Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.191
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126070

RESUMO

Foods contaminants pose a challenge for food producers and consumers. Due to its spontaneous formation during heating and storage, hydroxymethylfurfural (HMF) is a prevalent contaminant in foods rich in carbohydrates and proteins. Colorimetric assays, such as the Seliwanoff test, offer a rapid and cost-effective method for HMF quantification but require careful optimization to ensure accuracy. We addressed potential interference in the Seliwanoff assay by systematically evaluating parameters like incubation time, temperature, and resorcinol or hydrochloric acid concentration, as well as the presence of interfering carbohydrates. Samples were analyzed using a UV-Vis spectrophotometer in scan mode, and data obtained were validated using HPLC, which also enabled quantification of unreacted HMF for assessing the protocol's accuracy. Incubation time and hydrochloric acid percentage positively influenced the colorimetric assay, while the opposite effect was observed with the increase in resorcinol concentration. Interference from carbohydrates was eliminated by reducing the acid content in the working reagent. HPLC analyses corroborated the spectrophotometer data and confirmed the efficacy of the proposed method. The average HMF content in balsamic vinegar samples was 1.97 ± 0.94 mg/mL. Spectrophotometric approaches demonstrated to efficiently determine HMF in complex food matrices. The HMF levels detected in balsamic vinegars significantly exceeded the maximum limits established for honey. This finding underscores the urgent need for regulations that restrict contaminant levels in various food products.


Assuntos
Furaldeído , Espectrofotometria , Furaldeído/análogos & derivados , Furaldeído/análise , Espectrofotometria/métodos , Cromatografia Líquida de Alta Pressão/métodos , Resorcinóis/análise , Resorcinóis/química , Contaminação de Alimentos/análise , Análise de Alimentos/métodos , Ácido Acético/análise , Ácido Acético/química
2.
Food Res Int ; 192: 114800, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147470

RESUMO

Roasting is necessary for bringing out the aroma and flavor of coffee beans, making coffee one of the most consumed beverages. However, this process also generates a series of toxic compounds, including acrylamide and furanic compounds (5-hydroxymethylfurfural, furan, 2-methylfuran, 3-methylfuran, 2,3-dimethylfuran, and 2,5-dimethylfuran). Furthermore, not much is known about the formation of these compounds in emerging coffee formulations containing alcohol and sugars. Therefore, this study investigated the effect of roasting time and degree on levels of acrylamide and furanic compounds in arabica coffee using fast and slow roasting methods. The fast and slow roasting methods took 5.62 min and 9.65 min, respectively, and reached a maximum of 210 °C to achieve a light roast. For the very dark roast, the coffee beans were roasted for 10.5 min and the maximum temperature reached 245 °C. Our findings showed that the levels of acrylamide (375 ± 2.52 µg kg-1) and 5-HMF (194 ± 11.7 mg kg-1) in the slow-roasted coffee were 35.0 % and 17.4 % lower than in fast-roasted coffee. Furthermore, light roast coffee had significantly lower concentrations of acrylamide and 5-HMF than very dark roast, with values of 93.7 ± 7.51 µg kg-1 and 21.3 ± 10.3 mg kg-1, respectively. However, the levels of furan and alkylfurans increased with increasing roasting time and degree. In this study, we also examined the concentrations of these pollutants in new coffee formulations consisting of alcohol-, sugar-, and honey-infused coffee beans. Formulations with honey and sugar resulted in higher concentrations of 5-HMF, but no clear trend was observed for acrylamide. On the other hand, formulations with honey had higher concentrations of furan and alkylfurans. These results indicate that optimizing roasting time and temperature might not achieve the simultaneous reduction of all the pollutants. Additionally, sugar- and honey-infused coffee beans are bound to have higher furanic compounds, posing a higher health risk.


Assuntos
Acrilamida , Café , Furaldeído , Furanos , Temperatura Alta , Acrilamida/análise , Furanos/análise , Café/química , Furaldeído/análise , Furaldeído/análogos & derivados , Culinária/métodos , Coffea/química , Sementes/química , Manipulação de Alimentos/métodos , Fatores de Tempo , Aditivos Alimentares/análise
3.
Nat Commun ; 15(1): 6371, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075048

RESUMO

Biobased furans have emerged as chemical building blocks for the development of materials because of their diverse scaffolds and as they can be directly prepared from sugars. However, selective, efficient, and cost-effective scalable conversion of biobased furans remains elusive. Here, we report a robust transaminase (TA) from Shimia marina (SMTA) that enables the scalable amination of biobased furanaldehydes with high activity and broad substrate specificity. Crystallographic and mutagenesis analyses provide mechanistic insights and a structural basis for understanding SMTA, which enables a higher substrate conversion. The enzymatic cascade process established in this study allows one-pot synthesis of 2,5-bis(aminomethyl)furan (BAMF) and 5-(aminomethyl)furan-2-carboxylic acid from 5-hydroxymethylfurfural. The biosynthesis of various furfurylamines, including a one-pot cascade reaction for BAMF generation using whole cells, demonstrates their practical application in the pharmaceutical and polymer industries.


Assuntos
Biocatálise , Furanos , Transaminases , Furanos/química , Furanos/metabolismo , Transaminases/metabolismo , Transaminases/genética , Transaminases/química , Especificidade por Substrato , Furaldeído/análogos & derivados , Furaldeído/metabolismo , Furaldeído/química , Aminação , Aminas/química , Aminas/metabolismo , Cristalografia por Raios X
4.
Bioresour Technol ; 408: 131166, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067709

RESUMO

Succinic acid (SA) is a valuable C4 platform chemical with diverse applications. Lignocellulosic biomass represents an abundant and renewable carbon resource for microbial production of SA. However, the presence of toxic compounds in pretreated lignocellulosic hydrolysates poses challenges to cell metabolism, leading to inefficient SA production. Here, engineered Yarrowia lipolytica Hi-SA2 was shown to utilize glucose and xylose from corncob hydrolysate to produce 32.6 g/L SA in shaking flasks. The high concentration of undetoxified hydrolysates significantly inhibited yeast growth and SA biosynthesis, with furfural identified as the key inhibitor. Through overexpressing glutathione synthetase encoding gene YlGsh2, the tolerance of engineered strain to furfural and toxic hydrolysate was significantly improved. In a 5-L bioreactor, Hi-SA2-YlGsh2 strain produced 45.34 g/L SA within 32 h, with a final pH of 3.28. This study provides a sustainable process for bio-based SA production, highlighting the efficient SA synthesis from lignocellulosic biomass through low pH fermentation.


Assuntos
Fermentação , Lignina , Ácido Succínico , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Lignina/metabolismo , Ácido Succínico/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Reatores Biológicos , Biomassa , Glucose/metabolismo , Xilose/metabolismo , Engenharia Metabólica/métodos , Engenharia Genética/métodos , Furaldeído/metabolismo
5.
Food Chem ; 458: 140236, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959805

RESUMO

Coffee, a globally consumed beverage, has raised concerns in Islamic jurisprudence due to the possible presence of alcohol compounds. This research aims to utilise the sensitivity and reliability of 1H NMR spectroscopy in the quantification of alcohol compounds such as ethanol, furfuryl alcohol, and 5-(hydroxymethyl) furfural (HMF) in commercial instant coffee. Analysis of seven products was performed using advanced 1H Nuclear Magnetic Resonance (NMR) spectroscopy together with Statistical Total Correlation Spectroscopy (STOCSY) and Resolution-Enhanced (RED)-STORM. The analysis of the 100 mg sample revealed the absence of ethanol. The amount of furfuryl alcohol and HMF in the selected commercial instant coffee samples was 0.817 µg and 0.0553 µg, respectively. This study demonstrates the utility of 1H NMR spectroscopy in accurate quantification of trace components for various applications.


Assuntos
Café , Café/química , Espectroscopia de Ressonância Magnética/métodos , Islamismo , Furanos/análise , Etanol/análise , Furaldeído/análise , Furaldeído/análogos & derivados , Álcoois/análise
6.
Waste Manag ; 186: 280-292, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954920

RESUMO

This work outlines the first microwave (MW)-assisted protocol for the production of biofuel precursor furfural (FF) from the raw agricultural waste almond hull (AH), olive stone (OS), and the winemaking-derived grape stalk (GS), grape marc (GM) and exhausted grape marc (EGM) through a one-pot synthesis process. To enhance the overall yield, a catalytic process was firstly developed from xylose, major constituent of hemicellulose present in lignocellulosic biomass. This method afforded FF with 100 % selectivity, yielding over 85 % in isolated product when using H2SO4, as opposed to a 37 % yield with AlCl3·6H2O, at 150 °C in only 10 min. For both catalysts, the developed methodology was further validated, proving adaptable and efficient in producing the targeted FF from the aforementioned lignocellulosic raw materials. More specifically, the employment of AlCl3·6H2O resulted in the highest selectivity (up to 89 % from GM) and FF yield (42 % and 39 % molar from OS and AH, respectively), maintaining notable selectivity for the latter (61 and 48 % from AH and OS). At this regard, and considering the environmental factor of sustainability, it is important to point out the role of AlCl3·6H2O in contrast to H2SO4, thus mitigating detrimental substances. This study provides an important management of agricultural waste through sustainable practises for the development of potential bio-based chemicals, aligning with Green Chemistry and process intensification principles.


Assuntos
Furaldeído , Micro-Ondas , Prunus dulcis , Vinho , Furaldeído/análogos & derivados , Vinho/análise , Prunus dulcis/química , Biocombustíveis/análise , Vitis , Lignina/química , Óleos de Plantas/química , Catálise , Cloreto de Alumínio , Olea/química
7.
Anal Bioanal Chem ; 416(20): 4435-4445, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981911

RESUMO

Rapid, efficient, versatile, easy-to-use, and non-expensive analytical approaches are globally demanded for food analysis. Many ambient ionization approaches based on electrospray ionization (ESI) have been developed recently for the rapid molecular characterization of food products. However, those approaches mainly suffer from insufficient signal duration for comprehensive chemical characterization by tandem MS analysis. Here, a commercially available disposable gel loading tip is used as a low-cost emitter for the direct ionization of untreated food samples. The most important advantages of our approach include high stability, and durability of the signal (> 10 min), low cost (ca. 0.1 USD per run), low sample and solvent consumption, prevention of tip clogging and discharge, operational simplicity, and potential for automation. Quantitative analysis of sulfapyridine, HMF (hydroxymethylfurfural), and chloramphenicol in real sample shows the limit-of-detection 0.1 µg mL-1, 0.005 µg mL-1, 0.01 µg mL-1; the linearity range 0.1-5 µg mL-1, 0.005-0.25 µg mL-1, 0.01-1 µg mL-1; and the linear fits R2 ≥ 0.980, 0.991, 0.986. Moreover, we show that tip-ESI can also afford sequential molecular ionization of untreated viscous samples, which is difficult to achieve by conventional ESI. We conclude that tip-ESI-MS is a versatile analytical approach for the rapid chemical analysis of untreated food samples.


Assuntos
Análise de Alimentos , Limite de Detecção , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Alimentos/métodos , Géis/química , Cloranfenicol/análise , Contaminação de Alimentos/análise , Furaldeído/análise , Furaldeído/análogos & derivados
8.
Bioresour Technol ; 407: 131141, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047800

RESUMO

Furfural-tolerant and hydrogen-producing microbial consortia were enriched from soil, with hydrogen production of 259.84 mL/g-xylose under 1 g/L furfural stress. The consortia could degrade 2.5 g/L furfural within 24 h in the xylose system, more efficient than in the sugar-free system. Despite degradation of furfural to furfuryl alcohol, the release of reactive oxygen species and lactate dehydrogenase was also detected, suggesting that furfuryl alcohol is also a potential inhibitor of hydrogen production. The butyrate/acetate ratio was observed to decrease with increasing furfural concentration, leading to decreased hydrogen production. Furthermore, microbial community analysis suggested that dominated Clostridium butyricum was responsible for furfural degradation, while Clostridium beijerinckii reduction led to hydrogen production decrease. Overall, the enriched consortia in this study could efficiently degrade furfural and produce hydrogen, providing new insights into hydrogen-producing microbial consortia with furfural tolerance.


Assuntos
Furaldeído , Hidrogênio , Consórcios Microbianos , Xilose , Hidrogênio/metabolismo , Furaldeído/metabolismo , Furaldeído/farmacologia , Consórcios Microbianos/fisiologia , Xilose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microbiologia do Solo , Clostridium butyricum/metabolismo , Clostridium beijerinckii/metabolismo , L-Lactato Desidrogenase/metabolismo , Furanos
9.
Food Chem ; 457: 140179, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924919

RESUMO

The baking process has the potential to generate health-risk compounds, including products from lipid oxidation and Maillard reaction. Pre- and post-digestion levels of hydroxymethylfurfural (HMF), malondialdehyde (MDA), glyoxal (GO), and methylglyoxal (MGO) were studied in cakes formulated with hazelnut and sunflower oil, along with their oleogels as margarine substitutes. The concentration of HMF in oil and oleogel-formulated cakes increased after digestion compared to cakes formulated with margarine. The MDA values were between 82 and 120 µg/100 g in oil and oleogel formulated cakes before digestion and a decrease was observed after digestion. The substitution of margarine with oil and oleogels resulted in the production of high amounts of GO and MGO in cakes. However, the highest bioaccessibility as 318.2% was found in cakes formulated by margarine for GO. Oleogels may not pose a potential health benefit compared to margarines due to the formation of HMF, MDA, GO, and MGO.


Assuntos
Digestão , Furaldeído , Malondialdeído , Compostos Orgânicos , Furaldeído/análogos & derivados , Furaldeído/química , Furaldeído/análise , Malondialdeído/metabolismo , Malondialdeído/química , Compostos Orgânicos/química , Humanos , Trato Gastrointestinal/metabolismo , Corylus/química , Produtos Finais de Glicação Avançada/química , Produtos Finais de Glicação Avançada/metabolismo , Modelos Biológicos , Óleo de Girassol/química , Margarina/análise
10.
Food Chem ; 457: 140086, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936121

RESUMO

Food intake contributes to adequate growth and neurodevelopment of children. Ready-to-eat foods, frequently consumed by this population, are sources of acrylamide (AA), hydroxymethylfurfural (HMF) and furfural (FF). In this sense, a review of the AA, HMF, and FF presence in ready-to-eat foods was evaluated through a systematic search to infer the risk of exposure in the child population. About 75.8%, 24.2%, and 21% of the studies found AA, HMF, and FF in ready-to-eat foods, respectively. AA is predominant in processed and ultra-processed foods, while HMF and FF are commonly found in fruit-based foods. Only 17.7% of the studies assessed the children's risk of exposure, based on the contaminant concentration in ready-to-eat food and not after gastrointestinal digestion, a more realistic measure. Therefore, with the obtained information and found gaps, it is expected that new strategies will be proposed to assess the vulnerability of the child population to these processing contaminants.


Assuntos
Acrilamida , Fast Foods , Contaminação de Alimentos , Furaldeído , Furaldeído/análise , Furaldeído/análogos & derivados , Acrilamida/análise , Humanos , Criança , Fast Foods/análise , Contaminação de Alimentos/análise , Medição de Risco , Pré-Escolar
11.
Int J Biol Macromol ; 275(Pt 1): 133522, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945325

RESUMO

A facile biphasic system composed of choline chloride (ChCl)-based deep eutectic solvent (DES) and methyl isobutyl ketone (MIBK) was developed to realize the furfural production, lignin separation and preparation of fermentable glucose from Eucalyptus in one-pot. Results showed that the ChCl/1,2-propanediol/MIBK system owned the best property to convert hemicelluloses into furfural. Under the optimal conditions (MRChCl:1,2-propanediol = 1:2, raw materials:DES:MIBK ratio = 1:4:8 g/g/mL, 0.075 mol/L AlCl3·6H2O, 140 °C, and 90 min), the furfural yield and glucose yield reached 65.0 and 92.2 %, respectively. Meanwhile, the lignin with low molecular weight (1250-1930 g/mol), low polydispersity (DM = 1.25-1.53) and high purity (only 0.08-2.59 % carbohydrate content) was regenerated from the biphasic system. With the increase of pretreatment temperature, the ß-O-4, ß-ß and ß-5 linkages in the regenerated lignin were gradually broken, and the content of phenolic hydroxyl groups increased, but the content of aliphatic hydroxyl groups decreased. This research provides a new strategy for the comprehensive utilization of lignocellulose in biorefinery process.


Assuntos
Celulose , Eucalyptus , Furaldeído , Lignina , Eucalyptus/química , Eucalyptus/metabolismo , Lignina/química , Furaldeído/química , Furaldeído/análogos & derivados , Furaldeído/metabolismo , Celulose/química , Metil n-Butil Cetona/química , Metil n-Butil Cetona/metabolismo , Colina/química , Propilenoglicol/química , Glucose/metabolismo , Glucose/química , Fermentação , Solventes/química
12.
Food Res Int ; 190: 114546, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945559

RESUMO

The thermal treatment carried out in the processing of apple products is very likely to induce Maillard reaction to produce furfurals, which have raised toxicological concerns. This study aimed to elucidate the formation of furfural compounds in apple products treated with pasteurization and high pressure processing (HPP). The method for simultaneous determination of five furfural compounds including 5-hydroxymethyl-2-furfural (5-HMF), furfural (F), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 2-acetylfuran (FMC), and 5-Methyl-2-furfural (MF) using high performance liquid chromatography equipped with diode array detector (HPLC-DAD) was successfully developed and validated. All five furfurals exhibited an increasing trend after the pasteurization treatment of apple clear juice, cloudy juice, and puree. 5-HMF, F, FMC, and MF were increased significantly during the precooking of apple puree. Whereas there was no significant change in the furfurals formation after apple products treated with high pressure processing (HPP) with 300 MPa and 15 min. Based on the variation of the fructose, glucose and sucrose detected in apple products after thermal treatment, it revealed that the saccharides and thermal treatment have great effect on the furfural compounds formation. The commercial fruit juice samples with different treatments and fruit puree samples treated with pasteurization were also analyzed. Five furfurals were detected more frequently in the fruit juice samples treated with pasteurization or ultra-high temperature instantaneous sterilization (UHT) than those treated with HPP. 5-HMF and FMC were detected in all fruit puree samples treated with pasteurization, followed by F, MF, and HDMF with the detection rate of 79.31 %, 72.41 %, and 51.72 %. The results could provide a reference for risk assessment of furfural compounds and dietary guidance of fruit products for human, especially for infants and young children. Moreover, moderate HPP treatment with 300 MPa and 15 min would be a worthwhile alternative processing technology in the fruit juice and puree production to reduce the formation of furfural compounds.


Assuntos
Manipulação de Alimentos , Sucos de Frutas e Vegetais , Furaldeído , Malus , Pasteurização , Pressão , Malus/química , Furaldeído/análise , Furaldeído/análogos & derivados , Cromatografia Líquida de Alta Pressão , Sucos de Frutas e Vegetais/análise , Manipulação de Alimentos/métodos , Reação de Maillard , Frutas/química , Furanos/análise
13.
Food Chem ; 456: 139965, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38852460

RESUMO

Pasteurisation and spray drying are critical steps to ensure the safety and shelf-life of formulae, but these treatments also induce formation of some potentially harmful Maillard reaction products. In this study, the occurrence of potentially harmful Maillard reaction products and proximate compositions in different commercial formulae were analysed. Our results showed that infant formulae had significantly higher concentrations of furosine, Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) than follow-on/toddler formula. Specialty formulae had higher concentrations of glyoxal and CML than other types of formulae. Correlation analysis indicated that concentrations of 5-hydroxymethylfurfural, 3-deoxyglucosone, CML and CEL were closely related to fat contents. These results provided insight into concentrations of potentially harmful Maillard reaction products in different types of formulae and provide a theoretical basis for further optimisation of processing.


Assuntos
Fórmulas Infantis , Lisina , Reação de Maillard , Fórmulas Infantis/química , Fórmulas Infantis/análise , Lisina/química , Lisina/análogos & derivados , Lisina/análise , Humanos , Furaldeído/análogos & derivados , Furaldeído/análise , Furaldeído/química , Glioxal/química , Glioxal/análise , Lactente , Desoxiglucose/análogos & derivados , Desoxiglucose/química , Desoxiglucose/análise
14.
World J Microbiol Biotechnol ; 40(8): 242, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869634

RESUMO

Lignocellulosic biomass is a valuable, renewable substrate for the synthesis of polyhydroxybutyrate (PHB), an ecofriendly biopolymer. In this study, bacterial strain E5-3 was isolated from soil in Japan; it was identified as Burkholderia ambifaria strain E5-3 by 16 S rRNA gene sequencing. The strain showed optimal growth at 37 °C with an initial pH of 9. It demonstrated diverse metabolic ability, processing a broad range of carbon substrates, including xylose, glucose, sucrose, glycerol, cellobiose, and, notably, palm oil. Palm oil induced the highest cellular growth, with a PHB content of 65% wt. The strain exhibited inherent tolerance to potential fermentation inhibitors derived from lignocellulosic hydrolysate, withstanding 3 g/L 5-hydroxymethylfurfural and 1.25 g/L acetic acid. Employing a fed-batch fermentation strategy with a combination of glucose, xylose, and cellobiose resulted in PHB production 2.7-times that in traditional batch fermentation. The use of oil palm trunk hydrolysate, without inhibitor pretreatment, in a fed-batch fermentation setup led to significant cell growth with a PHB content of 45% wt, equivalent to 10 g/L. The physicochemical attributes of xylose-derived PHB produced by strain E5-3 included a molecular weight of 722 kDa, a number-average molecular weight of 191 kDa, and a polydispersity index of 3.78. The amorphous structure of this PHB displayed a glass transition temperature of 4.59 °C, while its crystalline counterpart had a melting point of 171.03 °C. This research highlights the potential of lignocellulosic feedstocks, especially oil palm trunk hydrolysate, for PHB production through fed-batch fermentation by B. ambifaria strain E5-3, which has high inhibitor tolerance.


Assuntos
Biomassa , Burkholderia , Fermentação , Hidroxibutiratos , Lignina , Óleo de Palmeira , RNA Ribossômico 16S , Xilose , Lignina/metabolismo , Óleo de Palmeira/metabolismo , Hidroxibutiratos/metabolismo , Burkholderia/metabolismo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Xilose/metabolismo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Glucose/metabolismo , Poliésteres/metabolismo , Concentração de Íons de Hidrogênio , Furaldeído/metabolismo , Furaldeído/análogos & derivados , Celobiose/metabolismo
15.
Int J Biol Macromol ; 272(Pt 2): 132871, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862321

RESUMO

Fabrication of sustainable bio-based malleable thermosets (BMTs) with excellent mechanical properties and reprocessing ability for applications in electronic devices has attracted more and more attention but remains significant challenges. Herein, the BMTs with excellent mechanical robustness and reprocessing ability were fabricated via integrating with radical polymerization and Schiff-base chemistry, and employed as the flexible substrate to prepare the capacitive sensor. To prepare the BMTs, an elastic bio-copolymer derived from plant oil and 5-hydroxymethylfurfural was first synthesized, and then used to fabricate the dynamic crosslinked BMTs through Schiff-base chemistry with the amino-modified cellulose and polyether amine. The synergistic effect of rigid cellulose backbone and the construction of dynamic covalent crosslinking network not only achieved high tensile strength (8.61 MPa) and toughness (3.77 MJ/m3) but also endowed the BMTs with excellent reprocessing ability with high mechanical toughness recovery efficiency of 104.8 %. More importantly, the BMTs were used as substrates to fabricate the capacitive sensor through the CO2-laser irradiation technique. The resultant capacitive sensor displayed excellent and sensitive humidity sensing performance, which allowed it to be successfully applied in human health monitoring. This work paved a promising way for the preparation of mechanical robustness malleable bio-thermosets for electronic devices.


Assuntos
Celulose , Furaldeído , Óleos de Plantas , Celulose/química , Furaldeído/química , Furaldeído/análogos & derivados , Óleos de Plantas/química , Capacitância Elétrica , Temperatura , Resistência à Tração , Humanos
16.
J Food Sci ; 89(6): 3455-3468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700315

RESUMO

Excessive accumulation of advanced glycation end products (AGEs) in the body is associated with diabetes and its complications. In this study, we aimed to explore the potential and mechanism of coffee leaf extract (CLE) in inhibiting the generation of AGEs and their precursors in an in vitro glycation model using bovine serum albumin and glucose (BSA-Glu) for the first time. High-performance liquid chromatography analysis revealed that CLE prepared with ultrasound pretreatment (CLE-U) contained higher levels of trigonelline, mangiferin, 3,5-dicaffeoylquinic acid, and γ-aminobutyric acid than CLE without ultrasound pretreatment (CLE-NU). The concentrations of these components, along with caffeine and rutin, were dramatically decreased when CLE-U or CLE-NU was incubated with BSA-Glu reaction mixture. Both CLE-U and CLE-NU exhibited a dose-dependent inhibition of fluorescent AGEs, carboxymethyllysine, fructosamine, 5-hydroxymethylfurfural, 3-deoxyglucosone, glyoxal, as well as protein oxidation products. Notably, CLE-U exhibited a higher inhibitory capacity compared to CLE-NU. CLE-U effectively quenched fluorescence intensity and increased the α-helix structure of the BSA-Glu complex. Molecular docking results suggested that the key bioactive compounds present in CLE-U interacted with the arginine residues of BSA, thereby preventing its glycation. Overall, this research sheds light on the possible application of CLE as a functional ingredient in combating diabetes by inhibiting the generation of AGEs.


Assuntos
Produtos Finais de Glicação Avançada , Extratos Vegetais , Folhas de Planta , Soroalbumina Bovina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Soroalbumina Bovina/química , Coffea/química , Alcaloides/farmacologia , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Frutosamina , Cromatografia Líquida de Alta Pressão , Glioxal , Glucose/metabolismo , Simulação de Acoplamento Molecular , Glicosilação/efeitos dos fármacos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Rutina/farmacologia , Lisina/análogos & derivados , Cafeína/farmacologia , Desoxiglucose/análogos & derivados , Desoxiglucose/farmacologia , Xantonas
17.
Food Chem Toxicol ; 189: 114738, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754806

RESUMO

5-hydroxymethylfurfural is a common byproduct in food. However, its effect on growth and development remains incompletely understood. This study investigated the developmental toxicity of 5-HMF to Drosophila larvae. The growth and development of Drosophila melanogaster fed with 5-50 mM 5-HMF was monitored, and its possible mechanism was explored. It was found that 5-HMF prolonged the developmental cycle of Drosophila melanogaster (25 mM and 50 mM). After 5-HMF intake, the level of reactive oxygen species in the third instar larvae increased by 1.23-1.40 fold, which increased the level of malondialdehyde and caused changes in antioxidant enzymes. Moreover, the nuclear factor erythroid-2 related factor 2 antioxidant signaling pathway and the expression of heat shock protein genes were affected. At the same time, 5-HMF disrupted the glucose and lipid metabolism in the third instar larvae, influencing the expression level of key genes in the insulin signal pathway. Furthermore, 5-HMF led to intestinal oxidative stress, and up-regulated the expression of the pro-apoptotic gene, consequently impacting intestinal health. In short, 5-HMF causes oxidative stress, disturbs glucose and lipid metabolism and induces intestinal damage, damaging related signaling pathways, and ultimately affecting the development of Drosophila melanogaster.


Assuntos
Drosophila melanogaster , Furaldeído , Larva , Estresse Oxidativo , Animais , Drosophila melanogaster/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Furaldeído/análogos & derivados , Furaldeído/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Glucose/metabolismo
18.
Bioresour Technol ; 403: 130764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718903

RESUMO

Abundant renewable resource lignocellulosic biomass possesses tremendous potential for green biomanufacturing, while its efficient utilization by Yarrowia lipolytica, an attractive biochemical production host, is restricted since the presence of inhibitors furfural and acetic acid in lignocellulosic hydrolysate. Given deficient understanding of inherent interactions between inhibitors and cellular metabolism, sufficiently mining relevant genes is necessary. Herein, 14 novel gene targets were discovered using clustered regularly interspaced short palindromic repeats interference library in Y. lipolytica, achieving tolerance to 0.35 % (v/v) acetic acid (the highest concentration reported in Y. lipolytica), 4.8 mM furfural, or a combination of 2.4 mM furfural and 0.15 % (v/v) acetic acid. The tolerance mechanism might involve improvement of cell division and decrease of reactive oxygen species level. Transcriptional repression of effective gene targets still enabled tolerance when xylose was a carbon source. This work forms a robust foundation for improving microbial tolerance to lignocellulose-derived inhibitors and revealing underlying mechanism.


Assuntos
Ácido Acético , Furaldeído , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Furaldeído/farmacologia , Ácido Acético/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Lignina/metabolismo , Genoma Fúngico , Biblioteca Gênica
19.
Bioresour Technol ; 402: 130805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718905

RESUMO

Catalytic transfer hydrogenation (CTH), that employs protic solvents as hydrogen sources to alleviate the use of molecular hydrogen H2, has gained great attention. This work, reports multifunctional, metallic Cu nanoparticles supported ZIF-8 material for CTH of furfural to a highly valued fuel additive, 2-methylfuran (2-MF) using 2-propanol. Of all as-synthesized xCu(yM)/ZIF-8 catalysts with varied NaBH4 concentration (yM) and Cu loading (x), 11Cu(1.5 M)/ZIF-8 exhibited higher catalytic activity with > 99 % FAL conversion and 93.9 % 2-MF selectivity. This is ascribed to its high specific surface area, and existence of optimum amount of Lewis acid-base sites along with Cu0 species, which are responsible for hydrogenation of furfural to furfuryl alcohol and subsequent hydrogenolysis to produce 2-MF. The present work reports a highly efficient and stable, metal-MOF hybrid material for CTH of FAL to 2-MF, which is one among the best reports available in literature, therewith suggests a promising approach for bio-oil upgradation.


Assuntos
Cobre , Furaldeído , Furanos , Nanopartículas Metálicas , Zeolitas , Furanos/química , Catálise , Hidrogenação , Cobre/química , Furaldeído/química , Furaldeído/análogos & derivados , Zeolitas/química , Nanopartículas Metálicas/química , Hidrogênio/química
20.
Bioresour Technol ; 403: 130858, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777229

RESUMO

Pentanediols are substances with significant market potential as the key monomers for advanced polymeric materials. In this study, we successfully achieved directly hydrogenolysis of biomass-based furfural to 1,5-pentanediol with a remarkable yield of 53.4 % using Cu-modified cobalt supported on cerium dioxide catalysts. Through comprehensive characterization techniques, including H2-TPR, NH3-TPD, XPS, EPR and Raman analysis, the study revealed that the introduction of Cu altered the dispersion of Co species, attenuated the interaction between Co species and cerium dioxide, enhanced its reduction extent, and fostered the formation of plentiful cobalt oxide species and oxygen vacancies on the catalyst's surface. The cooperative influence of Cu and Co heightened the selectivity of the hydrogenolysis reaction. This work provides a novel strategy for the development of greener and more efficient catalytic processes based on non-precious metals that for the selective conversion of biomass-derived furfural to high-value pentanediols.


Assuntos
Cobalto , Cobre , Furaldeído , Cobalto/química , Catálise , Cobre/química , Furaldeído/química , Cério/química , Glicóis/química , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...