Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.199
Filtrar
1.
Mikrochim Acta ; 191(9): 539, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39147993

RESUMO

3D-printing technology allows scientist to fabricate easily electrochemical sensors. Until now, these sensors were designed employing a large amount of material, which increases the cost and decreases manufacturing throughput. In this work, a low-cost 3D-printed on-drop electrochemical sensor (3D-PES) was fully manufactured by fused filament fabrication, minimizing the number of printing layers. Carbon black/polylactic acid filament was employed, and the design and several printing parameters were optimized to yield the maximum electroanalytical performance using the minimal amount of material. Print speed and extrusion width showed a critical influence on the electroanalytical performance of 3D-PES. Under optimized conditions, the fabrication procedure offered excellent reproducibility (RSD 1.3% in working electrode diameter), speed (< 3 min/unit), and costs (< 0.01 $ in material cost). The 3D-PES was successfully applied to the determination of phloridzin in apple juice. The analytical performance of 3D-PES was compared with an equivalent commercial on-drop screen-printed electrode, yielding similar precision and accuracy but lower sensitivity. However, 3D-PES provides interesting features such as recyclability, biodegradability, low-cost, and the possibility of being manufactured near the point of need, some of which meets several demands of Green Chemistry. This cost-effective printing approach is a green and promising alternative for manufacturing disposable and portable electroanalytical devices, opening new possibilities not only in on-site food analysis but also in point-of-care testing.


Assuntos
Técnicas Eletroquímicas , Análise de Alimentos , Sucos de Frutas e Vegetais , Poliésteres , Impressão Tridimensional , Fuligem , Fuligem/química , Poliésteres/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/economia , Sucos de Frutas e Vegetais/análise , Análise de Alimentos/instrumentação , Análise de Alimentos/economia , Análise de Alimentos/métodos , Eletrodos , Malus/química , Análise Custo-Benefício , Limite de Detecção
2.
Wei Sheng Yan Jiu ; 53(4): 631-638, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39155233

RESUMO

OBJECTIVE: To investigate the black carbon (BC) pollution in the indoor air of typical residential houses in urban areas of Beijing, and to explore the relationship between indoor and outdoor BC concentrations as well as the main influencing factors. METHODS: The indoor and outdoor PM_(2.5) samples were collected simultaneously from 33 apartments in the urban areas of Beijing during both the heating season (January to March) and the non-heating season (June to August) in 2016. Subsequently, optical method were employed to analyze BC concentrations in PM_(2.5)samples. The Spearman correlation coefficient (r_s) and the indoor/outdoor (I/O) ratio of BC concentrations were both calculated to characterize the relationship between indoor and outdoor BC concentrations. The factors may influence indoor BC pollution was collected through a questionnaire, including the basic characteristics of the residential buildings and households, smoking, cooking, window opening behavior, the use of air conditioner or air purifier and so on. Additionally, a linear mixed-effects model or multiple linear regression model was applied to identify the main factors influencing the I/O ratio. RESULTS: The(M(P25, P75)) concentrations of indoor and outdoor BC for season-pooled analysis were2.84 (2.59, 3.26)µg/m~3 and 3.08 (2.90, 3.63)µg/m~3, respectively. There were significant seasonal differences in both indoor and outdoor concentrations (P<0.05), with higher levels observed during the heating season compared to the non-heating season. There was a strong correlation between indoor and outdoor BC (r_s=0.74). The correlation during the heating season (r_s=0.78) was stronger than that during the non-heating season (r_s=0.44). The ■ of I/O ratio was 0.90±0.11, with 93.5%(29/31)and 86.7%(26/30) of I/O ratios being less than 1 during the heating season and non-heating season, respectively. Statistical analysis also showed that outdoor BCconcentrations were significantly higher than indoors (P<0.05). In season-pooled analysis, the result of the linear mixed-effects model showed that window opening duration was the most important factor affecting the I/O ratio, explaining 21.3%of the total variation. The I/O ratio increased with longer window opening duration. In season-specific analysis, the characteristics of residential buildings (including building age and floor level) and window opening duration were the main factors affecting the I/O ratio during the heating season and non-heating season, respectively in 2016. CONCLUSION: Residents in the urban areas of Beijing experienced relatively high indoor levels of BCpollution, but lower than the outdoor concentration during the same period in 2016. The window opening and the characteristics of residential buildings were the most important factors affecting the I/O ratio of BC.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Habitação , Estações do Ano , Fuligem , Poluição do Ar em Ambientes Fechados/análise , Pequim , Poluentes Atmosféricos/análise , Fuligem/análise , Humanos , Material Particulado/análise , População Urbana , Inquéritos e Questionários , Calefação
3.
Part Fibre Toxicol ; 21(1): 32, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135079

RESUMO

BACKGROUND: Alveolar macrophages (AMs) have been predicted to affect the pulmonary clearance of nanomaterials; however, their qualitative and quantitative roles are poorly understood. In this study, carbon black nanoparticles (CBNPs) were instilled into the lungs of Wistar rats at 30, 100, and 300 µg/rat. The concentrations of particles in organs, including the lung, lung-associated lymph nodes (LALN), liver, spleen, and kidney, were evaluated at days 0 (immediately after instillation), 1, 7, 28, 60, and 90 post-instillation. RESULTS: The results indicated a multimodal pulmonary clearance pattern for CBNPs: slow clearance until day 28, fast clearance from days 28 to 60, and slow clearance from days 60 to 90. To determine the mechanism of this unique clearance pattern, CBNPs were instilled into AM-depleted rats using clodronate liposomes (CLO). At 28 days after instillation, the CBNP levels in the lungs treated with CLO showed about 31% higher reduction than in normal rats. In addition, the concentration of CBNPs in LALN treated with CLO significantly increased on day 28, whereas in normal rats, no detectable levels were observed. CONCLUSIONS: This result highlights that the prolonged retention of poorly soluble NPs in the lung until day 28 is mediated by the phagocytosis of AMs, and the fast clearance between days 28-60 is due to the turnover time of AMs, estimated around 1-2 months after birth. Similarly, new generations of AMs mediate the slow phase between days 60 and 90. However, further studies are needed to understand the multimodal clearance mechanism and the modulation of pulmonary clearance of poorly soluble NPs.


Assuntos
Pulmão , Macrófagos Alveolares , Nanopartículas , Ratos Wistar , Fuligem , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Fuligem/toxicidade , Fuligem/química , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Distribuição Tecidual , Ratos , Tamanho da Partícula , Ácido Clodrônico/administração & dosagem , Taxa de Depuração Metabólica
4.
Sci Total Environ ; 947: 174522, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981545

RESUMO

Black carbon (BC) formed after straw burning remains in farmland soil and coexists with plastic mulch film (PMF) debris. It is unclear how BC influences soil multifunctionality in the presence of PMF debris. In this study, we determined the joint effects of BC and PMF debris on soil biochemical properties and microbial communities. We conducted a soil microcosm experiment by adding BC formed by direct burning of wheat straw and PMF debris (polyethylene (PE) and biodegradable PMF (BP)) into soil at the dosages of 1 %, and soils were sampled on the 15th, 30th, and 100th day of soil incubation for high-throughput sequencing. The results showed that the degradation of PMF debris was accompanied by the release of microplastics (MPs). BC decreased NH4+-N (PE: 68.63 %; BP: 58.97 %) and NO3--N (PE: 12.83 %; BP: 51.37 %) and increased available phosphorus (AP) (PE: 79.12 %; BP: 26.09 %) in soil containing PMF debris. There were significant differences in enzyme activity among all the treatments. High-throughput sequencing indicated that BC reduced bacterial and fungal richness and fungal diversity in PMF debris-exposed soil, whereas PMF debris and BC resulted in significant changes in the proportion of dominant phyla and genera of bacteria and fungi, which were affected by incubation time. Furthermore, BC affected microorganisms by influencing soil properties, and pH and N content were the main influencing factors. In addition, FAPRPTAX analysis indicated that BC and PMF debris affected soil C and N cycling. These findings provide new insights into the response of soil multifunctionality to BC and PMF debris.


Assuntos
Bactérias , Fungos , Plásticos , Microbiologia do Solo , Poluentes do Solo , Solo , Triticum , Solo/química , Plásticos/análise , Poluentes do Solo/análise , Bactérias/classificação , Fuligem/análise , Microbiota , Micobioma
5.
Mar Pollut Bull ; 205: 116626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959570

RESUMO

This study aims to investigate the interactions between marine oil snow (MOS) formation and soot particles derived from two distinct oils: condensate and heavy oil. Experimental findings demonstrate that the properties of oil droplets and soot particles play a key role in MOS formation. Peak MOS formation is observed within the initial days for condensate, while for heavy oil, peak formation occurs at a later stage. Furthermore, the addition of oils and soot particles influences the final concentrations of polycyclic aromatic hydrocarbons (PAHs) in MOS. Remarkably, the ranking order of PAHs with different rings in various MOS samples remains consistent: 4- > 3- > 5- > 2- > 6-ring. Specific diagnostic ratios such as Phe/Ant, Ant/(Ant + Phe), BaA/(Chr + BaA), and LMW/HMW effectively differentiate petrogenic and pyrogenic sources of PAHs in MOS. And stable ratios like Flu/(Pyr + Flu), InP/(InP + BghiP), and BaF/BkF are identified for source analysis of soot MOS.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Fuligem , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Petróleo , Poluição por Petróleo/análise , Neve/química
6.
Environ Sci Pollut Res Int ; 31(33): 45718-45733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976192

RESUMO

In this work, we aim to investigate and compare the combustion reactivities of real biofuel soot and fossil-fuel soot in the active and passive regeneration conditions of DPF and GPF through temperature-programmed oxidation (TPO). Higher reactivity of biofuel soot is achieved even under GPF conditions with extremely low oxygen concentration (~ 1%), which provides a great potential for low-temperature regeneration of GPF. Such a result is mainly attributed to the low graphitization and less surface C = C groups of biofuel soot. Unfortunately, the presence of high-content ashes (~ 47%) and P impurity in real biofuel soot hinder its combustion reactivity. TPO evidences that the O2/NOX-lacking conditions in GPF are key factors to impact the combustion of soot, especially fossil-fuel soot. This work provides some useful information for understanding real biofuel and fossil-fuel soot combustion in GPF and DPF regeneration and further improvement in filter regeneration process.


Assuntos
Biocombustíveis , Combustíveis Fósseis , Gasolina , Fuligem , Oxigênio , Filtração
7.
Environ Sci Pollut Res Int ; 31(32): 44983-44994, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955967

RESUMO

Elemental doping is a promising way for enhancing the electrocatalytic activity of metal oxides. Herein, we fabricate Ti/ Ti4O7-CB-Ce anode materials by the modification means of carbon black and cerium co-doped Ti4O7, and this shift effectively improves the interfacial charge transfer rate of Ti4O7 and •OH yield in the electrocatalytic process. Remarkably, the Ti4O7-CB-Ce anode exhibits excellent efficiency of minocycline (MNC) wastewater treatment (100% removal within 20 min), and the removal rate reduces from 100 to 98.5% after five cycles, which is comparable to BDD electrode. •OH and 1O2 are identified as the active species in the reaction. Meanwhile, it is discovered that Ti/ Ti4O7-CB-Ce anodes can effectively improve the biochemical properties of the non-biodegradable pharmaceutical wastewater (B/C values from 0.25 to 0.44) and significantly reduce the toxicity of the wastewater (luminescent bacteria inhibition rate from 100 to 26.6%). This work paves an effective strategy for designing superior metal oxides electrocatalysts.


Assuntos
Antibacterianos , Cério , Oxirredução , Fuligem , Águas Residuárias , Cério/química , Antibacterianos/química , Águas Residuárias/química , Catálise , Fuligem/química , Eletrodos , Titânio/química , Tetraciclina/química , Poluentes Químicos da Água/química
8.
Environ Sci Pollut Res Int ; 31(32): 45105-45116, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958858

RESUMO

Diesel soot is a significant contributor to air pollution. Soot particles present in diesel engine exhaust have a negative impact on the environment and human health. Diesel oxidation catalysts (DOCs) and diesel particulate filters (DPFs) currently use noble metal-based catalysts for soot oxidation. Due to the use of noble metals in the catalyst, the cost of diesel after-treatment systems is steadily rising. As a result, diesel vehicles have become commercially less viable than gasoline vehicles and electronic vehicles. The study focuses on an alternative diesel oxidation catalyst with efficiency similar to that of a noble metal catalyst but with a much lower cost. CeO2-Al2O3 catalysts are known for their oxygen storage capacity and high redox activity, making them suitable for soot oxidation. Adding Zr to these catalysts has been shown to influence their structural and chemical properties, significantly affecting their catalytic behavior. Therefore, the current study is focused on using Zr/CeO2-Al2O3 as a substitute for noble metal-based catalysts to enhance its performance for diesel soot oxidation in automotive exhaust. Evaporation-induced self-assembly (EISA) was used to prepare 1, 3, and 5 weight (wt) % Zr supported mesoporous CeO2-Al2O3 catalysts. Morphological, structural, and physicochemical properties of the synthesized catalysts were examined using Brunauer-Emmett-Teller (BET) absolute isotherm, Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Temperature programmed reduction (TPR), and Temperature-programmed desorption of ammonia (NH3-TPD). XRD, BET, and SEM data confirmed that the catalysts were mesoporous and low-crystalline with a high surface area. The soot oxidation activity of the catalysts was evaluated using a thermogravimetric analysis (TGA) technique. The loose contacts soot oxidation activity test suggested that 50% oxidation of soot occurred at 390 °C in the absence of a catalyst. T50 of CeO2-Al2O3 catalyzed soot oxidation was 296 °C. Adding Zr to the catalyst significantly improved catalytic activity for diesel soot oxidation. We observed a further drastic change in T50 of soot over 1, 3, and 5% Zr/CeO2-Al2O3, which were 220 °C, 210 °C, and 193 °C, respectively. According to these results, incorporating Zr into the CeO2-Al2O3 catalyst significantly improved the oxidation process of soot.


Assuntos
Óxido de Alumínio , Oxirredução , Fuligem , Emissões de Veículos , Zircônio , Catálise , Zircônio/química , Óxido de Alumínio/química , Fuligem/química , Cério/química , Gasolina
9.
Environ Pollut ; 357: 124470, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950848

RESUMO

Seasonal variations in black carbon (BC) pollution characteristics during haze episodes in Benxi city, Liaoning province, were analyzed using year-long measurements of BC, carbon monoxide (CO), and PM2.5. Haze frequencies were recorded to be 0.07, 0.03 and 0.14 in spring, autumn, and winter respectively. Solid fuel contributions increased notably by 7%-8% during haze events compared to clean periods in all seasons. Transitioning from clean to haze periods led to ΔBC/ΔCO increases of 16% in spring and autumn, and 6.8% in winter, while BC/PM2.5 ratios decreased by approximately 33%, 50%, and 24% for spring, autumn, and winter respectively, likely indicating enhanced residential and industrial contributions. These further led to an increase in BC absorption capacities by factors of around 2.2 in spring and autumn, and up to 2.6 in winter during haze periods. Despite liquid fuel sources dominating BC emissions, certain haze episodes (frequency <10%) showed solid fuel contributions of up to 65%, highlighting BC pollution complexity in the region during haze. Backward trajectories analysis revealed local air masses from Liaoning province arrived consistently with the most occurrence of haze events across all seasons, while long-range air masses from Mongolian regions, though with less frequent occurrence during haze periods, significantly elevated BC loadings from solid fuel sources, particularly in spring and autumn due to biomass burning. Despite higher BC wet scavenging rates (WSR) in long-range air masses (0.072 ng m-3 ppbv-1 mm-1) compared to local air masses (0.039 ng m-3 ppbv-1 mm-1), significant BC transport persisted due to limited precipitation along transport pathways, especially during haze periods. These findings provide crucial insights for policymakers, highlighting the need for targeted haze prevention and control strategies focusing on mitigating BC emissions in Northeast China.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Estações do Ano , Fuligem , China , Poluentes Atmosféricos/análise , Fuligem/análise , Material Particulado/análise , Monóxido de Carbono/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/química
10.
Environ Pollut ; 357: 124467, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950850

RESUMO

The 31st FISU Summer World University Games (SWUG) was held in Chengdu, southwestern China, from July 22 to August 8, 2023. A series of control measures were carried out to ensure good air quality during the SWUG, providing an opportunity to investigate the atmospheric behaviors of light-absorbing aerosols under such a substantial disturbance caused by the control measures. To assess the impacts of emission controls on primary pollutants, a field campaign was conducted at a rural site in Chengdu to investigate the characterization of equivalent black carbon (eBC). The changes of eBC concentrations before, during, and after the SWUG were characterized. The sources of eBC were resolved, and the impacts of atmospheric processes on the absorption capacity were also investigated. During the SWUG, the eBC concentration decreased by 12.1 % and 25.3 % compared with those before and after the SWUG. A fossil fuel combustion (eBCff) and a biomass burning (eBCbb) originated eBC were resolved using the aethalometer model. Both eBCff and eBCbb decreased during the SWUG, indicating the effectiveness of control measures. After the SWUG, the influence of biomass burning emissions became more and more significant, and the contribution of brown carbon (BrC) to light absorption at 370-660 nm increased by 52, 19, 7, 6, and 17 % compared to those during the SWUG. As the biomass burning emitted aerosols aged, the absorption Ångström exponent and babs(BrC370nm) decreased gradually, which was mainly due to the photobleaching of the chromophores during the daytime. eBCff was mainly affected by strong wind, while high eBCbb concentration was mainly attributed to the gradual accumulation of biomass-burning emissions near the observation site. The results show the significant reduction of eBC with the implementation of the air pollution mitigation campaign, and provide insights on the impacts of atmospheric processes on BC optical properties during summertime.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Estações do Ano , Fuligem , China , Poluentes Atmosféricos/análise , Fuligem/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Carbono/análise , Universidades , Poluição do Ar/estatística & dados numéricos , Material Particulado/análise
11.
Environ Sci Technol ; 58(28): 12563-12574, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38950186

RESUMO

Urban air pollution can vary sharply in space and time. However, few monitoring strategies can concurrently resolve spatial and temporal variation at fine scales. Here, we present a new measurement-driven spatiotemporal modeling approach that transcends the individual limitations of two complementary sampling paradigms: mobile monitoring and fixed-site sensor networks. We develop, validate, and apply this model to predict black carbon (BC) using data from an intensive, 100-day field study in West Oakland, CA. Our spatiotemporal model exploits coherent spatial patterns derived from a multipollutant mobile monitoring campaign to fill spatial gaps in time-complete BC data from a low-cost sensor network. Our model performs well in reconstructing patterns at fine spatial and temporal resolution (30 m, 15 min), demonstrating strong out-of-sample correlations for both mobile (Pearson's R ∼ 0.77) and fixed-site measurements (R ∼ 0.95) while revealing features that are not effectively captured by a single monitoring approach in isolation. The model reveals sharp concentration gradients near major emission sources while capturing their temporal variability, offering valuable insights into pollution sources and dynamics.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Carbono , Fuligem , Cidades
12.
Environ Sci Technol ; 58(28): 12575-12584, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38952258

RESUMO

There is a notable lack of continuous monitoring of air pollutants in the Global South, especially for measuring chemical composition, due to the high cost of regulatory monitors. Using our previously developed low-cost method to quantify black carbon (BC) in fine particulate matter (PM2.5) by analyzing reflected red light from ambient particle deposits on glass fiber filters, we estimated hourly ambient BC concentrations with filter tapes from beta attenuation monitors (BAMs). BC measurements obtained through this method were validated against a reference aethalometer between August 2 and 23, 2023 in Addis Ababa, Ethiopia, demonstrating a very strong agreement (R2 = 0.95 and slope = 0.97). We present hourly BC for three cities in sub-Saharan Africa (SSA) and one in North America: Abidjan (Côte d'Ivoire), Accra (Ghana), Addis Ababa (Ethiopia), and Pittsburgh (USA). The average BC concentrations for the measurement period at the Abidjan, Accra, Addis Ababa Central summer, Addis Ababa Central winter, Addis Ababa Jacros winter, and Pittsburgh sites were 3.85 µg/m3, 5.33 µg/m3, 5.63 µg/m3, 3.89 µg/m3, 9.14 µg/m3, and 0.52 µg/m3, respectively. BC made up 14-20% of PM2.5 mass in the SSA cities compared to only 5.6% in Pittsburgh. The hourly BC data at all sites (SSA and North America) show a pronounced diurnal pattern with prominent peaks during the morning and evening rush hours on workdays. A comparison between our measurements and the Goddard Earth Observing System Composition Forecast (GEOS-CF) estimates shows that the model performs well in predicting PM2.5 for most sites but struggles to predict BC at an hourly resolution. Adding more ground measurements could help evaluate and improve the performance of chemical transport models. Our method can potentially use existing BAM networks, such as BAMs at U.S. Embassies around the globe, to measure hourly BC concentrations. The PM2.5 composition data, thus acquired, can be crucial in identifying emission sources and help in effective policymaking in SSA.


Assuntos
Poluentes Atmosféricos , Cidades , Monitoramento Ambiental , Material Particulado , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Material Particulado/análise , África , Carbono/análise , Fuligem/análise
13.
Environ Monit Assess ; 196(8): 767, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073498

RESUMO

In near-road neighborhoods, residents are more frequently exposed to traffic-related air pollution (TRAP), and they are increasingly aware of pollution levels. Given this consideration, this study adopted portable air pollutant sensors to conduct a mobile monitoring campaign in two near-road neighborhoods, one in an urban area and one in a suburban area of Shanghai, China. The campaign characterized spatiotemporal distributions of fine particulate matter (PM2.5) and black carbon (BC) to help identify appropriate mitigation measures in these near-road micro-environments. The study identified higher mean TRAP concentrations (up to 4.7-fold and 1.7-fold higher for PM2.5 and BC, respectively), lower spatial variability, and a stronger inter-pollutant correlation in winter compared to summer. The temporal variations of TRAP between peak hour and off-peak hour were also investigated. It was identified that district-level PM2.5 increments occurred from off-peak to peak hours, with BC concentrations attributed more to traffic emissions. In addition, the spatiotemporal distribution of TRAP inside neighborhoods revealed that PM2.5 concentrations presented great temporal variability but almost remained invariant in space, while the BC concentrations showed notable spatiotemporal variability. These findings provide valuable insights into the unique spatiotemporal distributions of TRAP in different near-road neighborhoods, highlighting the important role of hyperlocal monitoring in urban micro-environments to support tailored designing and implementing appropriate mitigation measures.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Emissões de Veículos , Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , China , Poluição do Ar/estatística & dados numéricos , Poluição Relacionada com o Tráfego/análise , Fuligem/análise
14.
Anal Chem ; 96(31): 12701-12709, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39039062

RESUMO

Microelectrodes are useful electrochemical sensors that can provide spatial biological monitoring. Carbon fiber has been by far the most widely used microelectrode; however, a vast number of different materials and modification strategies have been developed to broaden the scope of microelectrodes. Carbon composite electrodes provide a simple approach to making microelectrodes with a wide range of materials, but manufacturing strategies are complex. 3D printing can provide the ability to make microelectrodes with high precision. We used fused filament fabrication to print single strands of carbon black/polylactic acid (CB/PLA) and multiwall carbon nanotube/polylactic acid (MWCNT/PLA), which were then made into microelectrodes. Microelectrodes ranged from 70 µm in diameter to 400 µm in diameter and were assessed using standard redox probes. MWCNT/PLA electrodes exhibited greater sensitivity, a lower limit of detection, and stability for the measurement of serotonin (5-HT). Both CB/PLA and MWCNT/PLA microelectrodes were able to monitor 5-HT overflow from the ex vivo ileum tissue. MWCNT/PLA microelectrodes were utilized to show differences in 5-HT overflow from ex vivo ileum and colon following exposure to odorants present in spices. These findings highlight that any conductive thermoplastic material can be fabricated into a microelectrode. This simple strategy can utilize a wide range of materials to make 3D-printed microelectrodes for a diverse range of applications.


Assuntos
Microeletrodos , Nanotubos de Carbono , Impressão Tridimensional , Nanotubos de Carbono/química , Animais , Serotonina/análise , Poliésteres/química , Fuligem/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos
15.
Environ Sci Technol ; 58(31): 13697-13706, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39026181

RESUMO

China has implemented strict emission control measures, but it is unclear how they affect black carbon (BC) aging and light absorption. Here, we use the Community Atmosphere Model version 6 (CAM6) with the four-mode version of the Modal Aerosol Module coupled with machine learning (MAM4-ML) to simulate BC aging during 2011-2018 and 2050/2100 following a carbon neutrality scenario (SSP1-2.6), respectively. During 2011-2018, the mass ratio of coatings to BC (RBC) widely increased (5.4% yr-1) over the east of China. The increased secondary organic aerosol (SOA) coatings dominate (88%) the increased RBC, while the sulfate coatings decrease. The drivers of BC coating changes come from the different magnitudes of emission reductions in secondary aerosol precursors (i.e., volatile organic compounds (VOCs) and SO2) and BC. During 2011-2018, the increased RBC enhances the BC mass absorption cross section (MAC, 0.7% yr-1). In 2050/2100 for SSP1-2.6, emission control leads to further increased RBC (95/145%) and BC MAC (12/17%). For both 2011-2018 and 2050/2100, the enhanced BC MAC partly offsets the declining direct radiative effect (DRE) of BC due to direct emission reduction. As a result, the full impact of direct emission reductions of BC on BC DRE is only 75% for 2011-2018 and 90/94% for 2050/2100.


Assuntos
Carbono , Fuligem , China , Aerossóis , Compostos Orgânicos Voláteis , Poluentes Atmosféricos , Poluição do Ar
16.
Chemosphere ; 362: 142734, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950745

RESUMO

In this work, Co3O4 nanoparticles were successfully synthesized by precipitating a precursor salt solution in the form of microdroplets generated by a nebulizer, as an efficient, fast and low-cost approach. After drying and calcination, synthesized particles were deposited on stacked wire mesh monoliths by immersing the structures in a suspension containing synthesized Co3O4 particles and commercial ceria nanoparticles as a binder. These structured catalysts were evaluated for the combustion of diesel soot which constitutes a crucial step in the regeneration of catalytic particulate filters (CDPFs). Thermal and mechanical stability of Co,Ce washcoated monoliths were investigated. For this, successive catalytic evaluations of the structured system, with intermediate treatments at 900 °C (accelerated aging), were carried out indicating a very good activity and stability of the catalysts developed. Adherence tests showed good adhesion of the catalytic layer to the metallic substrate. Fresh and aged catalysts were fully characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Laser Raman Spectroscopy (LRS) and Temperature-Programmed Reduction (TPR). It was found that the catalytic coating resulted composed of nanometric CeO2 and Co3O4 along with chromium, iron and manganese oxides coming from the migration of the metallic substrate, in the catalytic cartridge calcined at 600 °C. Despite after calcination at 900 °C spinels of Co, Fe, Cr and Mn were observed, these oxides did not significantly affected the catalytic activity. Although this aging treatment at 900 °C was severe and is not expected under real conditions, it highlights the potential application of the catalytic metallic cartridges here developed.


Assuntos
Cobalto , Óxidos , Fuligem , Cobalto/química , Catálise , Óxidos/química , Fuligem/química , Nanopartículas Metálicas/química , Emissões de Veículos/análise , Difração de Raios X , Nanopartículas/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise , Cério
17.
Water Res ; 260: 121962, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941867

RESUMO

Dissolved black carbon (DBC) released from biochar, is an essential group in the dissolved organic matter (DOM) pool and is widely distributed in aquatic environments. In various advanced oxidation processes (AOPs), DBC exhibits enhanced free radical scavenging compared to typical DOM, attributed to its smaller molecular weight and more compacted aromatic structure; however, the molecular-level transformations of DBC in different AOPs, such as UV/H2O2, UV/PDS, and UV/Chlorine, remain unclear. This study employed a DBC derived from wheat biochar for experimentation. Characterization involved ultraviolet-visible (UV-Vis) spectroscopy and fluorescence excitation-emission-matrix (EEM) spectroscopy, revealing the transformation of DBC through diminished SUVA254 values and reduced intensity of three-dimensional fluorescence peaks. Further insights into the transformation were gained through Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). After each UV-AOP treatment, a conspicuous augmentation in the oxygen content of DBC was observed. The detailed oxygenation processes were elucidated through mass difference analysis, based on 23 types of typical reactions. Results indicated that oxygenation reactions were most frequently detected in all three UV-AOP treatments. Specifically, the hydroxylation (+O) predominated in UV/H2O2, while the di-hydroxylation (+2O) prevailed in UV/PDS. UV/Chlorine treatments commonly exhibited tri-hydroxylation (+3O), with the identification of 1194 Cl-BPs of unknown structures. This study contributes to a comprehensive understanding of the molecular transformations of DBC induced by various free radicals in different UV-AOP processes, leading to a better understanding of the different fates of DBC in UV-AOP processes. In addition, the identification of DBC as a precursor of by-products will also contribute to the understanding of how to inhibit the generation of by-products.


Assuntos
Oxirredução , Raios Ultravioleta , Carbono/química , Peróxido de Hidrogênio/química , Fuligem/química , Carvão Vegetal/química
18.
J Air Waste Manag Assoc ; 74(8): 581-594, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874903

RESUMO

Communities near transportation sources can be impacted by higher concentrations of particulate matter (PM) and other air pollutants. Few studies have reported on air quality in complex urban environments with multiple transportation sources. To better understand these environments, the Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS) was conducted in three neighborhoods in Southeast Kansas City, Kansas. This area has several emissions sources including transportation (railyards, vehicles, diesel trucks), light industry, commercial facilities, and residential areas. Stationary samples were collected for 1-year (October 24, 2017, to October 31, 2018) at six sites using traditional sampling methods and lower-cost air sensor packages. This work examines PM less than 2.5 µm in diameter (PM2.5), black carbon (BC), and trace metals data collected during KC-TRAQS. PM2.5 filter samples showed the highest 24-h mean concentrations (9.34 µg/m3) at the sites located within 20-50 m of the railyard. Mean 24-h PM2.5 concentrations, ranging from 7.96 to 9.34 µg/m3, at all sites were lower than that of the nearby regulatory site (9.83 µg/m3). Daily maximum PM2.5 concentrations were higher at the KC-TRAQS sites (ranging from 25.31 to 43.76 µg/m3) compared to the regulatory site (20.50 µg/m3), suggesting short-duration impacts of localized emissions sources. Across the KC-TRAQS sites, 24-h averaged PM2.5 concentrations from the sensor package (P-POD) ranged from 3.24 to 5.69 µg/m3 showing that, out-of-the-box, the PM sensor underestimated the reference concentrations. KC-TRAQS was supplemented by elemental and organic carbon (EC/OC) and trace metal analysis of filter samples. The EC/OC data suggested the presence of secondary organic aerosol formation, with the highest mean concentrations observed at the site within 20 m of the railyard. Trace metals data showed daily, monthly, and seasonal variations for iron, copper, zinc, chromium, and nickel, with elevated concentrations occurring during the summer at most of the sites.Implications: This work reports on findings from a year-long air quality study in Southeast Kansas City, Kansas to understand micro-scale air quality in neighborhoods impacted by multiple emissions sources such as transportation sources (including a large railyard operation), light industry, commercial facilities, and residential areas. While dozens of studies have reported on air quality near roadways, this work will provide more information on PM2.5, black carbon, and trace metals concentrations near other transportation sources in particular railyards. This work can also inform additional field studies near railyards.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metais , Material Particulado , Fuligem , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Kansas , Fuligem/análise , Metais/análise , Cidades , Poluição do Ar/análise , Meios de Transporte , Emissões de Veículos/análise , Oligoelementos/análise
19.
Mar Pollut Bull ; 205: 116600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896958

RESUMO

The sorption behavior of phosphorus on marine sediments in the presence of black carbon derived from fly ash (FC) was studied. For both the FC and sediment samples, the kinetic curves could be described by a two-compartment first order equation, and the isotherms fit the Freundlich and Langmuir models well. The high specific surface area with abundant acidic functional groups of FC promoted the sorption and make this process more irreversible. The effects were more significant with higher amount of FC added. After sorption, more significant increase in Ex-P, Fe/Al-P and CaP was found in the sediment with FC added, while the organic groups in FC rarely react with phosphorus to form OP. The pH of medium influenced the sorption character, and FC promoted the process significantly at pH < pHPZNPC. The sorption was endothermic with an increase in randomness. The presence of FC had little effects on the thermodynamic parameters.


Assuntos
Cinza de Carvão , Sedimentos Geológicos , Fósforo , Poluentes Químicos da Água , Sedimentos Geológicos/química , Fósforo/química , Fósforo/análise , Cinza de Carvão/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Cinética , Fuligem/química , Carbono/química , Termodinâmica
20.
J Affect Disord ; 361: 720-727, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38917887

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) has been implicated in various health concerns. However, a comprehensive understanding of the specific PM2.5 components affecting depression remains limited. METHODS: This study conducted a Cox proportional-hazards model to assess the effect of PM2.5 components on the incidence of depression based on the China Health and Retirement Longitudinal Study (CHARLS). Participants with 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) score of 10 or higher were classified as exhibiting depression. RESULTS: Our findings demonstrated a significant positive correlation between long-term exposure to black carbon (BC), sulfate (SO42-), and organic matter (OM) components of PM2.5 and the prevalence of depression. Per 1 Interquartile Range (IQR) increment in 3-year average concentrations of BC, OM, and SO42- were associated with the hazard ratio (HR) of 1.54 (95 % confidence intervals (CI): 1.44, 1.64), 1.24 (95%CI: 1.16, 1.34) and 1.25 (95%CI: 1.16, 1.35). Notably, females, younger individuals, those with lower educational levels, urban residents, individuals who were single, widowed, or divorced, and those living in multi-story houses exhibited heightened vulnerability to the adverse effects of PM2.5 components on depression. LIMITATIONS: Firstly, pollutant data is confined to subjects' fixed addresses, overlooking travel and international residence history. Secondly, the analysis only incorporates five fine particulate components, leaving room for further investigation into the remaining fine particulate components in future studies. CONCLUSIONS: This study provides robust evidence supporting the detrimental impact of PM2.5 components on depression. The identification of specific vulnerable populations contributes to a deeper understanding of the underlying mechanisms involved in the relationship between PM2.5 components and depression.


Assuntos
Depressão , Material Particulado , Modelos de Riscos Proporcionais , Humanos , Material Particulado/efeitos adversos , Feminino , China/epidemiologia , Masculino , Pessoa de Meia-Idade , Idoso , Depressão/epidemiologia , Estudos Longitudinais , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/estatística & dados numéricos , Incidência , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Estudos de Coortes , Prevalência , Fuligem/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...