Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.530
Filtrar
1.
Se Pu ; 42(7): 702-710, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-38966978

RESUMO

Organic acid metabolites exhibit acidic properties. These metabolites serve as intermediates in major carbon metabolic pathways and are involved in several biochemical pathways, including the tricarboxylic acid (TCA) cycle and glycolysis. They also regulate cellular activity and play crucial roles in epigenetics, tumorigenesis, and cellular signal transduction. Knowledge of the binding proteins of organic acid metabolites is crucial for understanding their biological functions. However, identifying the binding proteins of these metabolites has long been a challenging task owing to the transient and weak nature of their interactions. Moreover, traditional methods are unsuitable for the structural modification of the ligands of organic acid metabolites because these metabolites have simple and similar structures. Even minor structural modifications can significantly affect protein interactions. Thermal proteome profiling (TPP) provides a promising avenue for identifying binding proteins without the need for structural modifications. This approach has been successfully applied to the identification of the binding proteins of several metabolites. In this study, we investigated the binding proteins of two TCA cycle intermediates, i.e., succinate and fumarate, and lactate, an end-product of glycolysis, using the matrix thermal shift assay (mTSA) technique. This technique involves combining single-temperature (52 ℃) TPP and dose-response curve analysis to identify ligand-binding proteins with high levels of confidence and determine the binding affinity between ligands and proteins. To this end, HeLa cells were lysed, followed by protein desalting to remove endogenous metabolites from the cell lysates. The desalted cell lysates were treated with fumarate or succinate at final concentrations of 0.004, 0.04, 0.4, and 2 mmol/L in the experimental groups or 2 mmol/L sodium chloride in the control group. Considering that the cellular concentration of lactate can be as high as 2-30 mmol/L, we then applied lactate at final concentrations of 0.2, 1, 5, 10, and 25 mmol/L in the experimental groups or 25 mmol/L sodium chloride in the control group. Using high-sensitivity mass spectrometry coupled with data-independent acquisition (DIA) quantification, we quantified 5870, 5744, and 5816 proteins in succinate, fumarate, and lactate mTSA experiments, respectively. By setting stringent cut-off values (i.e., significance of changes in protein thermal stability (p-value)<0.001 and quality of the dose-response curve fitting (square of Pearson's correlation coefficient, R2)>0.95), multiple binding proteins for these organic acid metabolites from background proteins were confidently determined. Several known binding proteins were identified, notably fumarate hydratase (FH) as a binding protein for fumarate, and α-ketoglutarate-dependent dioxygenase (FTO) as a binding protein for both fumarate and succinate. Additionally, the affinity data for the interactions between these metabolites and their binding proteins were obtained, which closely matched those reported in the literature. Interestingly, ornithine aminotransferase (OAT), which is involved in amino acid biosynthesis, and 3-mercaptopyruvate sulfurtransferase (MPST), which acts as an antioxidant in cells, were identified as lactate-binding proteins. Subsequently, an orthogonal assay technique developed in our laboratory, the solvent-induced precipitation (SIP) technique, was used to validate the mTSA results. SIP identified OAT as the top target candidate, validating the mTSA-based finding that OAT is a novel lactate-binding protein. Although MPST was not identified as a lactate-binding protein by SIP, statistical analysis of MPST in the mTSA experiments with 10 or 25 mmol/L lactate revealed that MPST is a lactate-binding protein with a high level of confidence. Peptide-level empirical Bayes t-tests combined with Fisher's exact test also supported the conclusion that MPST is a lactate-binding protein. Lactate is structurally similar to pyruvate, the known binding protein of MPST. Therefore, assuming that lactate could potentially occupy the binding site of pyruvate on MPST. Overall, the novel binding proteins identified for lactate suggest their potential involvement in amino acid synthesis and redox balance regulation.


Assuntos
Ciclo do Ácido Cítrico , Humanos , Células HeLa , Ácido Succínico/metabolismo , Ácido Succínico/química , Fumaratos/metabolismo , Fumaratos/química
2.
Front Public Health ; 12: 1393752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015385

RESUMO

Introduction: While breastfeeding is recommended, knowledge regarding medicine transfer to human milk and its safety for nursing infants is limited. Only one paper has previously described dimethyl fumarate (DMF) transfer during breastfeeding in two patients at 5 and 6 months postpartum, respectively. The current case report describes maternal pharmacokinetic data of monomethyl fumarate (MMF), the active metabolite of DMF, and infant exposure estimations of MMF at 3 months postpartum. Methods: A 32-year-old Caucasian woman started DMF therapy (120 mg, 2x/day) for multiple sclerosis at 3 months postpartum, after weaning her infant from breastfeeding. On day 99 after birth, the patient collected four milk samples over 24 h after 6 days of treatment at the initial dose. Additionally, a single maternal blood sample was collected to calculate the milk-to-plasma (M/P) ratio. The samples were analyzed using liquid chromatography coupled with the mass spectrometry method. Results: A wide range of measured steady-state concentrations of MMF (5.5-83.5 ng/mL) was observed in human milk samples. Estimated daily infant dosage values for MMF, calculated with 150 and 200 mL/kg/day human milk intake, were 5.76 and 7.68 µg/kg/day, and the relative infant doses were 0.16 and 0.22%. The observed mean M/P ratio was 0.059, similar to the M/P ratio predicted using the empirical Koshimichi model (0.06). Discussion: Combining this case report with the two previously described cases, the estimated infant exposure is low, albeit with relevant intra- and inter-patient variabilities. Research should further focus on infant exposure and safety.


Assuntos
Fumaratos , Leite Humano , Humanos , Leite Humano/química , Feminino , Adulto , Aleitamento Materno , Recém-Nascido , Esclerose Múltipla/tratamento farmacológico , Imunossupressores , Lactente , Maleatos
3.
Viruses ; 16(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38932212

RESUMO

Oncolytic virotherapy, using viruses such as vesicular stomatitis virus (VSVΔ51) and Herpes Simplex Virus-1 (HSV-1) to selectively attack cancer cells, faces challenges such as cellular resistance mediated by the interferon (IFN) response. Dimethyl fumarate (DMF) is used in the treatment of multiple sclerosis and psoriasis and is recognized for its anti-cancer properties and has been shown to enhance both VSVΔ51 and HSV-1 oncolytic activity. Tepilamide fumarate (TPF) is a DMF analog currently undergoing clinical trials for the treatment of moderate-to-severe plaque psoriasis. The aim of this study was to evaluate the potential of TPF in enhancing the effectiveness of oncolytic viruses. In vitro, TPF treatment rendered 786-0 carcinoma cells more susceptible to VSVΔ51 infection, leading to increased viral replication. It outperformed DMF in both increasing viral infection and increasing the killing of these resistant cancer cells and other cancer cell lines tested. Ex vivo studies demonstrated TPF's selective boosting of oncolytic virus infection in cancer cells without affecting healthy tissues. Effectiveness was notably high in pancreatic and ovarian tumor samples. Our study further indicates that TPF can downregulate the IFN pathway through a similar mechanism to DMF, making resistant cancer cells more vulnerable to viral infection. Furthermore, TPF's impact on gene therapy was assessed, revealing its ability to enhance the transduction efficiency of vectors such as lentivirus, adenovirus type 5, and adeno-associated virus type 2 across various cell lines. This data underscore TPF's potential role in not only oncolytic virotherapy but also in the broader application of gene therapy. Collectively, these findings position TPF as a promising agent in oncolytic virotherapy, warranting further exploration of its therapeutic potential.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Replicação Viral , Humanos , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Vírus Oncolíticos/fisiologia , Replicação Viral/efeitos dos fármacos , Fumaratos/farmacologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Fumarato de Dimetilo/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia
4.
Nihon Yakurigaku Zasshi ; 159(4): 264-281, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38945910

RESUMO

Ensitrelvir fumaric acid (Xocova® hereafter ensitrelvir) is a novel anti-SARS-CoV-2 drug for COVID-19. Hokkaido University and Shionogi & Co., Ltd. engaged in joint research targeting SARS-CoV-2 3C-like (3CL) protease at an early stage and started clinical trials in July 2021. In February 2022, an application was filed for manufacture and sales approval for the indication of "SARS-CoV-2 infection,". Ensitrelvir recieved the first emergency regulatory approval from the Ministry of Health, Labour and Welfare (MHLW) in Japan in November 2022, and has obtained standard approval in March 2024. This emergency approval was based on the confirmed safety in a Phase 2/3 study (T1221) conducted in Japan and other Asian countries (Korea and Vietnam) in patients with mild/moderate COVID-19 and the presumed efficacy in Phase 3 Part (SCORPIO-SR), and the standard approval is based on efficacy from the Phase 3 part. In the Phase 3 part, ensitrelvir administered orally 375/125 |mg once daily for five days, in patients with irrespective of risk factors for severe complications and vaccination status, demonstrating a significant reduction vs placebo in the time to resolution of five typical Omicron-related symptoms (stuffy or runny nose, sore throat, cough, feeling hot or feverish, and low energy or tiredness), and also showed a significant reduction in viral RNA on day 4 relative to placebo (P < 0.001). In the Phase 2/3 study, there were no serious adverse events or deaths, indicating good tolerability and safety. We hope that ensitrelvir will contribute as a new treatment option for patients suffering from COVID-19 symptoms.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Comprimidos , Ensaios Clínicos como Assunto , COVID-19 , Antivirais/uso terapêutico , Antivirais/farmacologia , Resultado do Tratamento , Fumaratos/uso terapêutico , Indazóis , Triazinas , Triazóis
5.
Nat Commun ; 15(1): 5386, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918386

RESUMO

Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating RS can classify FH status. These results suggest RS could be adopted as a valuable tool for small molecule metabolic imaging, enabling in situ non-destructive evaluation of fumarate compartmentalization.


Assuntos
Fumarato Hidratase , Fumaratos , Análise Espectral Raman , Análise Espectral Raman/métodos , Animais , Fumaratos/metabolismo , Camundongos , Fumarato Hidratase/metabolismo , Fumarato Hidratase/genética , Rim/metabolismo , Mitocôndrias/metabolismo , Humanos , Núcleo Celular/metabolismo , Citoplasma/metabolismo
6.
Int Immunopharmacol ; 137: 112488, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38889510

RESUMO

Monomethyl fumarate (MMF), a potent anti-inflammatory agent used to treat multiple sclerosis, has demonstrated efficacy in various inflammatory and ischemia/reperfusion (IR) models; however, its impact on IR-induced acute lung injury (ALI) has not been explored. We investigated, for the first time, whether MMF attenuates lung IR injury through inhibition of the GAPDH/Siah1 signaling pathway. Rats were subjected to IR injury using an isolated perfused lung model, and proximity ligation assays were employed to evaluate the presence and distribution of the GAPDH/Siah1 complex. In vitro studies involved pretreating human primary alveolar epithelial cells (HPAECs) with MMF and/or inducing GAPDH overexpression or silencing, followed by exposure to hypoxia-reoxygenation. The findings revealed significantly reduced lung damage indicators, including edema, proinflammatory cytokines, oxidative stress and apoptosis, in MMF-treated rats. Notably, MMF treatment inhibited GAPDH/Siah1 complex formation and nuclear translocation, indicating that disruption of the GAPDH/Siah1 cascade was the primary cause of these improvements. Our in vitro studies on pretreated HPAECs corroborate these in vivo findings, further strengthening this interpretation. Our study results suggest that the protective effects of MMF against lung IR injury may be attributed, at least in part, to its ability to disrupt the GAPDH/Siah1 signaling cascade, thereby attenuating inflammatory and apoptotic responses. Given these encouraging results, MMF has emerged as a promising therapeutic candidate for the management of lung IR injury.


Assuntos
Lesão Pulmonar Aguda , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Masculino , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Ratos , Fumaratos/farmacologia , Fumaratos/uso terapêutico , Apoptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/efeitos dos fármacos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo
7.
Drugs ; 84(6): 721-728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795314

RESUMO

Ensitrelvir fumaric acid (Xocova®) is an oral SARS-CoV-2 main protease inhibitor developed by Shionogi for the treatment of SARS-CoV-2 infection. It is the first single-entity, nonpeptidic, noncovalent, small molecule antiviral of its kind. Following emergency regulatory approval in Japan in November 2022, ensitrelvir received standard approval in Japan on 5 March 2024 for the treatment of SARS-CoV-2 infection. This article summarizes the milestones in the development of ensitrelvir leading to this first standard approval for SARS-CoV-2 infection.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Aprovação de Drogas , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Japão , Fumaratos/uso terapêutico , Fumaratos/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/farmacologia , Indazóis , Triazinas , Triazóis
8.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749675

RESUMO

AIMS: In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS: Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS: This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.


Assuntos
Clostridium , Fermentação , Fumaratos , Geobacter , Geobacter/metabolismo , Geobacter/crescimento & desenvolvimento , Fumaratos/metabolismo , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Transporte de Elétrons , Glicerol/metabolismo , Técnicas de Cocultura , Propilenoglicóis/metabolismo
9.
Diabetes Obes Metab ; 26(7): 2741-2751, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38584567

RESUMO

AIM: To create and validate a prediction model to identify patients with type 2 diabetes (T2D) at high risk of new-onset heart failure (HF), including those treated with a sodium-glucose cotransporter-2 (SGLT2) inhibitor. METHODS: A prediction model was developed from the Aliskiren Trial in Type 2 Diabetes Using Cardiorenal Endpoints (ALTITUDE), a trial in T2D patients with albuminuria or cardiovascular disease. We included 5081 patients with baseline N-terminal pro B-type natriuretic peptide (NT-proBNP) measurement and no history of HF. The model was developed using Cox regression and validated externally in the placebo arm of the Canagliflozin Cardiovascular Assessment Study (CANVAS), which included 996 participants with T2D and established cardiovascular disease or high cardiovascular risk, and in patients treated with canagliflozin. RESULTS: ALTITUDE participants (mean age 64 ± 9.8 years) had a median serum NT-proBNP level of 157 (25th-75th percentile 70-359) pg/mL. Higher NT-proBNP level, troponin T (TnT) level and body mass index (BMI) emerged as significant and independent predictors of new-onset HF in both cohorts. The model further contained urinary albumin-to-creatinine ratio, glycated haemoglobin, age, haematocrit, and use of calcium channel blockers. A prediction model including these variables had a C-statistic of 0.828 (95% confidence interval [CI] 0.801-0.855) in ALTITUDE and 0.800 (95% CI 0.720-0.880) in CANVAS. The C-statistic of this model increased to 0.847 (95% CI 0.792-0.902) in patients after 1 year of canagliflozin treatment. CONCLUSION: In patients with T2D, higher NT-proBNP level, TnT level and BMI are independent and externally validated predictors of new-onset HF, including patients using an SGLT2 inhibitor. This newly developed model may identify patients at high risk of new-onset HF, contributing to early recognition and possibly prevention.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Insuficiência Cardíaca/epidemiologia , Feminino , Pessoa de Meia-Idade , Masculino , Fragmentos de Peptídeos/sangue , Peptídeo Natriurético Encefálico/sangue , Idoso , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Canagliflozina/uso terapêutico , Amidas/uso terapêutico , Troponina T/sangue , Albuminúria , Índice de Massa Corporal , Biomarcadores/sangue , Fatores de Risco , Medição de Risco , Fumaratos
10.
Braz J Microbiol ; 55(2): 1179-1187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38671219

RESUMO

The hemicellulosic fraction of lignocellulosic biomass is a very important material, due to the significant concentration of pentoses present in its composition and that can be used sustainably in biotechnological processes such as the production of fumaric acid. Research efforts are currently being promoted for the proper disposal and valorization of empty fruit bunches (EFB) from oil palm. In this work, seventeen Rhizopus species were evaluated in a fermentation medium with EFB hydrolyzate, without detoxification, as a carbon source for fumaric acid production. Rhizopus circicans 1475 and Rhizopus 3271 achieved productions of 5.65 g.L-1 and 5.25 g.L-1 of fumaric acid at 30 °C, 120 rpm for 96 h, respectively. The percentage of consumed sugars, mainly pentoses, was 24.88% and 34.02% for R. circicans 1475 and R 3271, respectively. Soy peptone and ammonium sulfate were evaluated as nitrogen sources, where soy peptone stimulated the formation of biomass pellets while ammonium sulfate produced mycelia and clamps.


Assuntos
Fermentação , Fumaratos , Rhizopus , Rhizopus/metabolismo , Fumaratos/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Biomassa , Frutas/microbiologia , Frutas/química , Frutas/metabolismo , Hidrólise , Óleo de Palmeira/metabolismo , Óleo de Palmeira/química , Arecaceae/metabolismo , Arecaceae/química , Arecaceae/microbiologia
11.
PeerJ ; 12: e17282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666083

RESUMO

This study investigated the potential of using steam-exploded oil palm empty fruit bunches (EFB) as a renewable feedstock for producing fumaric acid (FA), a food additive widely used for flavor and preservation, through a separate hydrolysis and fermentation process using the fungal isolate K20. The efficiency of FA production by free and immobilized cells was compared. The maximum FA concentration (3.25 g/L), with 0.034 g/L/h productivity, was observed after incubation with the free cells for 96 h. Furthermore, the production was scaled up in a 3-L air-lift fermenter using oil palm EFB-derived glucose as the substrate. The FA concentration, yield, and productivity from 100 g/L initial oil palm EFB-derived glucose were 44 g/L, 0.39 g/g, and 0.41 g/L/h, respectively. The potential for scaling up the fermentation process indicates favorable results, which could have significant implications for industrial applications.


Assuntos
Células Imobilizadas , Fermentação , Fumaratos , Fumaratos/metabolismo , Células Imobilizadas/metabolismo , Óleo de Palmeira , Frutas/microbiologia , Frutas/química , Arecaceae/microbiologia , Arecaceae/química , Óleos de Plantas/metabolismo , Hidrólise , Glucose/metabolismo
12.
Mol Pharm ; 21(5): 2590-2605, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38656981

RESUMO

We report a novel utilization of a pH modifier as a disproportionation retardant in a tablet formulation. The drug molecule of interest has significant bioavailability challenges that require solubility enhancement. In addition to limited salt/cocrystal options, disproportionation of the potential salt(s) was identified as a substantial risk. Using a combination of Raman spectroscopy with chemometrics and quantitative X-ray diffraction in specially designed stress testing, we investigated the disproportionation phenomena. The learnings and insight drawn from crystallography drove the selection of the maleate form as the target API. Inspired by the fumarate form's unique stability and solubility characteristics, we used fumaric acid as the microenvironmental pH modulator. Proof-of-concept experiments with high-risk (HCl) and moderate-risk (maleate) scenarios confirmed the synergistic advantage of fumaric acid, which interacts with the freebase released by disproportionation to form a more soluble species. The resultant hemifumarate helps maintain the solubility at an elevated level. This work demonstrates an innovative technique to mediate the solubility drop during the "parachute" phase of drug absorption using compendial excipients, and this approach can potentially serve as an effective risk-mitigating strategy for salt disproportionation.


Assuntos
Química Farmacêutica , Composição de Medicamentos , Fumaratos , Solubilidade , Fumaratos/química , Concentração de Íons de Hidrogênio , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Análise Espectral Raman/métodos , Difração de Raios X/métodos , Comprimidos/química , Sais/química , Maleatos/química , Excipientes/química , Disponibilidade Biológica
13.
Inflammopharmacology ; 32(2): 1239-1252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472616

RESUMO

BACKGROUND: Osteoarthritis (OA) is a chronic disease that may lead to joint structure degeneration, cartilage destruction, osteophyte formation, subchondral bone disruption, and pain. In this scenario, a higher proportion of the proinflammatory macrophage type 1 (M1) than the anti-inflammatory macrophage type 2 (M2) could be highlighted as a hallmark of OA progression. The balance between these two macrophage types emerges as a new therapeutic target in OA. This study aimed to evaluate the analgesia and macrophage profile in the treatment of experimental osteoarthritis (EOA) with systemic dimethyl fumarate (DMF) or local intra-articular monomethyl fumarate (MMF). RESULTS: DMF via gavage or MMF via intra-articular in the right knee of EOA rats showed improvements in gait parameters and the nociceptive recovery of the mechanical threshold assessment by adapted electronic von Frey treatment on the twenty-first day (long-lasting phase). DMF treatment decreased proinflammatory TNF-α while increasing anti-inflammatory IL-10 cytokines from the macerated capsule on the fifth day (inflammatory phase). MMF treatment showed joint capsule mRNA extraction downregulating iNOS and TNF-α gene expression while upregulating IL-10 and MCP-1. However, CD206 was not significant but higher than untreated EOA rats' joints on the seventh day (inflammatory phase). CONCLUSIONS: Our studies with EOA model induced by MIA suggest a new perspective for human treatment committed with OA based on macrophage polarization as a therapeutic target, switching the proinflammatory profile M1 to the anti-inflammatory profile M2 with DMF systematic or by MMF locally treatment according to the OA severity.


Assuntos
Fumaratos , Interleucina-10 , Osteoartrite , Humanos , Ratos , Animais , Fator de Necrose Tumoral alfa , Osteoartrite/metabolismo , Dor/tratamento farmacológico , Fumarato de Dimetilo , Macrófagos/metabolismo , Anti-Inflamatórios/uso terapêutico
14.
Appl Environ Microbiol ; 90(4): e0000824, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38506527

RESUMO

Currently, the L-malic acid titer achieved through Aspergillus niger fermentation reaches 201 g/L, meeting industrial demands satisfactorily. However, the co-presence of structurally similar fumaric acid and succinic acid in fermentation products suggests a theoretical potential for further improvement in L-malic acid production. In the tricarboxylic acid cycle, fumarate reductase mediates the conversion of succinic acid to fumaric acid. Subsequently, fumarase catalyzes the conversion of fumaric acid to L-malic acid. Notably, both enzymatic reactions are reversible. Our investigation revealed that A. niger contains only one mitochondria-located fumarase FumA. Employing CRISPR-Cas9 technology, we performed a replacement of the fumA promoter with a doxycycline-induced promoter Tet. Under non-inducing condition, the conditional strain exhibited increased levels of fumaric acid and succinic acid. It strongly suggests that FumA mainly promotes the flow of fumaric acid to L-malic acid. Furthermore, a promoter PmfsA that is exclusively activated in a fermentation medium by calcium carbonate was identified through RNA-sequencing screening. Utilizing PmfsA to regulate fumA expression led to a 9.0% increase in L-malic acid titer, an 8.75% increase in yield (glucose to L-malic acid), and an 8.86% enhancement in productivity. This research serves as a significant step toward expediting the industrialization of L-malic acid synthesis via biological fermentation. Additionally, it offers valuable insights for the biosynthesis of other organic acids.IMPORTANCEThis study focuses on enhancing L-malic acid synthesis by modifying the tricarboxylic acid cycle within the mitochondria of Aspergillus niger. We emphasize the significant role of fumarase in converting fumaric acid into L-malic acid, enhancing our understanding of metabolic pathways in A. niger. The precise regulation of fumA is highlighted as a key factor in enhancing L-malic acid production. Furthermore, this research introduces a stringent conditional promoter (PmfsA), exclusively activated by CaCO3. The utilization of PmfsA for fumA expression resulted in heightened L-malic acid titers. The progress in metabolic engineering and bioprocess optimization holds promise for expediting industrial L-malic acid synthesis via biological fermentation. Moreover, it carries implications for the biosynthesis of various other organic acids.


Assuntos
Aspergillus niger , Fumarato Hidratase , Fumaratos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Malatos/metabolismo , Ácido Succínico
15.
Artigo em Inglês | MEDLINE | ID: mdl-38435125

RESUMO

Purpose: The TRITRIAL study assessed the effects of beclometasone dipropionate/formoterol fumarate/glycopyrronium (BDP/FF/G) fixed combination in patients with chronic obstructive pulmonary disease (COPD) in a real-world setting, focusing on patient's experience and perspective through the use of patients reported outcomes. Patients and Methods: TRITRIAL was a multicenter, prospective, observational study conducted on patients with moderate-severe COPD treated with BDP/FF/G fixed therapy for 12 months. The main objective was to evaluate the impact of BDP/FF/G on health status through the COPD Assessment Test (CAT) score. Additional assessments included adherence and satisfaction, measured by the TAI-10/12 questionnaire and a specifically designed eight-item questionnaire, quality of life through the EQ-5D-5L test, sleep quality through the COPD and Asthma Sleep Impact Scale (CASIS), as well as safety and disease-related outcomes. Results: Data from 655 patients were analyzed in the study. The mean total CAT score significantly improved (from 22.8 at baseline to 18.1 at 6 months and 16.5 at 12 months; p < 0.0001), as well as all the eight CAT sub-items, which decreased on average by 0.5-0.9 points during the study. Adherence and usability of the inhaler also improved during the study, with a decrease in poor compliance (from 30.1% to 18.3%) and an increase in good compliance (from 51.8% to 58.3%) according to the TAI score. Patients also benefited from significantly improved quality of life (EQ Index from 0.70 to 0.80; EQ-5D VAS score from 55.1 to 63.1) and sleep quality (CASIS score from 41.1 to 31.8). Finally, patients reported a significant reduction in exacerbation during the study. Conclusion: TRITRIAL showed that the BDP/FF/G fixed combination is effective and safe in patients with moderate-severe COPD and poorly controlled disease, improving patients' HRQoL, sleep quality, adherence and inhaler usability and reducing COPD symptoms and the risk of exacerbation in a real-life setting.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Qualidade de Vida , Humanos , Beclometasona/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Glicopirrolato/efeitos adversos , Estudos Prospectivos , Nível de Saúde , Fumarato de Formoterol/efeitos adversos , Fumaratos , Itália
16.
Acta Derm Venereol ; 104: adv12326, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483082

RESUMO

Fumaric acid esters (FAEs) remain a widespread therapy option for moderate-to-severe psoriasis. However, drug survival of FAEs is limited by adverse events (AEs) or inadequate treatment response. Depressive disturbances are highly prevalent in psoriasis patients and are hypothesized to be associated with the reporting of AEs and therapy discontinuation. This study's aim was to analyze whether psoriasis patients with comorbid depressive symptomatology are more likely to discontinue treatment with FAEs due to AEs and/or inadequate treatment response. Data were retrospectively extracted from the records of patients starting therapy with FAEs in the Department of Dermatology, University Hospital Essen, Germany between 2017 and 2022, covering the first 52 weeks of treatment. Psoriasis severity and depressive symptomatology, as well as AEs and therapy discontinuation, were analyzed. Psoriasis patients (N = 95, 47.37% female) with depressive symptomatology (42.11%) were more likely to discontinue therapy due to patient-reported AEs, while the total number of reported AEs was not associated with depression. The results support the hypothesis that among psoriasis patients with depressive symptoms, the associated introspection and somatization may result in increased sensitivity for AEs and thus in quicker therapy discontinuation. In these patients, the occurrence of nocebo effects should be minimized, e.g. by special communication techniques.


Assuntos
Fármacos Dermatológicos , Psoríase , Humanos , Feminino , Masculino , Fumaratos/efeitos adversos , Estudos Retrospectivos , Fármacos Dermatológicos/efeitos adversos , Psoríase/diagnóstico , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Alemanha/epidemiologia , Resultado do Tratamento
17.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507470

RESUMO

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Ferro/metabolismo , Glioma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Enxofre/metabolismo , Enxofre/uso terapêutico , Fumaratos , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/metabolismo
18.
Cell Death Dis ; 15(2): 151, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374146

RESUMO

Fumarate hydratase (FH) deficient renal cell carcinoma (RCC) is a type of tumor with definite metabolic disorder, but the mechanism of metabolic remodeling is still unclear. LncRNA was reported to closely correlate with cancer metabolism, however the biological role of LncRNA in the development of progression of FH-deficent RCC was not well studied either. FH-deficient RCC samples were collected in my hospital and used for RNA-sequencing and Mass spectrometry analysis. FH-deficient RCC cell line UOK262 and control pFH cells were used for in vitro experiments, including proliferation assay, transwell assay, western-blot, mass spectrometry and so on. PDX mouse model was used for further drug inhibition experiments in vivo. In this study, we analyzed the profiles of LncRNA and mRNA in FH-deficienct RCC samples, and we found that the LncRNA-MIR4435-2GH was specifically highly expressed in FH-deficient RCC compared with ccRCC. In vitro experiments demonstrated that MIR4435-2HG was regulated by Fumarate through histone demethylation, and the deletion of this gene could inhibit glutamine metabolism. RNA-pulldown experiments showed that MIR4435-2HG specifically binds to STAT1, which can transcriptionally activate GLS1. GLS1 inhibitor CB-839 could significantly suppress tumor growth in PDX tumor models. This study analyzed the molecular mechanism of MIR4435-2HG in regulating metabolic remodeling of FH-deficient RCC in clinical samples, cells and animal models by combining transcriptional and metabolic methods. We found that that GLS1 was a therapeutic target for this tumor, and MIR4435-2HG can be used as a drug sensitivity marker.


Assuntos
Carcinoma de Células Renais , Fumaratos , Neoplasias Renais , RNA Longo não Codificante , Animais , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Fumaratos/metabolismo , Glutamina , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , RNA Longo não Codificante/genética , Humanos
19.
Anticancer Res ; 44(3): 1183-1192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423665

RESUMO

BACKGROUND/AIM: The renin-angiotensin system (RAS) regulates blood pressure. The RAS is also related to cell growth, and its activation has been reported in various cancer cells. Therefore, we investigated the effects of RAS inhibitors on the in vitro growth of leukemia cell lines. MATERIALS AND METHODS: THP-1, MV4-11, and TMD7 cells derived from acute myeloid leukemia, K-562 cells from chronic myeloid leukemia, and Jurkat and KOPT-K1 cells from T-lymphoblastic leukemia (T-ALL) with NOTCH1 mutations were used. We used four RAS inhibitors: the renin inhibitor aliskiren, angiotensin-converting enzyme 1 inhibitor captopril, angiotensin II type 1 receptor antagonist azilsartan, and angiotensin II type 2 receptor antagonist PD123319. Cells were cultured with the inhibitors and cell growth was assessed using a colorimetric assay. The expression of signaling proteins was assessed using immunoblotting. RESULTS: Treatment with aliskiren, azilsartan, or PD123319 suppressed the growth of all cell lines. Captopril treatment suppressed the growth of K-562, KOPT-K1, and MV4-11 cells. Flow cytometric analysis revealed that the growth suppression was due to the induction of apoptosis. Their suppressive effects on normal lymphocytes were milder than those on leukemia cells. Treatment with these inhibitors decreased MYC expression, induced caspase3 and PARP cleavage, and suppressed mTOR signaling. The treatment also suppressed NOTCH1 signaling in T-ALL cells. CONCLUSION: RAS inhibitors can be repurposed as molecular-targeted drugs for leukemia. However, the concentrations of the inhibitors were much higher than those in the plasma of patients with hypertension. Therefore, further investigation is required for their clinical use.


Assuntos
Amidas , Fumaratos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Sistema Renina-Angiotensina , Humanos , Captopril/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Anti-Hipertensivos/uso terapêutico , Inibidores Enzimáticos/farmacologia
20.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365228

RESUMO

The short-chain gaseous alkanes (ethane, propane, and butane; SCGAs) are important components of natural gas, yet their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane-despite being energetically feasible. Here we report two independent bacterial enrichments performing anaerobic ethane and butane oxidation, respectively, coupled to nitrate reduction to dinitrogen gas and ammonium. Isotopic 13C- and 15N-labelling experiments, mass and electron balance tests, and metabolite and meta-omics analyses collectively reveal that the recently described propane-oxidizing "Candidatus Alkanivorans nitratireducens" was also responsible for nitrate-dependent anaerobic oxidation of the SCGAs in both these enrichments. The complete genome of this species encodes alkylsuccinate synthase genes for the activation of ethane/butane via fumarate addition. Further substrate range tests confirm that "Ca. A. nitratireducens" is metabolically versatile, being able to degrade ethane, propane, and butane under anoxic conditions. Moreover, our study proves nitrate as an additional electron sink for ethane and butane in anaerobic environments, and for the first time demonstrates the use of the fumarate addition pathway in anaerobic ethane oxidation. These findings contribute to our understanding of microbial metabolism of SCGAs in anaerobic environments.


Assuntos
Etano , Nitratos , Etano/metabolismo , Nitratos/metabolismo , Propano/metabolismo , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Butanos/metabolismo , Gases/metabolismo , Fumaratos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...