2 #5, respectively, after drought treatment, indicating a significant decrease in water loss rate of 35S:: FaTEDT1L T2 #3 and 35S::FaTEDT1L T2 #5 is a critical factor in enhancing plant drought resistance. These findings thus highlight the crucial role of FaTEDT1L in mitigating drought and salt stresses and regulating plant osmotic stress tolerance. Altogether, FaTEDT1L shows its potential usage as a candidate gene for strawberry breeding in improving crop resilience and increasing agricultural productivity under adverse environmental conditions.


Assuntos
Arabidopsis , Fragaria , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Arabidopsis/genética , Secas , Fragaria/genética , Fragaria/metabolismo , Fragaria/crescimento & desenvolvimento , Pressão Osmótica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
6.
Sci Rep ; 14(1): 22436, 2024 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341865

RESUMO

Microalgae like Chlamydomonas are beneficial organisms employed as biological stimulants to improve plants' growth, fruit quality, and stress tolerance. In the current study, the effects of Chlamydomonas sp. foliar spraying (0, 20, and 40 ml L-1) were assayed on Camarosa strawberry plants under salinity stress (0, 40, and 80 mM NaCl). The results showed that the foliar application of Chlamydomonas extract influenced strawberry's morphological, physiological, and biochemical characteristics under salinity stress. Foliar treatment of Chlamydomonas extract with and without salinity stress increased the leaf number and leaf area, the leaf relative water content, and photosynthetic pigments content. Moreover, the foliar application of Chlamydomonas extract decreased lipid peroxidation and hydrogen peroxide content and, on the other hand, enhanced the antioxidant enzymes activity (superoxide dismutase, guaiacol peroxidase, and peroxidase), phenolics, flavonoids, and anthocyanins content under salinity stress. For instance, the highest total antioxidant capacity was found in the plants foliar treated with 40 ml L-1 of Chlamydomonas algae extract under 80 mM salinity stress, which increased by 102.4% compared to the controls, as well as the highest total phenolic compounds and anthocyanin's content were 30.22, and 7.2% more than the control plants, respectively. Overall, the foliar application of Chlamydomonas algae extracts, especially at a concentration of 20 ml L-1 enhanced the strawberry's growth, yield, and physiological traits under saline conditions. The results with more detailed evaluations will be advisable for the pioneer farmers and extension section.


Assuntos
Antioxidantes , Chlamydomonas , Fragaria , Estresse Salino , Fragaria/crescimento & desenvolvimento , Fragaria/efeitos dos fármacos , Fragaria/metabolismo , Antioxidantes/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas/efeitos dos fármacos , Chlamydomonas/crescimento & desenvolvimento , Chlamydomonas/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Fenóis/metabolismo , Salinidade , Superóxido Dismutase/metabolismo , Antocianinas/metabolismo
7.
Plant Physiol Biochem ; 215: 109081, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39222548

RESUMO

The garden strawberry (Fragaria x ananassa Duch.) is cultivated and consumed worldwide because of the pleasant flavor and health-promoting phytochemicals of its false fruits. Monocrop cultivars produce fully ripe strawberries in about one month post-anthesis throughout the spring, while everbearing cultivars undergo additional strawberry production in autumn. In this work, we evaluated the impact of different season-dependent environmental conditions on the ripening program of an everbearing field-gown strawberry variety from autumn 2015 to spring 2016. We combined ad hoc sampling and environmental data collection with LC-MS-based untargeted metabolomics to dissect the effects of cumulative temperature and solar irradiation on fruit quality parameters and secondary metabolism during ripening. Different dynamics in specific sub-groups of metabolites were observed in strawberries experiencing distinct amounts of cumulative temperature and solar irradiation during spring and autumn. The integration of statistical analyses on collected data revealed that solar irradiation mainly affected fruit fresh weight and organic acid levels, whereas temperature had a more selective effect on the accumulation of specific flavonols, anthocyanins, and soluble sugar. These findings are of suitable interest to design further approaches for the study of the complex interactions among environmental conditions and ripening in strawberries grown in a real-world scenario.


Assuntos
Fragaria , Frutas , Luz Solar , Temperatura , Fragaria/metabolismo , Fragaria/efeitos da radiação , Fragaria/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/efeitos da radiação , Frutas/crescimento & desenvolvimento , Metabolismo Secundário/efeitos da radiação , Estações do Ano , Antocianinas/metabolismo
8.
BMC Plant Biol ; 24(1): 876, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304822

RESUMO

BACKGROUND: The plant hormone auxin plays a crucial role in regulating important functions in strawberry fruit development. Although a few studies have described the complex auxin biosynthetic and signaling pathway in wild diploid strawberry (Fragaria vesca), the molecular mechanisms underlying auxin biosynthesis and crosstalk in octoploid strawberry fruit development are not fully characterized. To address this knowledge gap, comprehensive transcriptomic analyses were conducted at different stages of fruit development and compared between the achene and receptacle to identify developmentally regulated auxin biosynthetic genes and transcription factors during the fruit ripening process. Similar to wild diploid strawberry, octoploid strawberry accumulates high levels of auxin in achene compared to receptacle. RESULTS: Genes involved in auxin biosynthesis and conjugation, such as Tryptophan Aminotransferase of Arabidopsis (TAAs), YUCCA (YUCs), and Gretchen Hagen 3 (GH3s), were found to be primarily expressed in the achene, with low expression in the receptacle. Interestingly, several genes involved in auxin transport and signaling like Pin-Formed (PINs), Auxin/Indole-3-Acetic Acid Proteins (Aux/IAAs), Transport Inhibitor Response 1 / Auxin-Signaling F-Box (TIR/AFBs) and Auxin Response Factor (ARFs) were more abundantly expressed in the receptacle. Moreover, by examining DEGs and their transcriptional profiles across all six developmental stages, we identified key auxin-related genes co-clustered with transcription factors from the NAM-ATAF1,2-CUC2/ WRKYGQK motif (NAC/WYKY), Heat Shock Transcription Factor and Heat Shock Proteins (HSF/HSP), APETALA2/Ethylene Responsive Factor (AP2/ERF) and MYB transcription factor groups. CONCLUSIONS: These results elucidate the complex regulatory network of auxin biosynthesis and its intricate crosstalk within the achene and receptacle, enriching our understanding of fruit development in octoploid strawberries.


Assuntos
Fragaria , Frutas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Homeostase , Ácidos Indolacéticos , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Ácidos Indolacéticos/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
PeerJ ; 12: e17960, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39221270

RESUMO

Water soaking is a commercially important disorder of field-grown strawberries that is exacerbated by surface wetness and high humidity. The objective was to establish the effect of genotype on susceptibility to water soaking. Three greenhouse-grown model 'collections' were used comprising a total of 172 different genotypes: (1) a segregating F2 population, (2) a collection of strawberry cultivars and breeding clones, and (3) a collection of wild Fragaria species. A standardized immersion assay was used to induce water soaking. Potential relationships between water soaking and water uptake characteristics, depth of the achene depressions, fruit firmness, cuticle mass and strain relaxation and microcracking were investigated. Further, the effect of downregulating the polygalacturonase genes (FaPG1 and FaPG2) on the susceptibility to water soaking was investigated. The collection of wild species was most susceptible to water soaking. This was followed by the collection of cultivars and breeding clones, and by the F2 population. Susceptibility to water soaking was strongly correlated with water uptake rate (mass of water, per fruit, per time). For the pooled dataset of 172 genotypes, 46% of the variability in water soaking was accounted for by the permeance of the skin to osmotic water uptake. Susceptibility to water soaking was not, or was only poorly correlated with measurements of fruit surface area or of the osmotic potential of the expressed fruit juice. The only exceptions were the wild Fragaria species which were highly variable in fruit size and also in fruit osmotic potential. For genotypes from the F2 and the wild species collections, firmer fruit were less susceptible to water soaking than softer fruit. There were no relationships between fruit firmness and susceptibility to water soaking in transgenic plants in which FaPG1 and FaPG2 were down-regulated. Susceptibility to water soaking was not related to cuticle mass per unit fruit surface area, nor to strain relaxation of the cuticle upon isolation, nor to achene position. In summary, strawberry's susceptibility to water soaking has a significant genetic component and is closely and consistently related to the skin's permeance to osmotic water uptake.


Assuntos
Fragaria , Frutas , Genótipo , Fenótipo , Água , Fragaria/genética , Fragaria/metabolismo , Água/metabolismo , Frutas/genética , Frutas/metabolismo
10.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337399

RESUMO

Dihydroflavonol 4-reductase (DFR) significantly influences the modification of flower color. To explore the role of DFR in the synthesis of strawberry anthocyanins, in this study, we downloaded the CDS sequences of the DFR gene family from the Arabidopsis genome database TAIR; the DFR family of forest strawberry was compared; then, a functional domain screen was performed using NCBI; the selected strawberry DFR genes were analyzed; and the expression characteristics of the family members were studied by qRT-PCR. The results showed that there are 57 members of the DFR gene family in strawberry, which are mainly expressed in the cytoplasm and chloroplast; most of them are hydrophilic proteins; and the secondary structure of the protein is mainly composed of α-helices and random coils. The analysis revealed that FvDFR genes mostly contain light, hormone, abiotic stress, and meristem response elements. From the results of the qRT-PCR analysis, the relative expression of each member of the FvDFR gene was significantly different, which was expressed throughout the process of fruit coloring. Most genes had the highest expression levels in the full coloring stage (S4). The expression of FvDFR30, FvDFR54, and FvDFR56 during the S4 period was 8, 2.4, and 2.4 times higher than during the S1 period, indicating that the DFR gene plays a key role in regulating the fruit coloration of strawberry. In the strawberry genome, 57 members of the strawberry DFR gene family were identified. The higher the DFR gene expression, the higher the anthocyanin content, and the DFR gene may be the key gene in anthocyanin synthesis. Collectively, the DFR gene is closely related to fruit coloring, which lays a foundation for further exploring the function of the DFR gene family.


Assuntos
Oxirredutases do Álcool , Fragaria , Frutas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Fragaria/genética , Fragaria/enzimologia , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Antocianinas/biossíntese , Antocianinas/metabolismo , Genoma de Planta , Pigmentação/genética , Perfilação da Expressão Gênica
11.
Plant Physiol Biochem ; 215: 109043, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181084

RESUMO

'Benihoppe' and 'Fenyu No.1' are representative varieties of red and pink strawberries in China, possess distinct hue and flavor profiles. This study analyzed the underlying biochemical and molecular differences of two varieties utilizing transcriptomics and high-performance liquid chromatography (HPLC). Ripening 'Benihoppe' fruits accumulated more sucrose and pelargonin-3-glucoside (P3G) with a little cyanidin and higher firmness. Whereas ripening 'Fenyu No.1' fruits contained more fructose, glucose, malic acid and ascorbic acid (AsA), but less P3G and citric acid. Moreover, genotype significantly influenced phenolic compounds contents in strawberries. Transcriptome analysis revealed that pectin degradation (PL, PG, PE), sucrose synthesis (CWINV, SUS, TPS) and citric acid metabolism (α-OGDH, ICDH, GAD, GS, GDH, PEPCK, AST) were weakened in 'Benihoppe' fruit. In contrast, the synthesis of sucrose (CWINH, SPS), citric acid (CS, PEPC), anthocyanin (F3H, F3'H, F3'5'H, DFR, UFGT and ANS), and citric acid transport (V-ATPase) was enhanced. In 'Fenyu No.1' fruit, the degradation of sucrose, citric acid, and pectin was enhanced, along with the synthesis of malic acid (ME) and ascorbic acid (PMM, MDHAR and GaLUR). However, anthocyanins synthesis, glucose metabolism (HK, G6PI, PFK, G6PDH, PGK, PGM, ENO, PK), fructose metabolism (FK), citric acid synthesis and transport, and AsA degradation (AO, APX) were relatively weak. RT-qPCR results corroborated the transcriptome data. In conclusion, this study revealed the distinctions and characteristics of strawberries with different fruit colors regarding texture, flavor and color formation processes. These findings offer valuable insights for regulating metabolic pathways and identifying key candidate genes to improve strawberry quality.


Assuntos
Fragaria , Frutas , Fragaria/genética , Fragaria/metabolismo , Cromatografia Líquida de Alta Pressão , Frutas/metabolismo , Frutas/genética , Antocianinas/metabolismo , Antocianinas/biossíntese , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarose/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biossíntese , Ácido Cítrico/metabolismo
12.
Food Chem ; 461: 140819, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153372

RESUMO

The application of coatings is a strategy for maintaining the freshness of highly perishable fruits. This research aimed to evaluate the quality indices of strawberries (Amaou) coated with new coatings based on the sodium carboxymethyl cellulose (CMC) and cellulose nanofibres (CNF) with incorporated mandarin peel extract (ME) or 1-methylcyclopropene (1-MCP) during storage at 20days at 5 °C and 85% relative humidity (RH). Dissolving the coating solution containing ME in 1-MCP maintained its colour for up to 50 days. Coatings enhanced with ME and/or 1-MCP maintained fresh strawberries more effectively than the control, reducing weight loss and maintaining firmness, total soluble solids (TSS), citric acid, colour, and total phenolic content. The CCM2-2 coating solution showed superior effects on the weight loss and relative percentages of strawberry metabolites compared to the other coatings, as confirmed by the different components.


Assuntos
Citrus , Ciclopropanos , Conservação de Alimentos , Armazenamento de Alimentos , Fragaria , Frutas , Extratos Vegetais , Frutas/química , Fragaria/química , Fragaria/metabolismo , Conservação de Alimentos/métodos , Ciclopropanos/química , Ciclopropanos/farmacologia , Extratos Vegetais/química , Citrus/química , Metaboloma , Temperatura Baixa
13.
Food Chem ; 460(Pt 3): 140765, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121779

RESUMO

Aroma is an important indicator of fruit flavor, but mechanisms of aroma formation in strawberries (Fragaria spp.) during natural ripening are still not clear. In this study, aroma compounds in strawberry cultivars were analyzed using gas chromatography-mass spectrometry (GC-MS). Richly creamy strawberry cultivars in particular expressed high levels of vanillin acetate and coumarin (up-regulated by 12.6- and 9.8-fold, respectively), while the aroma-free cultivars were dominated by differential changes in terpenes and alcohols. Further research using liquid chromatography-mass spectrometry (LC-MS) and RNA-Seq indicated that the activation of the phenylpropanoid biosynthesis and alpha-linolenic acid metabolic pathways constituted the key to formation of aroma compounds in creamy strawberry cultivars. The results of this study not only provide a well-defined database to detect aroma compounds in different strawberry cultivars but also explore the underlying mechanisms of creamy aroma formation in strawberries.


Assuntos
Fragaria , Frutas , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Odorantes , Compostos Orgânicos Voláteis , Fragaria/metabolismo , Fragaria/química , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/química , Frutas/genética , Frutas/crescimento & desenvolvimento , Odorantes/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Transcriptoma , Cor , Aromatizantes/metabolismo , Aromatizantes/química
14.
Food Chem ; 460(Pt 3): 140740, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39126955

RESUMO

Gallic acid (GA) is one of the main phenolic components naturally occurring in many plants and foods and has been a subject of increasing interest owing to its antioxidant and anti-mutagenic properties. This study introduces a novel flexible sensor designed for in situ detecting GA in plant leaves. The sensor employs a laser-induced graphene (LIG) flexible electrode, enhanced with MXene and molybdenum disulfide (MoS2) nanosheets. The MXene/MoS2/LIG flexible sensor not only demonstrates exceptional mechanical properties, covering a wide detection range of 1-1000 µM for GA, but also exhibits remarkable selectivity and stability. The as-prepared sensor was successfully applied to in situ determination of GA content in strawberry leaves under salt stress. This innovative sensor opens an attractive avenue for in situ measurement of metabolites in plant bodies with flexible electronics.


Assuntos
Ácido Gálico , Grafite , Folhas de Planta , Ácido Gálico/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Grafite/química , Dispositivos Eletrônicos Vestíveis , Fragaria/química , Fragaria/metabolismo , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Molibdênio/química , Eletrodos , Técnicas Biossensoriais/instrumentação
15.
Food Chem ; 460(Pt 2): 140361, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098193

RESUMO

Strawberries are rich in volatile organic compounds (VOCs), which are increasingly recognized as potential health-promoting factors. This study explored the health effects of intaking strawberry VOC extract and its dominant terpene, linalool. The results indicated that linalool and strawberry VOC extract significantly increased the abundance of beneficial bacteria like Lactobacillus, Bacillus, and Alistipes in mice. Moreover, mice treated with linalool and strawberry VOC extract exhibited notable reductions in serum pro-inflammatory cytokines; interleukin IL-6 decreased by 14.5% and 21.8%, respectively, while IL-1ß levels decreased by 9.6% and 13.4%, respectively. Triglyceride levels in the treated groups were reduced by 38.3% and 58.1%, respectively. Spearman's correlation analysis revealed that Bacillus negatively correlated with glucolipid indices, and Bifidobacterium and Dubosiella negatively correlated with inflammatory factors, indicating that alterations in glucolipid metabolism might be associated with the regulation of gut microbiota and systemic inflammation.


Assuntos
Monoterpenos Acíclicos , Bactérias , Fragaria , Microbioma Gastrointestinal , Inflamação , Compostos Orgânicos Voláteis , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Camundongos , Fragaria/química , Fragaria/metabolismo , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/metabolismo , Masculino , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Inflamação/metabolismo , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Interleucina-6/metabolismo
16.
Physiol Plant ; 176(4): e14465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126176

RESUMO

Sugar is vital for plant growth and determines fruit quality via its content and composition. This study explores the differential sugar accumulation in two plum varieties, 'Fengtangli (FTL)' and 'Siyueli (SYL)'. The result showed that 'FTL' fruit displayed higher soluble solids and sugar content at various development stages. Metabolomic analysis indicated increased sorbitol in 'FTL', linked to elevated sorbitol-6-phosphate-dehydrogenase (S6PDH) activity. Transcriptome analysis identified a key gene for sorbitol synthesis, PsS6PDH4, which was significantly higher expressed in 'FTL' than in 'SYL'. The function of the PsS6PDH4 gene was verified in strawberry, apple, and plum fruits using transient overexpression and virus-induced gene silencing techniques. The results showed that overexpression of the PsS6PDH4 gene in strawberry, apple, and plum fruits promoted the accumulation of soluble solids content and sorbitol, while inhibition of the gene reduced soluble solids content and sorbitol content. Meanwhile, analysis of the relationship between PsS6PDH4 gene expression, sorbitol, and soluble solids content in four different plum varieties revealed a significant correlation between PsS6PDH4 gene expression and soluble solids content as well as sorbitol content. This research discovered PsS6PDH4 as a crucial regulator of sugar metabolism in plum, with potential applications in improving fruit sweetness and nutritional value in various fruit species. Understanding these molecular pathways can lead to innovative approaches for enhancing fruit quality, benefiting sustainable agriculture and consumer preferences in the global fruit industry.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Prunus domestica , Sorbitol , Sorbitol/metabolismo , Prunus domestica/genética , Prunus domestica/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fragaria/genética , Fragaria/metabolismo , Açúcares/metabolismo , Malus/genética , Malus/metabolismo
17.
Huan Jing Ke Xue ; 45(7): 4023-4031, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022950

RESUMO

Nitrogen loss from rice systems is an important source of agricultural non-point source pollution. Many studies revolve around reducing the rate of nitrogen fertilizer application. However, studies examining the characteristics of nitrogen loss in multiple loss paths (runoff, leaching, and lateral seepage) under different straw and fertilizer managements are lacking. Therefore, a study was carried out based on a rice field planted for more than 20 years with straw continuously returned to the field for more than 5 years in Taihu lake basin. The effects of straw and fertilizer managements on nitrogen loss in different paths during the whole growth period of rice were studied. Moreover, straw and fertilizer managements were evaluated by their production suitability and environmental friendliness based on crop yield, nitrogen use efficiency, and nitrogen loss. The results showed that straw removal from the field increased the response sensitivity of nitrogen accumulation in plant tissue to nitrogen application. The nitrogen loss in the rice season was 9-17 kg·hm-2, accounting for 5%-7% of the nitrogen application rate. Straw removal increased the risk of nitrogen loss when soaking water discharged. Straw returning could decrease the nitrogen loss by more than 15%, though the effect of straw on nitrogen loss via lateral seepage was not clear. Furthermore, the suitable substitution of organic fertilizer (30% in this study) could respectively reduce the amount of nitrogen loss via runoff, leaching, and lateral seepage by 16%, 26%, and 37% compared with the fertilizer application under the same nitrogen gradient. In conclusion, the implementation of straw returning and fertilizer type optimization measures effectively reduced the nitrogen loss for unit weight of rice production and realized the balance between agricultural production and environmental protection.


Assuntos
Fertilizantes , Lagos , Nitrogênio , Oryza , Caules de Planta , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Nitrogênio/metabolismo , China , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/química , Agricultura/métodos , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo
18.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062854

RESUMO

The wild strawberry (Fragaria vesca L.; F. vesca) represents a resilient and extensively studied model organism. While the AP2/ERF gene family plays a pivotal role in plant development, its exploration within F. vesca remains limited. In this study, we characterized the AP2/ERF gene family in wild strawberries using the recently released genomic data (F. vesca V6.0). We conducted an analysis of the gene family expansion pattern, we examined gene expression in stem segments and leaves under cold conditions, and we explored its functional attributes. Our investigation revealed that the FvAP2/ERF family comprises 86 genes distributed among four subfamilies: AP2 (17), RAV (6), ERF (62), and Soloist (1). Tandem and segmental duplications significantly contributed to the growth of this gene family. Furthermore, predictive analysis identified several cis-acting elements in the promoter region associated with meristematic tissue expression, hormone regulation, and resistance modulation. Transcriptomic analysis under cold stress unveiled diverse responses among multiple FvAP2/ERFs in stem segments and leaves. Real-time fluorescence quantitative reverse transcription PCR (RT-qPCR) results confirmed elevated expression levels of select genes following the cold treatment. Additionally, overexpression of FvERF23 in Arabidopsis enhanced cold tolerance, resulting in significantly increased fresh weight and root length compared to the wild-type control. These findings lay the foundation for further exploration into the functional roles of FvAP2/ERF genes.


Assuntos
Fragaria , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Fragaria/genética , Fragaria/metabolismo , Fragaria/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Resposta ao Choque Frio/genética , Regiões Promotoras Genéticas
19.
Plant Physiol Biochem ; 215: 108985, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084168

RESUMO

Fragaria chiloensis is a Chilean native species that softens intensively during its ripening. Its softening is related to cell wall disassembly due to the participation of cell wall degrading enzymes. Softening of F. chiloensis fruit can be accelerated by ABA treatment which is accompanied by the increment in the expression of key cell wall degrading genes, however the molecular machinery involved in the transcriptional regulation has not been studied until now. Therefore, the participation of two MADS-box transcription factors belonging to different subfamilies, FchAGL9 and FchSHP, was addressed. Both TFs are members of type-II MADS-box family (MIKC-type) and localized in the nucleus. FchAGL9 and FchSHP are expressed only in flower and fruit tissues, rising as the fruit softens with the highest expression level at C3-C4 stages. EMSA assays demonstrated that FchAGL9 binds to CArG sequences of RIN and SQM, meanwhile FchSHP interacts only with RIN. Bimolecular fluorescence complementation and yeast two-hybrid assays confirmed FchAGL9-FchAGL9 and FchAGL9-FchSHP interactions. Hetero-dimer structure was built through homology modeling concluding that FchSHP monomer binds to DNA. Functional validation by Luciferase-dual assays indicated that FchAGL9 transactivates FchRGL and FchPG's promoters, meanwhile FchSHP transactivates those of FchEXP2, FchRGL and FchPG. Over-expression of FchAGL9 in C2 F. chiloensis fruit rises FchEXP2 and FchEXP5 transcripts, meanwhile the over-expression of FchSHP also increments FchXTH1 and FchPL; in both cases there is a down-regulation of FchRGL and FchPG. In summary, we provided evidence of FchAGL9 and FchSHP participating in the transcription regulation associated to F. chiloensis's softening.


Assuntos
Fragaria , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Proteínas de Plantas , Frutas/genética , Frutas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fragaria/genética , Fragaria/metabolismo
20.
BMC Plant Biol ; 24(1): 623, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951751

RESUMO

BACKGROUND: Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS: Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION: The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.


Assuntos
Fragaria , Frutas , Lipídeos de Membrana , Ceras , Fragaria/crescimento & desenvolvimento , Fragaria/genética , Fragaria/metabolismo , Fragaria/enzimologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Ceras/metabolismo , Lipídeos de Membrana/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...