Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.146
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891762

RESUMO

The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.


Assuntos
Bivalves , Espermatogênese , Testículo , Fatores de Transcrição , Animais , Espermatogênese/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Bivalves/genética , Bivalves/metabolismo , Bivalves/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Clonagem Molecular , Filogenia , Sequência de Aminoácidos
2.
Neuropeptides ; 106: 102437, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776655

RESUMO

FMRFamide, a member of the neuropeptide family, is involved in numerous physiological processes. FMRFamide-activated sodium channels (FaNaCs) are a family of non-voltage-gated, amiloride-sensitive, Na+-selective channels triggered by the neuropeptide FMRFamide. In the present study, the full-length cDNA of the FaNaC receptor of Sepiella japonica (SjFaNaC) was cloned. The cDNA of SjFaNaC was 3004 bp long with an open reading frame (ORF) of 1812 bp, encoding 603 amino acid residues with no signal peptide at the N-terminus. Sequence analysis indicated that SjFaNaC shared a high identity with other cephalopods FaNaCs and formed a sister clade with bivalves. The protein structure was predicted using SWISS-MODEL with AcFaNaC as the template. Quantitative real-time PCR (qRT-PCR) revealed that SjFaNaC transcripts were highly expressed in both female and male reproductive organs, as well as in the optic lobe and brain of the central nervous system (CNS). Results of in situ hybridisation (ISH) showed that SjFaNaC mRNA was mainly distributed in the medulla and deep retina of the optic lobe and in both the supraesophageal and subesophageal masses of the brain. Subcellular localisation indicated that the SjFaNaC protein was localised intracellularly and on the cell surface of HEK293T cells. In summary, these findings may lay the foundation for future exploration of the functions of SjFaNaC in cephalopods.


Assuntos
FMRFamida , Animais , Masculino , Feminino , FMRFamida/metabolismo , Sequência de Aminoácidos , Canais de Sódio/metabolismo , Canais de Sódio/genética , Cefalópodes/metabolismo , Cefalópodes/genética , Cefalópodes/crescimento & desenvolvimento , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Filogenia , Perfilação da Expressão Gênica , Humanos , Clonagem Molecular , Regulação da Expressão Gênica no Desenvolvimento
3.
Artigo em Inglês | MEDLINE | ID: mdl-38797241

RESUMO

Crassostrea angulata, a major shellfish cultivated in Southern China, has experienced a notable surge in commercial value in recent years. Understanding the molecular mechanisms governing their reproductive processes holds significant implications for advancing aquaculture practices. In this study, we cloned the orphan nuclear receptor gene, Fushi Tarazu transcription factor 1 (FTZ-F1), of C. angulata and investigated its functional role in the gonadal development. The full-length cDNA of FTZ-F1 spans 2357 bp and encodes a protein sequence of 530 amino acids. Notably, the amino acid sequence of FTZ-F1 in C. angulata shares remarkable similarity with its homologues in other species, particularly in the DNA-binding region (>90%) and ligand-binding region (>44%). In C. angulata, the highest expression level of FTZ-F1 was observed in the ovary, exhibiting more than a 200-fold increase during the maturation stage compared to the initiation stage (P < 0.001). Specifically, FTZ-F1 was mainly expressed in the follicular cells surrounding the oocytes of C. angulata. Upon inhibiting FTZ-F1 gene expression in C. angulata through RNA interference (RNAi), a substantial reduction in the expression of genes involved in the synthesis of sex steroids in the gonads, including 3ß-HSD, Cyp17, and follistatin, was observed. In addition, estradiol (E2) and testosterone (T) levels also showed a decrease upon FTZ-F1 silencing, resulting in a delayed gonadal development. These results indicate that FTZ-F1 acts as a steroidogenic factor, participating in the synthesis and regulation of steroid hormones and thus playing an important role in the reproductive and endocrine systems within oysters.


Assuntos
Crassostrea , Gônadas , Fatores de Transcrição , Animais , Crassostrea/genética , Crassostrea/crescimento & desenvolvimento , Crassostrea/metabolismo , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Feminino , Sequência de Aminoácidos , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Clonagem Molecular , Hormônios Esteroides Gonadais/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Ovário/metabolismo , Ovário/crescimento & desenvolvimento , Esteroides/metabolismo , Esteroides/biossíntese
4.
Curr Biol ; 34(11): 2373-2386.e5, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776903

RESUMO

Proper distribution of organelles can play an important role in a moving cell's performance. During C. elegans gonad morphogenesis, the nucleus of the leading distal tip cell (DTC) is always found at the front, yet the significance of this localization is unknown. Here, we identified the molecular mechanism that keeps the nucleus at the front, despite a frictional force that pushes it backward. The Klarsicht/ANC-1/Syne homology (KASH) domain protein UNC-83 links the nucleus to the motor protein kinesin-1 that moves along a polarized acentrosomal microtubule network. Interestingly, disrupting nuclear positioning on its own did not affect gonad morphogenesis. However, reducing actomyosin contractility on top of nuclear mispositioning led to a dramatic phenotype: DTC splitting and gonad bifurcation. Long-term live imaging of the double knockdown revealed that, while the gonad attempted to perform a planned U-turn, the DTC was stretched due to the lagging nucleus until it fragmented into a nucleated cell and an enucleated cytoplast, each leading an independent gonadal arm. Remarkably, the enucleated cytoplast had polarity and invaded, but it could only temporarily support germ cell proliferation. Based on a qualitative biophysical model, we conclude that the leader cell employs two complementary mechanical approaches to preserve its integrity and ensure proper organ morphogenesis while navigating through a complex 3D environment: active nuclear positioning by microtubule motors and actomyosin-driven cortical contractility.


Assuntos
Actomiosina , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Núcleo Celular , Gônadas , Animais , Actomiosina/metabolismo , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Núcleo Celular/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Morfogênese , Cinesinas/metabolismo , Cinesinas/genética , Movimento Celular
5.
Curr Biol ; 34(11): 2387-2402.e5, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776905

RESUMO

The C. elegans hermaphrodite distal tip cell (DTC) leads gonadogenesis. Loss-of-function mutations in a C. elegans ortholog of the Rac1 GTPase (ced-10) and its GEF complex (ced-5/DOCK180, ced-2/CrkII, ced-12/ELMO) cause gonad migration defects related to directional sensing; we discovered an additional defect class of gonad bifurcation in these mutants. Using genetic approaches, tissue-specific and whole-body RNAi, and in vivo imaging of endogenously tagged proteins and marked cells, we find that loss of Rac1 or its regulators causes the DTC to fragment as it migrates. Both products of fragmentation-the now-smaller DTC and the membranous patch of cellular material-localize important stem cell niche signaling (LAG-2 ligand) and migration (INA-1/integrin subunit alpha) factors to their membranes, but only one retains the DTC nucleus and therefore the ability to maintain gene expression over time. The enucleate patch can lead a bifurcating branch off the gonad arm that grows through germ cell proliferation. Germ cells in this branch differentiate as the patch loses LAG-2 expression. While the nucleus is surprisingly dispensable for aspects of leader cell function, it is required for stem cell niche activity long term. Prior work found that Rac1-/-;Rac2-/- mouse erythrocytes fragment; in this context, our new findings support the conclusion that maintaining a cohesive but deformable cell is a conserved function of this important cytoskeletal regulator.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Movimento Celular , Gônadas , Organogênese , Transdução de Sinais , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Organogênese/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/genética
6.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38809688

RESUMO

Aspongopus chinensis Dallas, 1851 (Hemiptera: Dinidoridae), an edible and medicinal insect, usually found in China and Southeast Asia, offers substantial potential for various applications. The reproductive cycle of this particular insect occurs annually because of reproductive diapause, leading to inadequate utilization of available natural resources. Despite its considerable ecological importance, the precise mechanisms underlying diapause in A. chinensis are not yet well understood. In this study, we conducted an analysis of comparing the microRNA (miRNA) regulation in the diapause and non-diapause gonads of A. chinensis and identified 303 differentially expressed miRNAs, among which, compared with the diapause group, 76 miRNAs were upregulated and 227 miRNAs downregulated. The results, regarding the Enrichment analysis of miRNA-targeted genes, showed their involvement in several essential biological processes, such as lipid anabolism, energy metabolism, and gonadal growth. Interestingly, we observed that the ATP-binding cassette pathway is the only enriched pathway, demonstrating the capability of these targeted miRNAs to regulate the reproductive diapause of A. chinensis through the above essential pathway. The current study provided the role of gonadal miRNA expression in the control of reproductive diapause in A. chinensis, the specific regulatory mechanism behind this event remained unknown and needed more investigation.


Assuntos
Diapausa de Inseto , Hemípteros , MicroRNAs , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Hemípteros/genética , Hemípteros/metabolismo , Hemípteros/crescimento & desenvolvimento , Hemípteros/fisiologia , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Feminino , Masculino , Reprodução
7.
J Fish Biol ; 104(6): 2022-2031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38566266

RESUMO

This study aimed to understand the reproductive biology and migrative behavior of the largehead hairtail Trichiurus lepturus in a tropical area, specifically off Pernambuco coast, northeastern Brazil. Commercial catches from fish corrals provided samples for analysis, including measurements, weight recording, and examination of gonads to determine its maturation stage. Reproductive analyses were performed, such as sex ratio, gonado-somatic index, and sizes at first maturity. There was a slightly higher proportion of females among the 141 largehead hairtail specimens analysed. No significant differences were observed in length distributions between males and females. However, during the winter, significant differences were observed in length distributions for grouped sexes. The species exhibited a seasonal migratory pattern, with a higher presence on the continental shelf during the winter. The study identified strategic allocation of energy in feeding activities and temporal spacing of reproductive cycles, as indicated by the sex ratio and abundance of individuals during different seasons. Fish corrals probably do not harm largehead hairtail population off the southwestern Atlantic tropical coast, with minimal capture of individuals below the size of first maturity. The insights of the study into reproductive and migration patterns contribute to future assessments and management strategies for this species and corral fisheries.


Assuntos
Migração Animal , Reprodução , Estações do Ano , Razão de Masculinidade , Animais , Masculino , Feminino , Brasil , Perciformes/fisiologia , Perciformes/crescimento & desenvolvimento , Clima Tropical , Tamanho Corporal , Maturidade Sexual , Gônadas/crescimento & desenvolvimento , Gônadas/fisiologia
8.
Mar Biotechnol (NY) ; 26(3): 423-431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649627

RESUMO

This study is the first investigation for using sex-related gene expression in tail fin tissues of seabass as early sex determination without killing the fish. The European seabass (Dicentrarchus labrax) is gonochoristic and lacks distinguishable sex chromosomes, so, sex determination is referred to molecular actions for some sex-related genes on autosomal chromosomes which are well known such as cyp19a1a, dmrt1a, and dmrt1b genes which play crucial role in gonads development and sex differentiation. cyp19a1a is expressed highly in females for ovarian development and dmrt1a and dmrt1b are for testis development in males. In this study, we evaluated the difference in the gene expression levels of studied genes by qPCR in tail fins and gonads. We then performed discriminant analysis (DA) using morphometric traits and studied gene expression parameters as predictor tools for fish sex. The results revealed that cyp19a1a gene expression was significantly higher in future females' gonads and tail fins (p ≥ 0.05). Statistically, cyp19a1a gene expression was the best parameter to discriminate sex even the hit rate of any other variable by itself could not correctly classify 100% of the fish sex except when it was used in combination with cyp19a1a. In contrast, Dmrt1a gene expression was higher in males than females but there were difficulties in analyzing dmrt1a and dmrt1b expressions in the tail because levels were low. So, it could be used in future research to differentiate and determine the sex of adult fish using the cyp19a1a gene expression marker without killing or sacrificing fish.


Assuntos
Nadadeiras de Animais , Aromatase , Bass , Fatores de Transcrição , Animais , Bass/genética , Bass/metabolismo , Bass/crescimento & desenvolvimento , Masculino , Feminino , Nadadeiras de Animais/metabolismo , Aromatase/genética , Aromatase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Processos de Determinação Sexual/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Ovário/metabolismo , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Sexual/genética
9.
Gen Comp Endocrinol ; 353: 114512, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582176

RESUMO

Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17ß (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.


Assuntos
Aromatase , Encéfalo , Hipófise , Diferenciação Sexual , Animais , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Masculino , Aromatase/genética , Aromatase/metabolismo , Feminino , Encéfalo/metabolismo , Hipófise/metabolismo , Anguilla/genética , Anguilla/metabolismo , Anguilla/crescimento & desenvolvimento , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Testículo/metabolismo , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento
10.
Artigo em Inglês | MEDLINE | ID: mdl-38631127

RESUMO

As an invasive alien animal, Pomacea canaliculata poses a great danger to the ecology and human beings. Recently, there has been a gradual shift towards bio-friendly control. Based on the development of RNA interference and CRISPR technology as molecular regulatory techniques for pest control, it was determined if the knockout of genes related to sex differentiation in P. canaliculata could induce sterility, thereby helping in population control. However, the knowledge of sex differentiation- and development-related genes in P. canaliculata is currently lacking. Here, transcriptomic approaches were used to study the genes expressed in the two genders of P. canaliculata at various developmental stages. Gonad transcriptomes of immature or mature males and females were compared, revealing 12,063 genes with sex-specific expression, of which 6066 were male- and 5997 were female-specific. Among the latter, 581 and 235 genes were up-regulated in immature and mature females, respectively. The sex-specific expressed genes identified included GnRHR2 and TSSK3 in males and ZAR1 and WNT4 in females. Of the genes, six were involved in reproduction: CCNBLIP1, MND1, DMC1, DLC1, MRE11, and E(sev)2B. Compared to immature snail gonads, the expression of HSP90 and CDK1 was markedly reduced in gonadal. It was hypothesized that the two were associated with the development of females. These findings provided new insights into crucial genetic information on sex differentiation and development in P. canaliculata. Additionally, some candidate genes were explored, which can contribute to future studies on controlling P. canaliculata using molecular regulatory techniques.


Assuntos
Perfilação da Expressão Gênica , Diferenciação Sexual , Transcriptoma , Animais , Diferenciação Sexual/genética , Masculino , Feminino , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento , Gastrópodes/genética , Gastrópodes/crescimento & desenvolvimento , Desenvolvimento Sexual/genética , Regulação da Expressão Gênica no Desenvolvimento
11.
J Fish Biol ; 104(6): 1960-1971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553987

RESUMO

The study investigated if gonad maturation in triploid brown trout, Salmo trutta, was entirely suppressed or only delayed, and if triploids could interbreed with diploid counterparts. Ten percent of the total number of 3-year-old triploid S. trutta, 15% of 4-year-old fish, and 17% of 5-year-old fish produced semen. Three and 4 years old triploid fish did not produce eggs, but 15% of the 5-year-old fish did so. The quantity and sperm motility of triploid semen did not differ from diploids, but the sperm concentration was significantly lower. When diploid eggs were fertilized with triploid semen (3n × 2n crosses), the percentage of eyed stage embryos, of hatched larvae, and of normal-shaped larvae did not differ from the diploid controls. Circa 90% of 3n × 2n crosses had a ploidy level of 2.4n. In the remaining percentage of 3n × 2n crosses, the ploidy level was ≥2n and <2.4n. In sperm competition experiments where diploid eggs were fertilized with a mixture of diploid and triploid semen, 52% of the originating larvae had a ploidy level of 2n, 43% of 2.4n, and 5% of the fish were not exactly classified. From the start of feeding to an age of 248 days, the mortality rate of 3n × 2n interploid crosses and of 2n × 2n controls was similar. The growth of interploid crosses was significantly higher than that of controls. In triploid mature females, the egg mass per kilogram of body weight was significantly lower than in diploids. The mass of the non-hardened eggs and the percentile weight increase during hardening did not differ from diploid eggs. When triploid eggs were fertilized with diploid semen (2n × 3n crosses), the development rate to normal hatched larvae was less than 10%. All originating larvae had a ploidy level of 3n. From the start of feeding to an age of 248 days, 2n × 3n crosses had a higher mortality rate (15%) than diploid controls (<5%). Growth of this type of interploid crosses was reduced in comparison to controls. Therefore, triploids introduced into natural waters for recreational fisheries or escaping from farms may interbreed with diploid counterparts. This not only alters the genotypes of local populations but also changes the ploidy levels.


Assuntos
Diploide , Triploidia , Truta , Animais , Truta/genética , Truta/crescimento & desenvolvimento , Truta/fisiologia , Masculino , Feminino , Gônadas/crescimento & desenvolvimento , Motilidade dos Espermatozoides , Espermatozoides/fisiologia
12.
J Fish Biol ; 104(5): 1433-1444, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38350664

RESUMO

Gonad development stages (GDS) are a critical tool that can be easily applied in fisheries to visually discriminate mature from immature organisms and assess their reproductive condition. This study proposes a morphochromatic scale to define gonad development stages for razor surgeonfish (Prionurus laticlavius) based on morphological and structural assessments of the gonad, histologically validated using multivariate dummy matrices modeled through multiple linear regression analyses. Gonads of 271 specimens were photographed prior to preservation to describe their shape, size, color, and turgor for morphochromatic analysis. Later, gonads were processed using standard histological methods. An oocyte growth scale was designed based on oocyte diameter and follicular wall thickness for each stage. In addition, five morphochromatic gonad development stages were histologically validated: immature, developing, spawning capable, regressing, and regenerating. Morphochromatic variations were observed in the last three stages in both sexes. Results show that gonad morphology and structure of P. laticlavius are similar to those of other acanthurids, albeit with some asymmetric and morphological differences, as well as gonad morphochromatic in both sexes. These findings confirm that maturation is species-specific. Also, although not a critical character, gonad colouration was found to play a major role in distinguishing between gonad development stages along with shape, size, vascularity (females), and folds (males). Therefore, gonad colouration should not be entirely overlooked because doing so may lead to errors in determining sexual maturity stages.


Assuntos
Gônadas , Animais , Masculino , Feminino , Gônadas/crescimento & desenvolvimento , Gônadas/anatomia & histologia , Maturidade Sexual , Ovário/crescimento & desenvolvimento , Ovário/anatomia & histologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-38320446

RESUMO

The Chinese giant salamander (CGS) Andrias davidianus is the largest extant amphibian and has recently become an important species for aquaculture with high economic value. Meanwhile, its wild populations and diversity are in urgent need of protection. Exploring the mechanism of its early gonadal differentiation will contribute to the development of CGS aquaculture and the recovery of its wild population. In this study, transcriptomic and phenotypic research was conducted on the critical time points of early gonadal differentiation of CGS. The results indicate that around 210 days post-hatching (dph) is the critical window for female CGS's gonadal differentiation, while 270 dph is that of male CGS. Besides, the TRPM1 gene may be the crucial gene among many candidates determining the sex of CGS. More importantly, in our study, key genes involved in CGS's gonadal differentiation and development are identified and their potential pathways and regulatory models at early stage are outlined. This is an initial exploration of the molecular mechanisms of CGS's early gonadal differentiation at multiple time points, providing essential theoretical foundations for its captive breeding and offering unique insights into the conservation of genetic diversity in wild populations from the perspective of sex development.


Assuntos
Gônadas , Diferenciação Sexual , Transcriptoma , Urodelos , Animais , Urodelos/genética , Urodelos/crescimento & desenvolvimento , Feminino , Masculino , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Diferenciação Sexual/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
14.
Sex Dev ; 16(2-3): 162-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35263754

RESUMO

Sex development is an intricate and crucial process in all vertebrates that ensures the continued propagation of genetic diversity within a species, and ultimately their survival. Perturbations in this process can manifest as disorders/differences of sex development (DSD). Various transcriptional networks have been linked to development of the gonad into either male or female, which is actively driven by a set of genes that function in a juxtaposed manner and is maintained through the developmental stages to preserve the final sexual identity. One such identified gene is Chromobox homolog 2 (CBX2), an important ortholog of the Polycomb group (PcG) proteins, that functions as both chromatin modifier and highly dynamic transactivator. CBX2 was shown to be an essential factor for gonadal development in mammals, as genetic variants or loss-of-function of CBX2 can cause sex reversal in mice and humans. Here we will provide an overview of CBX2, its biological functions at molecular level, and the CBX2-dependent transcriptional landscape in gonadal development and DSD.


Assuntos
Gônadas , Complexo Repressor Polycomb 1 , Desenvolvimento Sexual , Animais , Feminino , Humanos , Masculino , Camundongos , Gônadas/crescimento & desenvolvimento , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Desenvolvimento Sexual/genética
15.
Biol Reprod ; 107(1): 269-274, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35244683

RESUMO

Wilms' tumor 1 (Wt1) encodes a zinc finger nuclear transcription factor which is mutated in 15-20% of Wilms' tumor, a pediatric kidney tumor. Wt1 has been found to be involved in the development of many organs. In gonads, Wt1 is expressed in genital ridge somatic cells before sex determination, and its expression is maintained in Sertoli cells and granulosa cells after sex determination. It has been demonstrated that Wt1 is required for the survival of the genital ridge cells. Homozygous mutation of Wt1 causes gonad agenesis. Recent studies find that Wt1 plays important roles in lineage specification and maintenance of gonad somatic cells. In this review, we will summarize the recent research works about Wt1 in gonadal somatic cell differentiation.


Assuntos
Diferenciação Celular , Gônadas , Proteínas WT1 , Animais , Feminino , Genes do Tumor de Wilms , Gônadas/crescimento & desenvolvimento , Humanos , Masculino , Camundongos , Proteínas WT1/genética , Proteínas WT1/fisiologia
16.
J Clin Endocrinol Metab ; 107(2): 309-323, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537849

RESUMO

CONTEXT: Anti-Mullerian hormone (AMH) was originally described in the context of sexual differentiation in the male fetus but has gained prominence now as a marker of ovarian reserve and fertility in females. In this mini-review, we offer an updated synopsis on AMH and its clinical utility in pediatric patients. DESIGN AND RESULTS: A systematic search was undertaken for studies related to the physiology of AMH, normative data, and clinical role in pediatrics. In males, AMH, secreted by Sertoli cells, is found at high levels prenatally and throughout childhood and declines with progression through puberty to overlap with levels in females. Thus, serum AMH has clinical utility as a marker of testicular tissue in males with differences in sexual development and cryptorchidism and in the evaluation of persistent Mullerian duct syndrome. In females, serum AMH has been used as a predictive marker of ovarian reserve and fertility, but prepubertal and adolescent AMH assessments need to be interpreted cautiously. AMH is also a marker of tumor burden, progression, and recurrence in germ cell tumors of the ovary. CONCLUSIONS: AMH has widespread clinical diagnostic utility in pediatrics but interpretation is often challenging and should be undertaken in the context of not only age and sex but also developmental and pubertal stage of the child. Nonstandardized assays necessitate the need for assay-specific normative data. The recognition of the role of AMH beyond gonadal development and maturation may usher in novel diagnostic and therapeutic applications that would further expand its utility in pediatric care.


Assuntos
Hormônio Antimülleriano/sangue , Criptorquidismo/diagnóstico , Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Reserva Ovariana , Hormônio Antimülleriano/metabolismo , Criança , Desenvolvimento Infantil , Criptorquidismo/sangue , Transtorno 46,XY do Desenvolvimento Sexual/sangue , Feminino , Gônadas/crescimento & desenvolvimento , Humanos , Masculino , Maturidade Sexual
17.
Genetics ; 219(3)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740245

RESUMO

Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. Caenorhabditis elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female distal tip cells (fDTCs), while the anchor cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie the evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that hlh-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Caenorhabditis elegans , Gônadas , Diferenciação Sexual , Animais , Feminino , Masculino , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Gônadas/crescimento & desenvolvimento , Organogênese/genética , Filogenia , Diferenciação Sexual/genética , Fatores de Transcrição/metabolismo
18.
Dev Cell ; 56(21): 3019-3034.e7, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34655525

RESUMO

Sex disparities in cardiac homeostasis and heart disease are well documented, with differences attributed to actions of sex hormones. However, studies have indicated sex chromosomes act outside of the gonads to function without mediation by gonadal hormones. Here, we performed transcriptional and proteomics profiling to define differences between male and female mouse hearts. We demonstrate, contrary to current dogma, cardiac sex disparities are controlled not only by sex hormones but also through a sex-chromosome mechanism. Using Turner syndrome (XO) and Klinefelter (XXY) models, we find the sex-chromosome pathway is established by X-linked gene dosage. We demonstrate cardiac sex disparities occur at the earliest stages of heart formation, a period before gonad formation. Using these datasets, we identify and define a role for alpha-1B-glycoprotein (A1BG), showing loss of A1BG leads to cardiac defects in females, but not males. These studies provide resources for studying sex-biased cardiac disease states.


Assuntos
Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Proteômica , Caracteres Sexuais , Cromossomos Sexuais/metabolismo , Animais , Feminino , Genes Ligados ao Cromossomo X/genética , Masculino , Camundongos , Proteômica/métodos
19.
Sex Dev ; 15(5-6): 317-334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710870

RESUMO

Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Gônadas , Processos de Determinação Sexual , Animais , Transtornos do Desenvolvimento Sexual/genética , Feminino , Gônadas/crescimento & desenvolvimento , Humanos , Masculino , Mamíferos/genética , Camundongos , Ovário , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9/genética , Processos de Determinação Sexual/genética , Testículo
20.
Gen Comp Endocrinol ; 314: 113924, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34606745

RESUMO

Changes in expression or activation of various metalloproteases including matrix metalloproteases (Mmp), a disintegrin and metalloprotease (Adam) and a disintegrin and metalloprotease with thrombospondin motif (Adamts), and their endogenous inhibitors (tissue inhibitors of metalloproteases, Timp), have been shown to be critical for ovulation in various species from studies in past decades. Some of these metalloproteases such as Adamts1, Adamts9, Mmp2, and Mmp9 have also been shown to be regulated by luteinizing hormone (LH) and/or progestin, which are essential triggers for ovulation in all vertebrate species. Most of these metalloproteases also express broadly in various tissues and cells including germ cells and somatic gonad cells. Thus, metalloproteases likely play roles in gonad formation processes comprising primordial germ cell (PGC) migration, development of germ and somatic cells, and sex determination. However, our knowledge on the functions and mechanisms of metalloproteases in these processes in vertebrates is still lacking. This review will summarize our current knowledge on the metalloproteases in ovulation and gonad formation with emphasis on PGC migration and germ cell development.


Assuntos
Gônadas , Metaloproteinases da Matriz , Ovulação , Animais , Feminino , Células Germinativas/fisiologia , Gônadas/crescimento & desenvolvimento , Hormônio Luteinizante/metabolismo , Metaloproteinases da Matriz/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...