Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
J Agric Food Chem ; 72(26): 14535-14546, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38906830

RESUMO

The development of new fungicide molecules is a crucial task for agricultural chemists to enhance the effectiveness of fungicides in agricultural production. In this study, a series of novel fluoroalkenyl modified succinate dehydrogenase inhibitors were synthesized and evaluated for their antifungal activities against eight fungi. The results from the in vitro antifungal assay demonstrated that compound 34 exhibited superior activity against Rhizoctonia solani with an EC50 value of 0.04 µM, outperforming commercial fluxapyroxad (EC50 = 0.18 µM) and boscalid (EC50 = 3.07 µM). Furthermore, compound 34 showed similar effects to fluxapyroxad on other pathogenic fungi such as Sclerotinia sclerotiorum (EC50 = 1.13 µM), Monilinia fructicola (EC50 = 1.61 µM), Botrytis cinerea (EC50 = 1.21 µM), and also demonstrated protective and curative efficacies in vivo on rapeseed leaves and tomato fruits. Enzyme activity experiments and protein-ligand interaction analysis by surface plasmon resonance revealed that compound 34 had a stronger inhibitory effect on succinate dehydrogenase compared to fluxapyroxad. Additionally, molecular docking and DFT calculation confirmed that the fluoroalkenyl unit in compound 34 could enhance its binding capacity with the target protein through p-π conjugation and hydrogen bond interactions.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Proteínas Fúngicas , Fungicidas Industriais , Rhizoctonia , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/enzimologia , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Simulação de Acoplamento Molecular , Botrytis/efeitos dos fármacos , Botrytis/enzimologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/enzimologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/química , Estrutura Molecular
2.
J Agric Food Chem ; 72(26): 14984-14992, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38907719

RESUMO

Scaffold hopping and structural fine-tuning are important strategies for agrochemical innovation. Multidimensional optimization of the prevalidated antifungal lead R-LE001 was conducted via the design, synthesis, and bioevaluation of 53 new compounds differing in either scaffold or substituent. The antifungal structure-activity relationship (SAR) revealed that a number of amides containing 2-(2-oxazolinyl) aniline (NHPhOx) or 2-(2-thiazolinyl) aniline (NHPhthiOx) demonstrated a more promising antifungal effect than both R-LE001 and the positive control boscalid. Specifically, compound 10 (encoded LEX-K01) shows an excellent antifungal effect against Botrytis cinerea with an EC50 value lower than 0.11 µM. This small change leads to a significant improvement (over 1 order of magnitude) in bioactivity compared to that of either R-LE001 (EC50 = 1.41 µM) or boscalid (EC50 = 2.01 µM) and fluxapyroxad (EC50 = 4.35 µM). With much lower resistance factors, LEX-K01 (10) was more efficacious against the two boscalid-resistant strains of B. cinerea TZ01 and NJBH2017. A combination of LEX-K01 (10) and boscalid in a ratio of 1:3 showed synergistic effects against resistant B. cinerea TZ01 and NJBH2017, with SR values of 3.01 and 2.55, respectively. LEX-K01 (10) has a curative efficacy (70.3%) more prominent than that of boscalid (51.2%) in controlling disease caused by B. cinerea. The molecular docking simulation of LEX-K01 (10) with the SDH protein of B. cinerea displayed four hydrogen bonds with amino acid residues TYR144, ARG88, TRP81, and SER84, rationalizing a stronger affinity than boscalid. The scanning electron microscopy (SEM) characteristic revealed that it could cause an obvious collapse of B. cinerea mycelium. This work indicates that LEX-K01 (10) has the potential to be further explored as a new antifungal agent.


Assuntos
Botrytis , Fungicidas Industriais , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Relação Estrutura-Atividade , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Doenças das Plantas/microbiologia , Niacinamida/química , Niacinamida/farmacologia , Niacinamida/análogos & derivados , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Bifenilo
3.
J Agric Food Chem ; 72(23): 12915-12924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38807027

RESUMO

Plant pathogenic fungi pose a significant threat to agricultural production, necessitating the development of new and more effective fungicides. The ring replacement strategy has emerged as a highly successful approach in molecular design. In this study, we employed the ring replacement strategy to successfully design and synthesize 32 novel hydrazide derivatives containing diverse heterocycles, such as thiazole, isoxazole, pyrazole, thiadiazole, 1,3,4-oxadiazole, 1,2,4-oxadiazole, thiophene, pyridine, and pyrazine. Their antifungal activities were evaluated in vitro and in vivo. Bioassay results revealed that most of the title compounds displayed remarkable antifungal activities in vitro against four tested phytopathogenic fungi, including Fusarium graminearum, Botrytis cinerea, Sclerotinia sclerotiorum, and Rhizoctonia solani. Especially, compound 5aa displayed a broad spectrum of antifungal activity against F. graminearum, B. cinerea, S. sclerotiorum, and R. solani, with the corresponding EC50 values of 0.12, 4.48, 0.33, and 0.15 µg/mL, respectively. In the antifungal growth assay, compound 5aa displayed a protection efficacy of 75.5% against Fusarium head blight (FHB) at a concentration of 200 µg/mL. In another in vivo antifungal activity evaluation, compound 5aa exhibited a noteworthy protective efficacy of 92.0% against rape Sclerotinia rot (RSR) at a concentration of 100 µg/mL, which was comparable to the positive control tebuconazole (97.5%). The existing results suggest that compound 5aa has a broad-spectrum antifungal activity. Electron microscopy observations showed that compound 5aa might cause mycelial abnormalities and organelle damage in F. graminearum. Moreover, in the in vitro enzyme assay, we found that the target compounds 5aa, 5ab, and 5ca displayed significant inhibitory effects toward succinate dehydrogenase, with the corresponding IC50 values of 1.62, 1.74, and 1.96 µM, respectively, which were superior to that of boscalid (IC50 = 2.38 µM). Additionally, molecular docking and molecular dynamics simulation results revealed that compounds 5aa, 5ab, and 5ca have the capacity to bind in the active pocket of succinate dehydrogenase (SDH), establishing hydrogen-bonding interactions with neighboring amino acid residues.


Assuntos
Ascomicetos , Botrytis , Desenho de Fármacos , Fungicidas Industriais , Fusarium , Doenças das Plantas , Rhizoctonia , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Relação Estrutura-Atividade , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Doenças das Plantas/microbiologia , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Hidrazinas/farmacologia , Hidrazinas/química , Hidrazinas/síntese química , Estrutura Molecular , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química
4.
J Agric Food Chem ; 72(23): 13015-13022, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38807413

RESUMO

The extensive and repeated application of chemical fungicides results in the rapid development of fungicide resistance. Novel antifungal pesticides are urgently required. Natural products have been considered precious sources of pesticides. It is necessary to discover antifungal pesticides by using natural products. Herein, 42 various griseofulvin derivatives were synthesized. Their antifungal activities were evaluated in vitro. Most of them showed good antifungal activity, especially 3d exhibited a very broad antifungal spectrum and the most significant activities against 7 phytopathogenic fungi. In vivo activity results suggested that 3d protected apples and tomatoes from serious infection by phytopathogenic fungi. These proved that 3d had the potential to be a natural product-derived antiphytopathogenic fungi agent. Furthermore, docking analysis suggested that tubulin might be one of the action sites of 3d. It is reasonable to believe that griseofulvin derivatives are worth further development for the discovery of new pesticides.


Assuntos
Fungos , Fungicidas Industriais , Griseofulvina , Doenças das Plantas , Griseofulvina/farmacologia , Griseofulvina/química , Griseofulvina/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade , Fungos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Solanum lycopersicum/microbiologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química
5.
J Agric Food Chem ; 72(22): 12459-12468, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771934

RESUMO

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.


Assuntos
Carica , Colletotrichum , Eugenol , Fungicidas Industriais , Simulação de Acoplamento Molecular , Doenças das Plantas , Triazóis , Colletotrichum/efeitos dos fármacos , Eugenol/farmacologia , Eugenol/química , Carica/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Relação Estrutura-Atividade , Desenho de Fármacos , Proteínas Fúngicas/química , Estrutura Molecular
6.
J Agric Food Chem ; 72(22): 12415-12424, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779960

RESUMO

A series of novel 2-Ar-1,2,3-triazole derivatives were designed and synthesized based on our previously discovered active compound 6d against Rhizoctonia solani. Most of these compounds exhibited good antifungal activity against R. solani at a concentration of 25 µg/mL. Based on the results of biological activity, we established a three-dimensional quantitative structure-activity relationship (3D-QSAR) model that guided the synthesis of compound 7y. Compound 7y exhibited superior activity against R. solani (EC50 = 0.47 µg/mL) compared to the positive controls hymexazol (EC50 = 12.80 µg/mL) and tebuconazole (EC50 = 0.87 µg/mL). Furthermore, compound 7y demonstrated better protective activity than the aforementioned two commercial fungicides in both detached leaf assays and greenhouse experiments, achieving 56.21% and 65.75% protective efficacy, respectively, at a concentration of 100 µg/mL. The ergosterol content was determined and molecular docking was performed to explore the mechanism of these active molecules. DFT calculation and MEP analysis were performed to illustrate the results of this study. These results suggest that compound 7y could serve as a novel 2-Ar-1,2,3-triazole lead compound for controlling R. solani.


Assuntos
Desenho de Fármacos , Fungicidas Industriais , Simulação de Acoplamento Molecular , Doenças das Plantas , Relação Quantitativa Estrutura-Atividade , Rhizoctonia , Triazóis , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Estrutura Molecular , Hidrazinas/química , Hidrazinas/farmacologia
7.
Bioorg Med Chem Lett ; 108: 129813, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788964

RESUMO

Succinate dehydrogenase inhibitors are essential fungicides used in agriculture. To explore new pyrazole-carboxamides with high fungicidal activity, a series of N-substitutedphenyl-3-di/trifluoromethyl-1-methyl-1H-pyrazole-4-carboxamides bearing a branched alkyl ether moiety were designed and synthesized. The in vitro bioassay indicated that some target compounds displayed appreciable fungicidal activity. For example, compounds 5d and 5e showed high efficacy against S. sclerotiorum with EC50 values of 3.26 and 1.52 µg/mL respectively, and also exhibited excellent efficacy against R. solani with EC50 values of 0.27 and 0.06 µg/mL respectively, which were comparable or superior to penflufen. The further in vivo bioassay on cucumber leaves demonstrated that 5e provided strong protective activity of 94.3 % against S. sclerotiorum at 100 µg/mL, comparable to penflufen (99.1 %). Cytotoxicity assessment against human renal cell lines (239A cell) revealed that 5e had low cytotoxicity within the median effective concentrations. Docking study of 5e with succinate dehydrogenase illustrated that R-5e formed one hydrogen bond and two π-π stacking interactions with amino acid residues of target enzyme, while S-5e formed only one π-π stacking interaction with amino acid residue. This study provides a valuable reference for the design of new succinate dehydrogenase inhibitor.


Assuntos
Fungicidas Industriais , Simulação de Acoplamento Molecular , Pirazóis , Succinato Desidrogenase , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Humanos , Relação Estrutura-Atividade , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ascomicetos/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Éteres/química , Éteres/farmacologia , Éteres/síntese química , Rhizoctonia
8.
J Agric Food Chem ; 72(21): 11938-11948, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752540

RESUMO

The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 µg/mL), 6ae (0.32 µg/mL), and 6ah (0.48 µg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 µg/mL). Furthermore, compounds 4ak (0.88 µg/mL), 6ae (0.61 µg/mL), 6ah (0.65 µg/mL), and 6ak (1.11 µg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 µg/mL) and the broad-spectrum fungicide carbendazim (2.15 µg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.


Assuntos
Cumarínicos , Fungicidas Industriais , Relação Quantitativa Estrutura-Atividade , Rhizoctonia , Succinato Desidrogenase , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Rhizoctonia/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Colletotrichum/efeitos dos fármacos , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Hidrazinas/química , Hidrazinas/farmacologia , Hidrazinas/síntese química , Simulação de Acoplamento Molecular , Halogenação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química
9.
J Agric Food Chem ; 72(21): 11928-11937, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38753466

RESUMO

The discovery of structurally distinct leads is imperative in modern agrochemical science. Inspired by eudistomins Y and the framework-related pharmaceuticals, aryl heteroaryl ketone was drawn as a common model intriguing the design and divergent synthesis of 14 kinds of heteroaryl ketones aligned with their oxime derivatives. Antifungal function-oriented phenotypical screen protruded benzothiazolyl-phenyl oxime 5a as a promising model, and the concomitant modification led to benzothiazolyl oxime 5am (EC50 = 5.17 µM) as a superior lead than fluoxastrobin (EC50 = 7.54 µM) against Sclerotinia sclerotiorum. Scaffold hopping of the phenyl subunit identified benzothiazolyl-pyridyl oxime as a novel antifungal scaffold accompanied by acquiring oxime 5bm with remarkable activity (EC50 = 3.57 µM) against Pyricularia oryzae. Molecular docking showed that candidate 5am could form more hydrogen bonds with the amino acid residues of actin than metrafenone. This compound also demonstrated better curative efficacy than that of fluoxastrobin and metrafenone in controlling the plant disease caused by S. sclerotiorum. These results rationalize the discovery of antifungal candidates based on aryl heteroaryl ketone.


Assuntos
Ascomicetos , Desenho de Fármacos , Fungicidas Industriais , Cetonas , Simulação de Acoplamento Molecular , Doenças das Plantas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Cetonas/química , Cetonas/farmacologia , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , Estrutura Molecular , Oximas/química , Oximas/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química
10.
J Agric Food Chem ; 72(21): 11990-12002, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757490

RESUMO

The main challenge in the development of agrochemicals is the lack of new leads and/or targets. It is critical to discover new molecular targets and their corresponding ligands. YZK-C22, which contains a 1,2,3-thiadiazol-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole skeleton, is a fungicide lead compound with broad-spectrum fungicidal activity. Previous studies suggested that the [1,2,4]triazolo[3,4-b][1,3,4]thiadiazole scaffold exhibited good antifungal activity. Inspired by this, a series of pyrrolo[2,3-d]thiazole derivatives were designed and synthesized through a bioisosteric strategy. Compounds C1, C9, and C20 were found to be more active against Rhizoctonia solani than the positive control YZK-C22. More than half of the target compounds provided favorable activity against Botrytis cinerea, where the EC50 values of compounds C4, C6, C8, C10, and C20 varied from 1.17 to 1.77 µg/mL. Surface plasmon resonance and molecular docking suggested that in vitro potent compounds C9 and C20 have a new mode of action instead of acting as pyruvate kinase inhibitors. Transcriptome analysis revealed that compound C20 can impact the tryptophan metabolic pathway, cutin, suberin, and wax biosynthesis of B. cinerea. Overall, pyrrolo[2,3-d]thiazole is discovered as a new fungicidal lead structure with a potential new mode of action for further exploration.


Assuntos
Botrytis , Fungicidas Industriais , Rhizoctonia , Tiazóis , Triptofano , Ceras , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Rhizoctonia/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/metabolismo , Triptofano/metabolismo , Triptofano/química , Ceras/química , Ceras/metabolismo , Relação Estrutura-Atividade , Redes e Vias Metabólicas/efeitos dos fármacos , Simulação de Acoplamento Molecular , Pirróis/farmacologia , Pirróis/química , Pirróis/metabolismo , Doenças das Plantas/microbiologia , Estrutura Molecular
11.
J Agric Food Chem ; 72(21): 12260-12269, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38759097

RESUMO

Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 µg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 µg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 µg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.


Assuntos
Inibidores de 14-alfa Desmetilase , Ascomicetos , Desenho de Fármacos , Proteínas Fúngicas , Fungicidas Industriais , Pirimidinas , Rhizoctonia , Esterol 14-Desmetilase , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade , Rhizoctonia/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/síntese química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Ascomicetos/efeitos dos fármacos , Ascomicetos/enzimologia , Modelos Moleculares , Botrytis/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Penicillium/enzimologia , Estrutura Molecular , Simulação de Acoplamento Molecular
12.
J Pineal Res ; 76(4): e12960, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747028

RESUMO

Natural products, known for their environmental safety, are regarded as a significant basis for the modification and advancement of fungicides. Melatonin, as a low-cost natural indole, exhibits diverse biological functions, including antifungal activity. However, its potential as an antifungal agent has not been fully explored. In this study, a series of melatonin derivatives targeting the mitogen-activated protein kinase (Mps1) protein of fungal pathogens were synthesized based on properties of melatonin, among which the trifluoromethyl-substituted derivative Mt-23 exhibited antifungal activity against seven plant pathogenic fungi, and effectively reduced the severity of crop diseases, including rice blast, Fusarium head blight of wheat and gray mold of tomato. In particular, its EC50 (5.4 µM) against the rice blast fungus Magnaporthe oryzae is only one-fourth that of isoprothiolane (22 µM), a commercial fungicide. Comparative analyzes revealed that Mt-23 simultaneously targets the conserved protein kinase Mps1 and lipid protein Cap20. Surface plasmon resonance assays showed that Mt-23 directly binds to Mps1 and Cap20. In this study, we provide a strategy for developing antifungal agents by modifying melatonin, and the resultant melatonin derivative Mt-23 is a commercially valuable, eco-friendly and broad-spectrum antifungal agent to combat crop disease.


Assuntos
Antifúngicos , Melatonina , Melatonina/farmacologia , Melatonina/química , Melatonina/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/química , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química
13.
J Agric Food Chem ; 72(20): 11360-11368, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720533

RESUMO

In this study, a series of acrylamide derivatives containing trifluoromethylpyridine or piperazine fragments were rationally designed and synthesized. Subsequently, the in vitro antifungal activities of all of the synthesized compounds were evaluated. The findings revealed that compounds 6b, 6c, and 7e exhibited >80% antifungal activity against Phomopsis sp. (Ps) at the concentration of 50 µg/mL. Furthermore, the EC50 values for compounds 6b, 6c, and 7e against Ps were determined to be 4.49, 6.47, and 8.68 µg/mL, respectively, which were better than the positive control with azoxystrobin (24.83 µg/mL). At the concentration of 200 µg/mL, the protective activity of compound 6b against Ps reached 65%, which was comparable to that of azoxystrobin (60.9%). Comprehensive mechanistic studies, including morphological studies with fluorescence microscopy (FM), cytoplasmic leakage, and enzyme activity assays, indicated that compound 6b disrupts cell membrane integrity and induces the accumulation of defense enzyme activity, thereby inhibiting mycelial growth. Therefore, compound 6b serves as a valuable candidate for the development of novel fungicides for plant protection.


Assuntos
Acrilamida , Desenho de Fármacos , Fungicidas Industriais , Piridinas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Acrilamida/química , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Relação Estrutura-Atividade , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Piperazina/química , Piperazina/farmacologia , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Estrutura Molecular , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia
14.
J Agric Food Chem ; 72(20): 11308-11320, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720452

RESUMO

The dearomatization at the hydrophobic tail of the boscalid was carried out to construct a series of novel pyrazole-4-carboxamide derivatives containing an oxime ether fragment. By using fungicide-likeness analyses and virtual screening, 24 target compounds with theoretical strong inhibitory effects against fungal succinate dehydrogenase (SDH) were designed and synthesized. Antifungal bioassays showed that the target compound E1 could selectively inhibit the in vitro growth of R. solani, with the EC50 value of 1.1 µg/mL that was superior to that of the agricultural fungicide boscalid (2.2 µg/mL). The observations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that E1 could reduce mycelial density and significantly increase the mitochondrial number in mycelia cytoplasm, which was similar to the phenomenon treated with boscalid. Enzyme activity assay showed that the E1 had the significant inhibitory effect against the SDH from R. solani, with the IC50 value of 3.3 µM that was superior to that of boscalid (7.9 µM). The mode of action of the target compound E1 with SDH was further analyzed by molecular docking and molecular dynamics simulation studies. Among them, the number of hydrogen bonds was significantly more in the SDH-E1 complex than that in the SDH-boscalid complex. This research on the dearomatization strategy of the benzene ring for constructing pyrazole-4-carboxamides containing an oxime ether fragment provides a unique thought to design new antifungal drugs targeting SDH.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Fungicidas Industriais , Oximas , Pirazóis , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Oximas/química , Oximas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Rhizoctonia/efeitos dos fármacos , Éteres/química , Éteres/farmacologia , Estrutura Molecular
15.
J Agric Food Chem ; 72(20): 11716-11723, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728745

RESUMO

A total of 32 novel sulfoximines bearing cyanoguanidine and nitroguanidine moieties were designed and synthesized by a rational molecule design strategy. The bioactivities of the title compounds were evaluated and the results revealed that some of the target compounds possessed excellent antifungal activities against six agricultural fungi, including Sclerotinia sclerotiorum, Fusarium graminearum, Phytophthora capsici, Botrytis cinerea, Rhizoctonia solani, and Pyricularia grisea. Among them, compounds 8e1 and 8e4 exhibited significant efficacy against P. grisea with EC50 values of 2.72 and 2.98 µg/mL, respectively, which were much higher than that of commercial fungicides boscalid (47.95 µg/mL). Interestingly, in vivo assays determined compound 8e1 possessed outstanding activity against S. sclerotiorum with protective and curative effectiveness of 98 and 95.6% at 50 µg/mL, which were comparable to those of boscalid (93.2, 91.9%). The further preliminary mechanism investigation disclosed that compound 8e1 could damage the structure of the cell membrane of S. sclerotiorum, increase its permeability, and suppress its growth. Overall, the findings enhanced that these novel sulfoximine derivatives could be potential lead compounds for the development of new fungicides.


Assuntos
Desenho de Fármacos , Fungicidas Industriais , Fusarium , Guanidinas , Doenças das Plantas , Rhizoctonia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Guanidinas/química , Guanidinas/farmacologia , Guanidinas/síntese química , Relação Estrutura-Atividade , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/crescimento & desenvolvimento , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Phytophthora/efeitos dos fármacos , Phytophthora/crescimento & desenvolvimento , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Estrutura Molecular
16.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675600

RESUMO

The natural pesticide phenazine-1-carboxylic acid (PCA) is known to lack phloem mobility, whereas Metalaxyl is a representative phloem systemic fungicide. In order to endow PCA with phloem mobility and also enhance its antifungal activity, thirty-two phenazine-1-carboxylic acid-N-phenylalanine esters conjugates were designed and synthesized by conjugating PCA with the active structure N-acylalanine methyl ester of Metalaxyl. All target compounds were characterized by 1H NMR, 13C NMR and HRMS. The antifungal evaluation results revealed that several target compounds exhibited moderate to potent antifungal activities against Sclerotinia sclerotiorum, Bipolaris sorokiniana, Phytophthora parasitica, Phytophthora citrophthora. In particular, compound F7 displayed excellent antifungal activity against S. sclerotiorum with an EC50 value of 6.57 µg/mL, which was superior to that of Metalaxyl. Phloem mobility study in castor bean system indicated good phloem mobility for the target compounds F1-F16. Particularly, compound F2 exhibited excellent phloem mobility; the content of compound F2 in the phloem sap of castor bean was 19.12 µmol/L, which was six times higher than Metalaxyl (3.56 µmol/L). The phloem mobility tests under different pH culture solutions verified the phloem translocation of compounds related to the "ion trap" effect. The distribution of the compound F2 in tobacco plants further suggested its ambimobility in the phloem, exhibiting directional accumulation towards the apical growth point and the root. These results provide valuable insights for developing phloem mobility fungicides mediated by exogenous compounds.


Assuntos
Alanina , Alanina/análogos & derivados , Fenazinas , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/síntese química , Alanina/química , Alanina/farmacologia , Phytophthora/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Floema/metabolismo , Floema/efeitos dos fármacos , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Desenho de Fármacos , Ésteres/química , Ésteres/farmacologia , Ésteres/síntese química
17.
J Agric Food Chem ; 72(19): 11185-11194, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687832

RESUMO

Aspergillus flavus contamination in agriculture and food industries poses threats to human health, leading to a requirement of a safe and effective method to control fungal contamination. Chitosan-based nitrogen-containing derivatives have attracted much attention due to their safety and enhanced antimicrobial applications. Herein, a new benzimidazole-grafted chitosan (BAC) was synthesized by linking the chitosan (CS) with a simple benzimidazole compound, 2-benzimidazolepropionic acid (BA). The characterization of BAC was confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance spectroscopy (1H and 13C NMR). Then, the efficiency of BAC against A. flavus ACCC 32656 was investigated in terms of spore germination, mycelial growth, and aflatoxin production. BAC showed a much better antifungal effect than CS and BA. The minimum inhibitory concentration (MIC) value was 1.25 mg/mL for BAC, while the highest solubility of CS (16.0 mg/mL) or BA (4.0 mg/mL) could not completely inhibit the growth of A. flavus. Furthermore, results showed that BAC inhibited spore germination and elongation by affecting ergosterol biosynthesis and the cell membrane integrity, leading to the permeabilization of the plasma membrane and leakage of intracellular content. The production of aflatoxin was also inhibited when treated with BAC. These findings indicate that benzimidazole-derived natural CS has the potential to be used as an ideal antifungal agent for food preservation.


Assuntos
Aspergillus flavus , Benzimidazóis , Quitosana , Fungicidas Industriais , Testes de Sensibilidade Microbiana , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Quitosana/farmacologia , Quitosana/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Aflatoxinas , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
18.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38660720

RESUMO

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Assuntos
Biocatálise , Epóxido Hidrolases , Proteínas Fúngicas , Fungicidas Industriais , Rhodotorula , Triazóis , Rhodotorula/enzimologia , Rhodotorula/química , Rhodotorula/metabolismo , Triazóis/química , Triazóis/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Fungicidas Industriais/síntese química , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/química , Estereoisomerismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Escherichia coli/enzimologia , Escherichia coli/metabolismo
19.
J Agric Food Chem ; 72(18): 10227-10235, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669314

RESUMO

In this study, 24 indole derivatives containing 1,3,4-thiadiazole were discovered and synthesized. The target compounds' antifungal efficacy against 14 plant pathogenic fungal pathogens was then determined in vitro. With an EC50 value of 2.7 µg/mL, Z2 demonstrated the highest level of bioactivity among them against Botrytis cinerea (B.c.), exceeding the concentrations of the control prescription drugs azoxystrobin (Az) (EC50 = 14.5 µg/mL) and fluopyram (Fl) (EC50 = 10.1 µg/mL). Z2 underwent in vivo testing on blueberry leaves in order to evaluate its usefulness in real-world settings. A reasonable protective effect was obtained with a control effectiveness of 93.0% at 200 µg/mL, which was superior to those of Az (83.0%) and Fl (52.0%). At 200 µg/mL, this chemical had an efficacy of 84.0% in terms of curative efficacy. These figures outperformed those of Az (69.0%) and Fl (48.0%). Scanning electron microscopy (SEM) experiments and light microscopy experiments showed that Z2 altered the integrity of the cell wall and cell membrane of the pathogenic fungus B.c., which led to an increase in the content of malondialdehyde (MDA), cellular leakage, and cellular permeability. Enzyme activity assays and molecular docking studies indicated that Z2 could act as a potential succinate dehydrogenase inhibitor (SDHI). It was hypothesized that Z2 could cause disruption of mycelial cell membranes, which in turn leads to mycelial death. According to the research, indole derivatives containing 1,3,4-thiadiazole were expected to evolve into new fungicides due to their significant antifungal effects on plant fungi.


Assuntos
Botrytis , Fungicidas Industriais , Indóis , Doenças das Plantas , Tiadiazóis , Tiadiazóis/farmacologia , Tiadiazóis/química , Tiadiazóis/síntese química , Indóis/química , Indóis/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
20.
Chem Biodivers ; 21(6): e202302033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616167

RESUMO

To explore more potential fungicides with new scaffolds, thirty-seven norbornene carboxamide/sulfonamide derivatives were designed, synthesized, and assayed for inhibitory activity against six plant pathogenic fungi and oomycetes. The preliminary antifungal assay suggested that the title derivatives showed moderate to good antifungal activity against six plant pathogens. Especially, compound 6 e presented excellent in vitro antifungal activity against Sclerotinia sclerotiorum (EC50=0.71 mg/L), which was substantially stronger than pydiflumetofen. In vivo antifungal assay indicated 6 e displayed prominent protective and curative effects on rape leaves infected by S. sclerotiorum. The preliminary mechanism research displayed that 6 e could damage the surface morphology and inhibit the sclerotia formation of S. sclerotiorum. In addition, the in vitro enzyme inhibition bioassay indicated that 6 e displayed pronounced laccase inhibition activity (IC50=0.63 µM), much stronger than positive control cysteine. Molecular docking elucidated the binding modes between 6 e and laccase. The bioassay results and mechanism investigation demonstrated that this class of norbornene carboxamide/sulfonamide derivatives could be promising laccase inhibitors for novel fungicide development.


Assuntos
Lacase , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Norbornanos , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Lacase/metabolismo , Lacase/antagonistas & inibidores , Lacase/química , Relação Estrutura-Atividade , Norbornanos/química , Norbornanos/farmacologia , Norbornanos/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Ascomicetos/efeitos dos fármacos , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...