Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.456
Filtrar
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 154-163, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958188

RESUMO

The third complementary-determining regions of the heavy-chain (CDR3H) variable regions (VH) of some cattle antibodies are highly extended, consisting of 48 or more residues. These `ultralong' CDR3Hs form ß-ribbon stalks that protrude from the surface of the antibody with a disulfide cross-linked knob region at their apex that dominates antigen interactions over the other CDR loops. The structure of the Fab fragment of a naturally paired bovine ultralong antibody (D08), identified by single B-cell sequencing, has been determined to 1.6 Šresolution. By swapping the D08 native light chain with that of an unrelated antigen-unknown ultralong antibody, it is shown that interactions between the CDR3s of the variable domains potentially affect the fine positioning of the ultralong CDR3H; however, comparison with other crystallographic structures shows that crystalline packing is also a major contributor. It is concluded that, on balance, the exact positioning of ultralong CDR3H loops is most likely to be due to the constraints of crystal packing.


Assuntos
Regiões Determinantes de Complementaridade , Fragmentos Fab das Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas , Cadeias Leves de Imunoglobulina , Modelos Moleculares , Animais , Bovinos , Cadeias Pesadas de Imunoglobulinas/química , Cristalografia por Raios X , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Regiões Determinantes de Complementaridade/química , Fragmentos Fab das Imunoglobulinas/química , Sequência de Aminoácidos , Conformação Proteica
2.
Exp Clin Transplant ; 22(5): 399-401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38970285

RESUMO

Envenomation of humans by snakes, a global health challenge, is poorly studied in liver transplant recipients. We report a case of rattlesnake envenomation in a 52-year-old female patient who had previously received a liver transplant to treat nonalcoholic steatohepatitis cirrhosis. Despite stable graft function since her transplant, she exhibited elevated liver enzymes on admission, with a mixed hepatocellular and cholestatic pattern. Treatment included CroFab Crotalidae polyvalent immune Fab (ovine) antivenom and close monitoring, with continuation of her standard immunosuppression regimen. Inpatient observation showed reduced swelling and pain but persistently elevated enzymes. Imaging indicated fatty infiltration with patent hepatic vasculature. Her liver enzymes improved spontaneously, and she was discharged after 5 days, with complete normalization of herliver enzyme levels as shown by repeated laboratory test results 1 month later. Our case emphasizes the risk of graftinjury in liver transplant recipients, as well as the need for vigilant monitoring and early antivenom administration. We urge furtherresearch to establish guidelines for optimal care in this unique population.


Assuntos
Antivenenos , Transplante de Fígado , Mordeduras de Serpentes , Humanos , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/complicações , Pessoa de Meia-Idade , Transplante de Fígado/efeitos adversos , Feminino , Antivenenos/uso terapêutico , Resultado do Tratamento , Animais , Venenos de Crotalídeos , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/cirurgia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Crotalus
3.
MAbs ; 16(1): 2362432, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38849989

RESUMO

In contrast to natural antibodies that rely mainly on the heavy chain to establish contacts with their cognate antigen, we have developed a bispecific antibody format in which the light chain (LC) drives antigen binding and specificity. To better understand epitope-paratope interactions in this context, we determined the X-ray crystallographic structures of an antigen binding fragment (Fab) in complex with human CD47 and another Fab in complex with human PD-L1. These Fabs contain a κ-LC and a λ-LC, respectively, which are paired with an identical heavy chain (HC). The structural analysis of these complexes revealed the dominant contribution of the LCs to antigen binding, but also that the common HC provides some contacts in both CD47 and PD-L1 Fab complexes. The anti-CD47 Fab was affinity optimized by diversifying complementary-determining regions of the LC followed by phage display selections. Using homology modeling, the contributions of the amino acid modification to the affinity increase were analyzed. Our results demonstrate that, despite a less prominent role in natural antibodies, the LC can mediate high affinity binding to different antigens and neutralize their biological function. Importantly, Fabs containing a common variable heavy (VH) domain enable the generation of bispecific antibodies retaining a truly native structure, maximizing their therapeutic potential.


Assuntos
Anticorpos Biespecíficos , Antígeno B7-H1 , Antígeno CD47 , Fragmentos Fab das Imunoglobulinas , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/imunologia , Humanos , Antígeno CD47/imunologia , Antígeno CD47/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Antígeno B7-H1/imunologia , Antígeno B7-H1/química , Antígeno B7-H1/antagonistas & inibidores , Cristalografia por Raios X , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Modelos Moleculares
4.
J Med Case Rep ; 18(1): 273, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38851740

RESUMO

BACKGROUND: Bradycardia, renal failure, atrioventricular (AV) node blocking, shock, and hyperkalemia syndrome is a potentially life-threatening clinical condition characterized by bradycardia, renal failure, atrioventricular (AV) node blocking, shock, and hyperkalemia. It constitutes a vicious circle in which the accumulation of pharmacologically active compounds and hyperkalemia lead to hemodynamic instability and heart failure. CASE PRESENTATION: A 66-year-old Caucasian female patient was admitted to the emergency department presenting with fatigue and bradycardia. Upon examination, the patient was found to be anuric and hypotensive. Laboratory investigations revealed metabolic acidosis and hyperkalemia. Clinical evaluation suggested signs of digoxin toxicity, with serum digoxin concentrations persistently elevated over several days. Despite the implementation of antikalemic measures, the patient's condition remained refractory, necessitating renal dialysis and administration of digoxin immune fab. CONCLUSION: Bradycardia, renal failure, atrioventricular (AV) node blocking, shock, and hyperkalemia syndrome is a life-threatening condition that requires prompt management. It is important to also consider potential coexisting clinical manifestations indicative of intoxication from other pharmacological agents. Specifically, symptoms associated with the accumulation of drugs eliminated via the kidneys, such as digoxin. These manifestations may warrant targeted therapeutic measures.


Assuntos
Bradicardia , Digoxina , Hiperpotassemia , Diálise Renal , Humanos , Feminino , Idoso , Digoxina/efeitos adversos , Hiperpotassemia/induzido quimicamente , Bradicardia/induzido quimicamente , Insuficiência Renal/induzido quimicamente , Antiarrítmicos/efeitos adversos , Síndrome , Acidose/induzido quimicamente , Choque/induzido quimicamente , Bloqueio Atrioventricular/induzido quimicamente , Fragmentos Fab das Imunoglobulinas
5.
Anal Chim Acta ; 1315: 342760, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38879206

RESUMO

Mycotoxins are commonly found in food materials and severely threaten human health. Antibodies play a key role as a part of immunological techniques in detecting mycotoxins. Therefore, highly specific antibodies and detection techniques against mycotoxins need to be developed for advancements in medical research. In this study, we presented a novel strategy for quickly screening highly specific antigen-binding fragment (Fab) antibodies based on yeast surface display (YSD) and detecting small-molecule compounds based on a YSD biosensor. We constructed a yeast surface display Deoxynivalenol (DON)-Fab library with 105 cfu/mL with a galactose-inducible bidirectional promoter. By conducting efficient magnetic-activated cell sorting and fluorescence-activated cell sorting (MACS/FACS), four kinds of DON-selective yeasts were screened. As Fab@YSD C4# showed high sensitivity, we used it to build a one-pot Fab@YSD chemiluminescence biosensor with DON-BSA@Biotin and Streptavidin-alkaline phosphatase (SA-ALP). This method showed a low operational threshold (LOD = 0.166 pg/mL) and a high population range (linear range = 0.001-132.111 ng/mL) within 40 min, which facilitated the detection of DON with high specificity and better recovery in real samples (wheat, corn, flour, and cornmeal). Our results suggested that the Fab@YSD chemiluminescence biosensor is an inexpensive, reproducible, user-friendly, and sensitive method for detecting DON and may be used to quickly detect other small-molecule contaminants in food items.


Assuntos
Técnicas Biossensoriais , Tricotecenos , Tricotecenos/análise , Técnicas Biossensoriais/métodos , Saccharomyces cerevisiae , Contaminação de Alimentos/análise , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Limite de Detecção , Triticum/química , Triticum/microbiologia , Zea mays/química , Zea mays/microbiologia , Farinha/análise
6.
Sci Rep ; 14(1): 14079, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890341

RESUMO

While cryogenic electron microscopy (cryo-EM) is fruitfully used for harvesting high-resolution structures of sizable macromolecules, its application to small or flexible proteins composed of small domains like immunoglobulin (IgG) remain challenging. Here, we applied single particle cryo-EM to Rituximab, a therapeutic IgG mediating anti-tumor toxicity, to explore its solution conformations. We found Rituximab molecules exhibited aggregates in cryo-EM specimens contrary to its solution behavior, and utilized a non-ionic detergent to successfully disperse them as isolated particles amenable to single particle analysis. As the detergent adversely reduced the protein-to-solvent contrast, we employed phase plate contrast to mitigate the impaired protein visibility. Assisted by phase plate imaging, we obtained a canonical three-arm IgG structure with other structures displaying variable arm densities co-existing in solution, affirming high flexibility of arm-connecting linkers. Furthermore, we showed phase plate imaging enables reliable structure determination of Fab to sub-nanometer resolution from ab initio, yielding a characteristic two-lobe structure that could be unambiguously docked with crystal structure. Our findings revealed conformation diversity of IgG and demonstrated phase plate was viable for cryo-EM analysis of small proteins without symmetry. This work helps extend cryo-EM boundaries, providing a valuable imaging and structural analysis framework for macromolecules with similar challenging features.


Assuntos
Microscopia Crioeletrônica , Fragmentos Fab das Imunoglobulinas , Imunoglobulina G , Conformação Proteica , Microscopia Crioeletrônica/métodos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Imunoglobulina G/química , Rituximab/química , Humanos , Modelos Moleculares
7.
Protein Sci ; 33(7): e5081, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924648

RESUMO

It has been shown previously that a set of three modifications-termed S1, Crystal Kappa, and elbow-act synergistically to improve the crystallizability of an antigen-binding fragment (Fab) framework. Here, we prepared a phage-displayed library and performed crystallization screenings to identify additional substitutions-located near the heavy-chain elbow region-which cooperate with the S1, Crystal Kappa, and elbow modifications to increase expression and improve crystallizability of the Fab framework even further. One substitution (K141Q) supports the signature Crystal Kappa-mediated Fab:Fab crystal lattice packing interaction. Another substitution (E172G) improves the compatibility of the elbow modification with the Fab framework by alleviating some of the strain incurred by the shortened and bulkier elbow linker region. A third substitution (F170W) generates a split-Fab conformation, resulting in a powerful crystal lattice packing interaction comprising the biological interaction interface between the variable heavy and light chain domains. In sum, we have used K141Q, E172G, and F170W substitutions-which complement the S1, Crystal Kappa, and elbow modifications-to generate a set of highly crystallizable Fab frameworks that can be used as chaperones to enable facile elucidation of Fab:antigen complex structures by x-ray crystallography.


Assuntos
Fragmentos Fab das Imunoglobulinas , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Cristalografia por Raios X , Cristalização , Modelos Moleculares , Conformação Proteica , Humanos , Substituição de Aminoácidos
8.
ACS Nano ; 18(23): 15084-15095, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815170

RESUMO

Antibodies and their conjugates of fluorescent labels are widely applied in life sciences research and clinical pathology. Among diverse label types, compact quantum dots (QDs) provide advantages of multispectral multiplexing, bright signals in the deep red and infrared, and low steric hindrance. However, QD-antibody conjugates have random orientation of the antigen-binding domain which may interfere with labeling and are large (20-30 nm) and heterogeneous, which limits penetration into biospecimens. Here, we develop conjugates of compact QDs and Fab' antibody fragments as primary immunolabels. Fab' fragments are conjugated site-specifically through sulfhydryl groups distal to antigen-binding domains, and the multivalent conjugates have small and homogeneous sizes (∼12 nm) near those of full-sized antibodies. Their performance as immunolabels for intracellular antigens is evaluated quantitatively by metrics of microtubule labeling density and connectivity in fixed cells and for cytological identification in fixed brain specimens, comparing results with probes based on spectrally-matched dyes. QD-Fab' conjugates outperformed QD conjugates of full-sized antibodies and could be imaged with bright signals with 1-photon and 2-photon excitation. The results demonstrate a requirement for smaller bioaffinity agents and site-specific orientation for the success of nanomaterial-based labels to enhance penetration in biospecimens and minimize nonspecific staining.


Assuntos
Fragmentos Fab das Imunoglobulinas , Microtúbulos , Pontos Quânticos , Pontos Quânticos/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Microtúbulos/química , Microtúbulos/metabolismo , Humanos , Animais , Camundongos , Corantes Fluorescentes/química
9.
Drug Deliv Transl Res ; 14(8): 2203-2215, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802679

RESUMO

This study explores the efficacy of human serum albumin (HSA)-based Drug-Free Macromolecular Therapeutics (DFMT) in treating Chronic Lymphocytic Leukemia (CLL), a prevalent adult leukemia subtype. DFMT, a novel strategy, employs biomimetic crosslinking of CD20 and CD38 receptors on malignant B cells without the need for low molecular weight drugs. Apoptosis is initiated via a two-step process: i) Recognition of a bispecific engager, Fab' fragment conjugated with morpholino oligonucleotide (Fab'-MORF1), by a cell surface antigen; followed by ii) crosslinking of the MORF1-decorated cells with a multivalent effector, HSA holding multiple copies of complementary MORF2, HSA-(MORF2)x. Herein we evaluated the efficacy of HSA-based DFMT in the treatment of 56 samples isolated from patients diagnosed with CLL. Fab' fragments from Obinutuzumab (OBN) and Isatuximab (ISA) were employed in the synthesis of anti-CD20 (Fab'OBN-MORF1) and anti-CD38 (Fab'ISA-MORF1) bispecific engagers. The efficacy of DFMT was significantly influenced by the expression levels of CD20 and CD38 receptors. Dual-targeting DFMT strategies (CD20 + CD38) were more effective than single-target approaches, particularly in samples with elevated receptor expression. Pretreatment of patient cells with gemcitabine or ricolinostat markedly increased cell surface CD20 and CD38 expression, respectively. Apoptosis was effectively initiated in 62.5% of CD20-targeted samples and in 42.9% of CD38-targeted samples. Our findings demonstrate DFMT's potential in personalized CLL therapy. Further research is needed to validate these outcomes in a larger number of patient samples and to explore DFMT's applicability to other malignancies.


Assuntos
ADP-Ribosil Ciclase 1 , Anticorpos Monoclonais Humanizados , Antígenos CD20 , Apoptose , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Apoptose/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Albumina Sérica Humana/química , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/farmacologia , Fragmentos Fab das Imunoglobulinas/química , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Reagentes de Ligações Cruzadas/química , Glicoproteínas de Membrana
10.
J Biol Chem ; 300(6): 107397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763332

RESUMO

Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.


Assuntos
Cryptococcus neoformans , Epitopos , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/química , Epitopos/química , Epitopos/imunologia , Regiões Constantes de Imunoglobulina/química , Regiões Constantes de Imunoglobulina/genética , Simulação de Dinâmica Molecular , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Humanos , Especificidade de Anticorpos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Animais , Anticorpos Antifúngicos/imunologia , Anticorpos Antifúngicos/química
11.
Anticancer Res ; 44(6): 2343-2348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821609

RESUMO

BACKGROUND/AIM: The standard treatment for localized prostate cancer involves surgical removal of the prostate with curative intent. However, when tumor cells persist in the operation site, there is high risk of local recurrence and tumor spread, leading to stressful follow-up treatments, impaired quality of life, and reduced overall survival. This study examined photoimmunotherapy (PIT) as a new treatment option for prostate cancer cells. MATERIALS AND METHODS: We generated conjugates consisting of either a humanized antibody or Fab fragments thereof targeting the prostate specific membrane antigen (PSMA), along with our silicon phthalocyanine photosensitizer dye WB692-CB1. PSMA-expressing prostate cancer cells were incubated with the antibody dye or Fab dye conjugates and cell binding was measured using flow cytometry. Cells were irradiated with varying doses of red light for dye activation, and cytotoxicity was determined by erythrosin B staining and subsequent analysis using a Neubauer counting chamber. RESULTS: Specific cytotoxicity was induced with the antibody dye conjugate in the prostate cancer cells in a light dose-dependent manner. Treatment of the cells with the Fab dye conjugate resulted in lower cytotoxicity, which could be attributed to a reduced binding affinity and a reduced dye uptake of the Fab fragment. CONCLUSION: Our new antibody dye and Fab dye conjugates offer potential for future intraoperative PIT in patients with localized prostate cancer, with the aim to ensure complete removal of tumor cells from the surgical area, to avoid local recurrence, and to improve clinical outcome.


Assuntos
Antígenos de Superfície , Fragmentos Fab das Imunoglobulinas , Imunoterapia , Neoplasias da Próstata , Humanos , Masculino , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Imunoterapia/métodos , Linhagem Celular Tumoral , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/imunologia , Glutamato Carboxipeptidase II/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia/métodos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico
12.
Nat Commun ; 15(1): 3974, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730230

RESUMO

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of nine different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Fragmentos Fab das Imunoglobulinas , Mutação , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Engenharia de Proteínas/métodos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/química , Afinidade de Anticorpos , Antígenos/imunologia , Antígenos/genética
13.
Viruses ; 16(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793567

RESUMO

Directed evolution is a pivotal strategy for new antibody discovery, which allowed the generation of high-affinity Fabs against gliadin from two antibody libraries in our previous studies. One of the libraries was exclusively derived from celiac patients' mRNA (immune library) while the other was obtained through a protein engineering approach (semi-immune library). Recent advances in high-throughput DNA sequencing techniques are revolutionizing research across genomics, epigenomics, and transcriptomics. In the present work, an Oxford Nanopore in-lab sequencing device was used to comprehensively characterize the composition of the constructed libraries, both at the beginning and throughout the phage-mediated selection processes against gliadin. A customized analysis pipeline was used to select high-quality reads, annotate chain distribution, perform sequence analysis, and conduct statistical comparisons between the different selection rounds. Some immunological attributes of the most representative phage variants after the selection process were also determined. Sequencing results revealed the successful transfer of the celiac immune response features to the immune library and the antibodies derived from it, suggesting the crucial role of these features in guiding the selection of high-affinity recombinant Fabs against gliadin. In summary, high-throughput DNA sequencing has improved our understanding of the selection processes aimed at generating molecular binders against gliadin.


Assuntos
Gliadina , Sequenciamento de Nucleotídeos em Larga Escala , Fragmentos Fab das Imunoglobulinas , Sequenciamento por Nanoporos , Biblioteca de Peptídeos , Gliadina/imunologia , Gliadina/genética , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos/métodos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Doença Celíaca/imunologia , Doença Celíaca/genética , Técnicas de Visualização da Superfície Celular/métodos
14.
Int J Biol Macromol ; 268(Pt 2): 131721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649079

RESUMO

Interferon (IFN) alpha/beta receptor 1 (IFNAR1) is indispensable for antiviral responses and the immune regulation. Dysregulation of the IFNAR1-mediaetd signaling pathways leads to deleterious autoimmune diseases such as systemic lupus erythematosus (SLE). QX006N, a humanized therapeutic monoclonal antibody, specifically targets human IFNAR1 and is in the clinical trial phase for treating SLE, but the molecular mechanism underlying the QX006N-mediated recognition of IFNAR1 remains unclear. Here, we report the high neutralization activities of QX006N against IFNAR1-mediated signal transduction. Meanwhile, we determine the structures of the fragment antigen-binding domain (Fab) of QX006N (QX006N-Fab) and QX006N-Fab in complex with the subdomains 1-3 of IFNAR1 (IFNAR1-SD123) at 2.87 Å and 2.68 Å resolutions, respectively. In the structure of the QX006N-Fab/IFNAR1-SD123 complex, QX006N-Fab only recognizes the SD3 subdomain of IFNAR1 by the hydrophobic, hydrogen-bonding and electrostatic interactions. Compared with the structure of the IFN/IFNAR1/IFNAR2 complex, the binding of QX006N-Fab to IFNAR1-SD3 blocks its association with IFN due to steric hindrance, which inhibits the IFN/IFNAR1/IFNAR2 complex formation for signal transduction. The results of this study provide the structural evidence for the specific targeting of IFNAR1 by the therapeutic antibody QX006N and pave the way for the rational design of antibody drugs to combat IFNAR1-related autoimmune diseases.


Assuntos
Anticorpos Monoclonais Humanizados , Lúpus Eritematoso Sistêmico , Receptor de Interferon alfa e beta , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/química , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Ligação Proteica , Modelos Moleculares , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
15.
J Am Soc Mass Spectrom ; 35(6): 1292-1300, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38662593

RESUMO

Endogenous antibodies, or immunoglobulins (Igs), abundantly present in body fluids, represent some of the most challenging samples to analyze, largely due to the immense variability in their sequences and concentrations. It has been estimated that our body can produce billions of different Ig proteins with different isotypes, making their individual analysis seemingly impossible. However, recent advances in protein-centric proteomics using LC-MS coupled to Orbitrap mass analyzers to profile intact Fab fragments formed by selective cleavage at the IgG-hinge revealed that IgG repertoires may be less diverse, albeit unique for each donor. Serum repertoires seem to be dominated by a few hundred clones that cumulatively make up 50-95% of the total IgG content. Enabling such analyses required careful optimization of the chromatography and mass analysis, as all Fab analytes are highly alike in mass (46-51 kDa) and sequence. To extend the opportunities of this mass-spectrometry-based profiling of antibody repertoires, we here report the optimization and evaluation of an alternative MS platform, namely, the timsTOF, for antibody repertoire profiling. The timsTOF mass analyzer has gained traction in recent years for peptide-centric proteomics and found wide applicability in plasma proteomics, affinity proteomics, and HLA peptidomics, to name a few. However, for protein-centric analysis, this platform has been less explored. Here, we demonstrate that the timsTOF platform can be adapted to perform protein-centric LC-MS-based profiling of antibody repertoires. In a side-by-side comparison of the timsTOF and the Orbitrap we demonstrate that the extracted serum antibody repertoires are alike qualitatively and quantitatively, whereby in particular the sensitivity of the timsTOF platform excels. Future incorporation of advanced top-down capabilities on the timsTOF may make this platform a very valuable alternative for protein-centric proteomics and top-down proteomics and thus also for personalized antibody repertoire profiling.


Assuntos
Fragmentos Fab das Imunoglobulinas , Espectrometria de Massas , Proteômica , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/análise , Fragmentos Fab das Imunoglobulinas/sangue , Cromatografia Líquida/métodos , Proteômica/métodos , Espectrometria de Massas/métodos , Imunoglobulina G/sangue , Imunoglobulina G/química , Imunoglobulina G/análise , Medicina de Precisão/métodos , Espectrometria de Massa com Cromatografia Líquida
16.
J Immunol Methods ; 529: 113669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582259

RESUMO

Because of their superior properties for certain biological applications small antibody derivatives like fragment of antigen binding (Fab) have found widespread use in basic research and as therapeutics. However, generation of Fab-fragments is still a rather complex matter, reflected by the fact that a variety of methods and purification techniques are necessary for the production of all the different classes of Fab-fragments (kappa/lambda light chains, type of species). Here we demonstrate that Fab-fragments derived from six different antibodies of human or murine origin produced by transient expression in HEK cells can be purified in a single step to a high degree of purity by standard protein G affinity chromatography. This is most likely due to alternative contact sites for protein G located in the CH1 domain of the Fab heavy chain. Our data demonstrate that protein G affinity chromatography as for whole antibodies is a robust method for the purification of tag-less Fab-fragments independent of species, significantly simplifying the process of Fab-fragment purification.


Assuntos
Cromatografia de Afinidade , Fragmentos Fab das Imunoglobulinas , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Cromatografia de Afinidade/métodos , Humanos , Animais , Camundongos , Células HEK293 , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/química
17.
Clin Nucl Med ; 49(6): e258-e265, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579266

RESUMO

PURPOSE: A monoclonal antibody, trastuzumab, is used for immunotherapy for HER2-expressing breast cancers. Large-sized antibodies demonstrate hepatobiliary clearance and slower pharmacokinetics. A trastuzumab fragment (Fab; 45 kDa) has been generated for theranostic use. PATIENTS AND METHODS: Fab was generated by papain digestion. Trastuzumab and Fab have been radiolabelled with 177 Lu after being conjugated with a bifunctional chelating. The affinity and target specificity were studied in vitro. The first-in-human study was performed. RESULTS: The bifunctional chelating agent conjugation of 1-2 molecules with trastuzumab and Fab was detected at the molar ratio 1:10 in bicarbonate buffer (0.5 M, pH 8) at 37°-40°C. However, 2-3 molecules of bifunctional chelating agent were conjugated when DMSO in PBS (0.1 M, pH 7) was used as a conjugation buffer at a molar ratio of 1:10. The radiolabelling yield of DOTA-conjugated Fab and trastuzumab at pH 5, 45°C to 50°C, with incubation time 2.5-3 hours was 80% and 41.67%, respectively. However, with DOTAGA-conjugated trastuzumab and Fab, the maximum radiolabelling yield at pH 5.5, 37°C, and at 2.5-3 hours was 80.83% and 83%, respectively. The calculated K d of DOTAGA Fab and trastuzumab with HER2-positive SKBR3 cells was 6.85 ± 0.24 × 10 -8 M and 1.71 ± 0.10 × 10 -8 M, respectively. DOTAGA-Fab and trastuzumab showed better radiolabelling yield at mild reaction conditions.177 Lu-DOTAGA-Fab demonstrated higher lesion uptake and lower liver retention as compared with 177 Lu-DOTAGA-trastuzumab. However, 177 Lu-DOTAGA-Fab as compared with 177 Lu-DOTAGA-trastuzumab showed a relatively early washout (5 days) from the lesion. CONCLUSIONS: 177 Lu-DOTAGA-Fab and trastuzumab are suitable for targeting the HER2 receptors.


Assuntos
Neoplasias da Mama , Fragmentos Fab das Imunoglobulinas , Marcação por Isótopo , Lutécio , Radioisótopos , Trastuzumab , Humanos , Trastuzumab/farmacologia , Trastuzumab/farmacocinética , Trastuzumab/química , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Feminino
18.
J Biomol NMR ; 78(2): 73-86, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546905

RESUMO

Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples. We proposed here an efficient in vitro method to produce [15N, 13C, 2H]-labeled Fabs enabling high resolution NMR investigations of these powerful therapeutics. As an open system, the cell-free expression mode enables fine-tuned control of the redox potential in presence of disulfide bond isomerase to enhance the formation of native disulfide bonds. Moreover, inhibition of transaminases in the S30 cell-free extract offers the opportunity to produce perdeuterated Fab samples directly in 1H2O medium, without the need for a time-consuming and inefficient refolding process. This specific protocol was applied to produce an optimally labeled sample of a therapeutic Fab, enabling the sequential assignment of 1HN, 15N, 13C', 13Cα, 13Cß resonances of a full-length Fab. 90% of the backbone resonances of a Fab domain directed against the human LAMP1 glycoprotein were assigned successfully, opening new opportunities to study, at atomic resolution, Fabs' higher order structures, dynamics and interactions, using solution-state NMR.


Assuntos
Fragmentos Fab das Imunoglobulinas , Marcação por Isótopo , Ressonância Magnética Nuclear Biomolecular , Fragmentos Fab das Imunoglobulinas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Marcação por Isótopo/métodos , Humanos , Sistema Livre de Células , Isótopos de Nitrogênio , Anticorpos Monoclonais/química
19.
J Pharm Biomed Anal ; 244: 116120, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547650

RESUMO

Charge heterogeneity is inherent to all therapeutic antibodies and arises from post-translational modifications (PTMs) and/or protein degradation events that may occur during manufacturing. Among therapeutic antibodies, the bispecific antibody (bsAb) containing two unique Fab arms directed against two different targets presents an additional layer of complexity to the charge profile. In the context of a bsAb, a single domain-specific PTM within one of the Fab domains may be sufficient to compromise target binding and could potentially impact the stability, safety, potency, and efficacy of the drug product. Therefore, characterization and routine monitoring of domain-specific modifications is critical to ensure the quality of therapeutic bispecific antibody products. We developed a Digestion-assisted imaged Capillary isoElectric focusing (DiCE) method to detect and quantitate domain-specific charge variants of therapeutic bispecific antibodies (bsAbs). The method involves enzymatic digestion using immunoglobulin G (IgG)-degrading enzyme of S. pyogenes (IdeS) to generate F(ab)2 and Fc fragments, followed by imaged capillary isoelectric focusing (icIEF) under reduced, denaturing conditions to separate the light chains (LCs) from the Fd domains. Our results suggest that DiCE is a highly sensitive method that is capable of quantitating domain-specific PTMs of a bsAb. In one case study, DiCE was used to quantitate unprocessed C-terminal lysine and site-specific glycation of Lys98 in the complementarity-determining region (CDR) of a bsAb that could not be accurately quantitated using conventional, platform-based charge variant analysis, such as intact icIEF. Quantitation of these PTMs by DiCE was comparable to results from peptide mapping, demonstrating that DiCE is a valuable orthogonal method for ensuring product quality. This method may also have potential applications for characterizing fusion proteins, antibody-drug conjugates, and co-formulated antibody cocktails.


Assuntos
Anticorpos Biespecíficos , Focalização Isoelétrica , Processamento de Proteína Pós-Traducional , Anticorpos Biespecíficos/imunologia , Focalização Isoelétrica/métodos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Humanos , Imunoglobulina G/imunologia , Fragmentos Fc das Imunoglobulinas/química
20.
J Med Case Rep ; 18(1): 135, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38439066

RESUMO

BACKGROUND: Despite the efficacy and safety of DIGIFab, it is relatively expensive and has limited availability. In addition, alternative interventions, such as therapeutic plasma exchange, may need to be considered in massive digoxin overdoses. Although few case reports describe its efficacy. CASE PRESENTATION: We report a case of a 17-year-old white male patient brought by family members to our emergency department in Riyadh, Saudi Arabia. After intentionally ingesting 48 mg of digoxin tablets to commit suicide, the patient's initial digoxin serum level was 8.04 ng/mL. The patient was resuscitated in the emergency department. After admission to the intensive care unit, the patient underwent therapeutic plasma exchange, because of insufficient DIGIFab doses. Afterward, the serum digoxin levels drastically decreased, and his symptoms reverted. The patient was successfully managed and discharged 7 days after admission. CONCLUSION: Despite insufficient evidence and a limited number of case reports describing the use of extracorporeal treatment in digoxin overdose, we noted the significant impact of therapeutic plasma exchange on our patient. However, therapeutic plasma exchange's use in routine treatment requires stronger evidence to confirm its benefits.


Assuntos
Troca Plasmática , Plasmaferese , Masculino , Humanos , Adolescente , Fragmentos Fab das Imunoglobulinas , Digoxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...