RESUMO
BACKGROUND: Microbiome dysbiosis plays a significant role in neuroinflammation and Alzheimer's disease (AD). Therefore, gut microbiome restoration using appropriate probiotics may be beneficial in alleviating AD features. In this study, we investigated the effects of a domestic strain of Lactobacillus rhamnosus (L. rhamnosus) on spatial memory, and cytokines expression in an inflammation-based AD model. METHOD: Male Wistar rats were randomly divided into four groups (six animals per group) of control, L. rhamnosus-only, D-galactose (D-gal)-only, and D-gal + L. rhamnosus. Spatial learning and memory were assessed using the Morris water maze test. IL-1ß, IL-6, and TNF-α expression levels were measured using Real-Time qPCR. A significance level of 0.05 was used for statistical analysis. RESULTS: In contrast to the D-gal + L. rhamnosus-treated group, D-gal only treated group showed impaired memory in MWM test compared to the control group. Additionally, D-gal treatment resulted in an increase in IL-1ß and TNF-α levels and a decrease in IL-6 levels, which was not statistically significant. However, the TNF-α level was significantly decreased in D-gal + L. rhamnosus-treated group compared to D-gal-only treated group (P < 0.05). Also, IL-6 level was significantly lower in D-gal + L. rhamnosus-treated group compared to control group (P < 0.05). CONCLUSION: These results suggest that the domestic L. rhamnosus might positively impact cognitive deficit and neuroinflammation. Further studies are suggested to investigate the specific mechanisms mediating the effects of L. rhamnosus on cognitive functions and neuroinflammation in animal models of AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Citocinas , Modelos Animais de Doenças , Lacticaseibacillus rhamnosus , Probióticos , Ratos Wistar , Animais , Doença de Alzheimer/metabolismo , Masculino , Ratos , Probióticos/farmacologia , Probióticos/administração & dosagem , Citocinas/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Microbioma Gastrointestinal/fisiologia , Memória Espacial/fisiologia , Galactose/metabolismo , Inflamação/metabolismo , Aprendizagem em Labirinto/fisiologiaRESUMO
Excess exogenous supplementation of D-galactose (D-gal), a monosaccharide and reducing sugar, generates reactive oxygen species (ROS), leading to cell damage and death. ROS accumulation is critical in aging. Therefore, D-gal-induced aging mouse models are used in aging studies. Herein, we evaluated D-gal's effect on neonatal testis development using an in vitro organ culture method. Mouse testicular fragments (MTFs) derived from neonatal testes (postnatal day 5) were cultured with 500 mM D-gal for 5 days. D-gal-treated MTFs showed a significantly increased and decreased expression of undifferentiated and differentiated germ cell markers, respectively, with a substantial reduction in meiotic cells. In D-gal-exposed MTFs, expression levels of Sertoli cell markers (Sox9 and Wt1) increased, while those of StAR and 17ß-HSD3, whose expressions are abundant in D-Gal treated adult Leydig cells, decreased. Additionally, the enzyme 3 ß-HSD1, essential for steroidogenesis in Leydig cells, was significantly reduced in D-gal-exposed MTFs compared to that in controls.D-gal significantly increased the expression of Bad, Bax, and cleaved caspase-3 and -8. Via oxidative stress in MTF. Overall, D-gal negatively regulates germ cell and Leydig cell development in neonatal testes through pro-apoptotic mechanisms and ROS.
Assuntos
Animais Recém-Nascidos , Galactose , Células Intersticiais do Testículo , Técnicas de Cultura de Órgãos , Testículo , Animais , Masculino , Galactose/metabolismo , Galactose/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/crescimento & desenvolvimento , Camundongos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos dos fármacos , Técnicas de Cultura de Órgãos/métodos , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacosRESUMO
Mammalian sperm glycans directly mediate several key life events. However, previous studies have not focused on two key factors that regulate these processes, the terminal glycan pattern and the anchoring sites. Herein, we group the capping monosaccharide sialic acid (Sia) and its capping substrates galactose/N-acetylgalactosamine (Gal/GalNAc) into a "correlated terminal glycan pair" (glycopair) and, for the first time, reveal the differences in the aglycone pattern of this pair on spermatozoa using glyco-selective in situ covalent labeling techniques. Sia is mainly found in glycoproteins, whereas terminal Gal/GalNAc is mainly found in glycolipids. We quantitatively track the dynamic changes of the glycopair during sperm epididymal migration and find that the Sia capping ratio decreases with the increased expression of the glycopair; caudal upswim spermatozoa also show a lower Sia capping ratio than down spermatozoa. We thus propose two new parameters reflecting the terminal glycoforms of spermatozoa, which can well distinguish the maturity of spermatozoa. By fluorescence imaging of the glycopair in different regions of the sperm, we find that different parts of the sperm contribute differently to the overall glycan changes.
Assuntos
Polissacarídeos , Espermatozoides , Masculino , Espermatozoides/química , Espermatozoides/metabolismo , Polissacarídeos/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Animais , Camundongos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Galactose/química , Galactose/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/análise , Glicoproteínas/químicaRESUMO
The global aging population has led to a rise in age-related health issues, such as malnutrition, metabolic disorders, and even immune decline. Among these concerns, periodontitis holds particular significance for the well-being of the elderly. This study aimed to investigate the impact of aging on inflammatory resorption of alveolar bone in mice with periodontitis, with a specific focus on alterations in the intestinal microenvironment. To achieve this, we established a D-galactose (D-gal)-induced aging mouse model with periodontitis and employed histopathological staining, oxidative stress, and inflammatory factors analyses to assess the severity of periodontitis and the health status. Additionally, the 16S rRNA sequencing and untargeted metabolomics analysis were employed to investigate alterations in the intestinal microbiota and metabolites. Our results showed that D-gal-induced aging mice with periodontitis experienced more pronounced alveolar bone inflammatory resorption and disruptions in the gut barrier, accompanied by an overall decline in physical condition. The microbial composition and structure of aged mice also underwent significant modifications, with a decreased Firmicutes/Bacteroidetes (F/B) ratio. Furthermore, metabolomics analysis demonstrated that D-gal-induced aging primarily influenced lipids and lipid-like molecules metabolism, and enrichment observed in the rheumatoid arthritis and histidine metabolism pathways. These findings provide further evidence that the aging process exacerbates age-related alveolar bone loss (ABL) through disturbances in intestinal homeostasis.
Assuntos
Envelhecimento , Perda do Osso Alveolar , Galactose , Microbioma Gastrointestinal , Periodontite , Animais , Galactose/metabolismo , Envelhecimento/metabolismo , Perda do Osso Alveolar/metabolismo , Perda do Osso Alveolar/patologia , Camundongos , Periodontite/microbiologia , Periodontite/metabolismo , Periodontite/patologia , Metaboloma , Modelos Animais de Doenças , Metabolômica/métodos , Masculino , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/patologia , Estresse OxidativoRESUMO
Microbial exopolysaccharides (EPSs) have attracted extensive attention for their biological functions in antioxidant activities. In this study, we characterized a novel EPS produced by Bifidobacterium pseudocatenulatum Bi-OTA128 which exhibited the highest antioxidant capacity compared to nine other ropy bacterial strains, achieving 76.50â¯% and 93.84â¯% in DPPH· and ABTS·+ scavenging activity, and ferric reducing power of 134.34⯵M Fe2+. Complete genomic analysis identified an eps gene cluster involved in the EPS biosynthesis of Bi-OTA128 strain, which might be responsible for its ropy phenotype. The EPS was then isolated and purified by a DEAE-Sepharose Fast Flow column. A single elution part EPS128 was obtained with a recovery rate of 43.5 ± 1.78â¯% and a total carbohydrate content of 93.6 ± 0.76â¯%. Structural characterization showed that EPS128 comprised glucose, galactose, and rhamnose (molar ratio 4.0:1.2:1.1), featuring a putative complex backbone structure with four branched chains and an unusual acetyl group at O-2 of terminal rhamnose. Antioxidant assay in vitro indicated that EPS128 exhibited antioxidant potential with 50.52â¯% DPPH· and 65.40â¯% ABTS·+ scavenging activities, reaching 54.3â¯% and 70.44â¯% of the efficacy of standard Vitamin C at 2.0â¯mg/L. Furthermore, EPS128 showed protective effects against H2O2-induced oxidative stress in HepG2 cells by reducing cellular reactive oxygen species (ROS) and increasing cell viability. These findings present the first comprehensive report of an antioxidant EPS from B. pseudocatenulatum, highlighting its potential as a natural antioxidant for applications in the food industry and clinical settings.
Assuntos
Antioxidantes , Bifidobacterium , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Antioxidantes/química , Humanos , Bifidobacterium/metabolismo , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/genética , Família Multigênica , Células Hep G2 , Ramnose/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Intestinos/microbiologia , Benzotiazóis/metabolismo , Benzotiazóis/química , Genoma BacterianoRESUMO
We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.
Assuntos
Proteínas de Bactérias , Galactose , Regulação Bacteriana da Expressão Gênica , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Streptococcus agalactiae/enzimologia , Galactose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hexosefosfatos/metabolismo , Hexosefosfatos/genética , Redes e Vias Metabólicas/genética , Fosfotransferases/metabolismo , Fosfotransferases/genéticaRESUMO
Lactose assimilation is a relatively rare trait in yeasts, and Kluyveromyces yeast species have long served as model organisms for studying lactose metabolism. Meanwhile, the metabolic strategies of most other lactose-assimilating yeasts remain unknown. In this work, we have elucidated the genetic determinants of the superior lactose-growing yeast Candida intermedia. Through genomic and transcriptomic analyses, we identified three interdependent gene clusters responsible for the metabolism of lactose and its hydrolysis product galactose: the conserved LAC cluster (LAC12, LAC4) for lactose uptake and hydrolysis, the conserved GAL cluster (GAL1, GAL7, and GAL10) for galactose catabolism through the Leloir pathway, and a "GALLAC" cluster containing the transcriptional activator gene LAC9, second copies of GAL1 and GAL10, and a XYL1 gene encoding an aldose reductase involved in carbon overflow metabolism. Bioinformatic analysis suggests that the GALLAC cluster is unique to C. intermedia and has evolved through gene duplication and divergence, and deletion mutant phenotyping proved that the cluster is indispensable for C. intermedia's growth on lactose and galactose. We also show that the regulatory network in C. intermedia, governed by Lac9 and Gal1 from the GALLAC cluster, differs significantly from the galactose and lactose regulons in Saccharomyces cerevisiae, Kluyveromyces lactis, and Candida albicans. Moreover, although lactose and galactose metabolism are closely linked in C. intermedia, our results also point to important regulatory differences.IMPORTANCEThis study paves the way to a better understanding of lactose and galactose metabolism in the non-conventional yeast C. intermedia. Notably, the unique GALLAC cluster represents a new, interesting example of metabolic network rewiring and likely helps to explain how C. intermedia has evolved into an efficient lactose-assimilating yeast. With the Leloir pathway of budding yeasts acting like a model system for understanding the function, evolution, and regulation of eukaryotic metabolism, this work provides new evolutionary insights into yeast metabolic pathways and regulatory networks. In extension, the results will facilitate future development and use of C. intermedia as a cell-factory for conversion of lactose-rich whey into value-added products.
Assuntos
Candida , Galactose , Lactose , Família Multigênica , Galactose/metabolismo , Lactose/metabolismo , Candida/genética , Candida/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Kluyveromyces/genética , Kluyveromyces/metabolismo , Kluyveromyces/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimentoRESUMO
Galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are food ingredients that improve human health, but their degradation throughout the human small intestine is not well understood. We studied the breakdown kinetics of FOS and GOS in the intestines of seven healthy Dutch adults. Subjects were equipped with a catheter in the distal ileum or proximal colon and consumed 5 g of chicory-derived FOS (degree of polymerization (DP) DP2-10), and 5 g of GOS (DP2-6). Postprandially, intestinal content was frequently collected until 350 min and analyzed for mono-, di-, and oligosaccharides. FOS and GOS had recoveries of 96 ± 25% and 76 ± 28%, respectively. FOS DP ≥ 2 and GOS DP ≥ 3 abundances in the distal small intestine or proximal colon matched the consumed doses, while GOS dimers (DP2) had lower recoveries, namely 22.8 ± 11.1% for ß-D-gal-(1â1)-α-D-glc+ß-D-gal-(1â1)-ß-D-glc, 19.3 ± 19.1% for ß-D-gal-(1 â 2)-D-glc+ß-D-gal-(1 â 3)-D-glc, 43.7 ± 24.6% for ß-D-gal-(1 â 6)-D-gal, and 68.0 ± 38.5% for ß-D-gal-(1 â 4)-D-gal. Lactose was still present in the distal small intestine of all of the participants. To conclude, FOS DP ≥ 2 and GOS DP ≥ 3 were not degraded in the small intestine of healthy adults, while most prebiotic GOS DP2 was hydrolyzed in a structure-dependent manner. We provide evidence on the resistances of GOS with specific ß-linkages in the human intestine, supporting the development of GOS prebiotics that resist small intestine digestion.
Assuntos
Intestino Delgado , Oligossacarídeos , Prebióticos , Humanos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Prebióticos/análise , Adulto , Masculino , Intestino Delgado/metabolismo , Intestino Delgado/química , Feminino , Adulto Jovem , Cinética , Pessoa de Meia-Idade , Galactose/metabolismo , Galactose/análiseRESUMO
The heterotrimeric flavin adenine dinucleotide (FAD) dependent glucose dehydrogenase derived from Burkholderia cepacia (BcGDH) has many exceptional features for its use in glucose sensing-including that this enzyme is capable of direct electron transfer with an electrode in its heterotrimeric configuration. However, this enzyme's high catalytic activity towards not only glucose but also galactose presents an engineering challenge. To increase the substrate specificity of this enzyme, it must be engineered to reduce its activity towards galactose while maintaining its activity towards glucose. To aid in these mutagenesis studies, the crystal structure composed of BcGDH's small subunit and catalytic subunit (BcGDHγα), in complex with D-glucono-1,5-lactone was elucidated and used to construct the three-dimensional model for targeted, site-directed mutagenesis. BcGDHγα was then mutated at three different residues, glycine 322, asparagine 474 and asparagine 475. The single mutations that showed the greatest glucose selectivity were combined to create the resulting mutant, α-G322Q-N474S-N475S. The α-G322Q-N474S-N475S mutant and BcGDHγα wild type were then characterized with dye-mediated dehydrogenase activity assays to determine their kinetic parameters. The α-G322Q-N474S-N475S mutant showed more than a 2-fold increase in Vmax towards glucose and this mutant showed a lower activity towards galactose in the physiological range (5â¯mM) of 4.19â¯Uâ¯mg-1, as compared to the wild type, 86.6â¯Uâ¯mg-1. This resulting increase in specificity lead to an 81.7â¯gal/glc % activity for the wild type while the α-G322Q-N474S-N475S mutant had just 10.9â¯gal/glc % activity at 5â¯mM. While the BcGDHγα wild type has high specificity towards galactose, our engineering α-G322Q-N474S-N475S mutant showed concentration dependent response to glucose and was not affected by galactose.
Assuntos
Burkholderia cepacia , Domínio Catalítico , Glucose 1-Desidrogenase , Mutagênese Sítio-Dirigida , Especificidade por Substrato , Glucose 1-Desidrogenase/metabolismo , Glucose 1-Desidrogenase/genética , Glucose 1-Desidrogenase/química , Burkholderia cepacia/enzimologia , Burkholderia cepacia/genética , Glucose/metabolismo , Galactose/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Transporte de Elétrons , Cinética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Modelos MolecularesRESUMO
Streptococcus thermophilus (S. thermophilus) is a widely used starter culture in dairy fermentation, but most strains are galactose-negative and only metabolize glucose from lactose hydrolysis. In this study, we aimed to uncover the mechanisms underlying the acquisition of a stable galactose-positive (Gal+) phenotype in a mutant strain of S. thermophilus IMAU10636. By treating the wild-type strain with the mutagenic agent N-methyl-N-nitro-N-nitrosoguanidine, we successfully isolated a Gal+ mutant, S. thermophilus IMAU10636Y. Comparative enzyme activity assays revealed that the mutant exhibited higher ß-galactosidase and galactokinase activities, but lower glucokinase and pyruvate kinase activities compared to the wild-type. High-performance liquid chromatography analysis confirmed the mutant's enhanced ability to utilize lactose and galactose, leading to increased glucose secretion. Integrated genome and transcriptomics analyses provided deeper insights into the underlying genetic and metabolic mechanisms. We found that the metabolism regulatory network of the glycolysis / Leloir pathway was altered in the mutant, possibly due to the upregulation of the gene expression in the galR-galK intergenic region. This likely led to increased RNA polymerase binding and transcription of the gal operon, ultimately promoting the Gal+ phenotype. Additionally, we identified a mutation in the scrR gene, encoding a LacI family transcriptional repressor, which also contributed to the Gal+ phenotype. These findings offer new perspectives on the metabolic rewiring and regulatory mechanisms that enable S. thermophilus to acquire the ability to metabolize galactose. This knowledge can inform strategies for engineering and selecting Gal+ strains with desirable fermentation characteristics for dairy applications.
Assuntos
Galactose , Regulação Bacteriana da Expressão Gênica , Glucose , Lactose , Mutação , Fenótipo , Streptococcus thermophilus , beta-Galactosidase , Galactose/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Glucose/metabolismo , Lactose/metabolismo , Fermentação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Glucoquinase/genética , Glucoquinase/metabolismo , Glicólise , Perfilação da Expressão GênicaRESUMO
Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (Mt1a, Mt1m, and Mt2A) and epithelial-mesenchymal transition-related factors (Acta2, Anxa1, Cd81, Mki67, Timp1, and Tyms) contribute to the therapeutic effect of cataracts.
Assuntos
Catarata , Modelos Animais de Doenças , Galactose , Cristalino , Ácido Pirúvico , Animais , Catarata/genética , Catarata/metabolismo , Catarata/induzido quimicamente , Galactose/metabolismo , Ratos , Ácido Pirúvico/metabolismo , Cristalino/metabolismo , Cristalino/patologia , Cristalino/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Transição Epitelial-Mesenquimal/efeitos dos fármacosRESUMO
The Pacific oyster (Magallana gigas) exhibits an extensive diversity of N- and O-linked glycoconjugates, offering significant potential for biotechnological applications. Through genomic data mining, we have identified and characterized a suite of ß-1,3-galactosyltransferase enzymes, pivotal for the synthesis of glycan structures. Out of ten cloned gene candidates, six enzymes were successfully expressed recombinantly in Escherichia coli. Four of these enzymes exhibited measurable catalytic activity in the transfer of galactose to various acceptor substrates. Notably, MgB3GalT1 demonstrated the highest efficiency, achieving a 91.2 % conversion rate. This enzyme was proficient in glycosylating diverse glycan structures, including Core 2 O-glycans and several di-, tri-, and tetra-antennary complex N-glycan standards. Mass spectrometric analysis confirmed the successful modification of N-glycans. These findings open new approaches for utilizing oyster-derived enzymes in glycan-based therapeutics and molecular glycoengineering, highlighting their utility in synthetic applications and biotechnological advancements.
Assuntos
Galactosiltransferases , Glicoconjugados , Animais , Galactosiltransferases/metabolismo , Galactosiltransferases/química , Galactosiltransferases/genética , Glicoconjugados/química , Glicoconjugados/metabolismo , Glicosilação , Ostreidae/enzimologia , Galactose/metabolismo , Galactose/química , Polissacarídeos/metabolismo , Polissacarídeos/químicaRESUMO
Senescent chondrocytes or signaling mechanisms leading to senescence are promising new therapeutic approaches for ameliorating cartilage degradation. Herein, we show that the transactive response DNA/RNA-binding protein (TDP-43) regulates chondrocyte senescence and ameliorates cartilage degradation. First, a significant decrease in TDP-43 was observed in 16-month-old mice compared with younger mice. Immunohistochemistry (IHC) analysis of mouse articular cartilage showed that p21, p16, p53, and matrix metalloprotein-13 (MMP13) were increased, but laminB1 and Collagen type II alpha1 1 chain (Col2a1) were decreased in 16-month-old mice. Furthermore, TDP-43 levels were decreased in vivo following D-galactose (D-gal) induction. Therefore, we investigated the role of TDP-43 in the senescent chondrocytes. ATDC5 cells were induced to overexpress TDP-43. Western blot analysis showed increased expression of laminB1, Ki67, and PCNA but decreased expression of p21, p16, p53, and MMP13. Senescence-associated-ß-galactosidase (SA-ß-Gal) assay, γH2AX staining, and EdU were performed to assess changes in chondrocytes, showing weaker SA-ß-Gal and γH2AX staining but stronger EdU and Alican Blue staining. However, TDP-43 deficiency had opposing effects, and similar to D-gal stimulation results. Taken together, our data verified that TDP-43 negatively correlated with senescence markers, positively correlated with cell proliferation markers, and could alleviate cartilage degradation induced by D-gal. This may be an essential mechanism of cellular senescence and cartilage degradation.
Assuntos
Envelhecimento , Cartilagem Articular , Senescência Celular , Condrócitos , Proteínas de Ligação a DNA , Animais , Condrócitos/metabolismo , Senescência Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Cartilagem Articular/metabolismo , Camundongos , Envelhecimento/metabolismo , Camundongos Endogâmicos C57BL , Galactose/metabolismo , Masculino , Proliferação de CélulasRESUMO
Ageing is the most prominent risk for osteoarthritis (OA) development. This study aimed to investigate the role of phosphoinositide-specific phospholipase Cγ (PLCγ) 1, previously linked to OA progression, in regulating age-related changes in articular cartilage and subchondral bone. d-galactose (d-Gal) was employed to treat chondrocytes from rats and mice or injected intraperitoneally into C57BL/6 mice. RTCA, qPCR, Western blot and immunohistochemistry assays were used to evaluate cell proliferation, matrix synthesis, senescence genes and senescence-associated secretory phenotype, along with PLCγ1 expression. Subchondral bone morphology was assessed through micro-CT. In mice with chondrocyte-specific Plcg1 deficiency (Plcg1flox/flox; Col2a1-CreERT), articular cartilage and subchondral bone were examined over different survival periods. Our results showed that d-Gal induced chondrocyte senescence, expedited articular cartilage ageing and caused subchondral bone abnormalities. In d-Gal-induced chondrocytes, diminished PLCγ1 expression was observed, and its further inhibition by U73122 exacerbated chondrocyte senescence. Plcg1flox/flox; Col2a1-CreERT mice exhibited more pronounced age-related changes in articular cartilage and subchondral bone compared to Plcg1flox/flox mice. Therefore, not only does d-Gal induce senescence in chondrocytes and age-related changes in articular cartilage and subchondral bone, as well as diminished PLCγ1 expression, but PLCγ1 deficiency in chondrocytes may also accelerate age-related changes in articular cartilage and subchondral bone. PLCγ1 may be a promising therapeutic target for mitigating age-related changes in joint tissue.
Assuntos
Cartilagem Articular , Condrócitos , Camundongos Endogâmicos C57BL , Fosfolipase C gama , Animais , Masculino , Camundongos , Ratos , Envelhecimento/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Osso e Ossos/diagnóstico por imagem , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proliferação de Células , Senescência Celular , Condrócitos/metabolismo , Estrenos/farmacologia , Galactose/metabolismo , Osteoartrite/patologia , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia , Fosfolipase C gama/metabolismo , Fosfolipase C gama/genética , Pirrolidinonas/farmacologiaRESUMO
Galectin-3 (Gal-3) is a carbohydrate binding protein that has been implicated in the development and progression of fibrotic diseases. Proof-of-principal animal models have demonstrated that inhibition of Gal-3 is a potentially viable pathway for the treatment of fibrosisâwith small molecule Gal-3 inhibitors advanced into clinical trials. We hereby report the discovery of novel galactose-based monosaccharide Gal-3 inhibitors comprising 2-methyl-4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (compound 20) and 4-phenyl-4H-1,2,4-triazole (compound 15). Notably, hindered rotation caused by steric interaction between the 3-thione and ortho-trifluoromethyl group of compounds 20, 21 induced formation of thermodynamically stable atropisomers. Distinct X-ray cocrystal structures of 20 and 21 were obtained, which clearly demonstrated that the configuration of 21 proscribes a key halogen bonding σ-hole interaction of 3-chloro with carbonyl oxygen of Gly182, thereby leading to significant loss in potency. Ultimately, 20 and 15 were evaluated in mouse pharmacokinetic studies, and both compounds exhibited oral exposures suitable for further in vivo assessment.
Assuntos
Galactose , Galectina 3 , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Triazóis/farmacocinética , Galactose/química , Galactose/metabolismo , Animais , Humanos , Galectina 3/antagonistas & inibidores , Galectina 3/metabolismo , Camundongos , Relação Estrutura-Atividade , Cristalografia por Raios X , Tionas/química , Tionas/farmacologia , Tionas/síntese química , Tionas/farmacocinética , Proteínas Sanguíneas/metabolismo , Galectinas/antagonistas & inibidores , Galectinas/metabolismo , Modelos MolecularesRESUMO
Escherichia coli Nissle 1917 (EcN) is one of the most widely used probiotics to treat gastrointestinal diseases. Recently, many studies have engineered EcN to release therapeutic proteins to treat specific diseases. However, because EcN exhibits intestinal metabolic activities, it is difficult to predict outcomes after administration. In silico and fermentation profiles revealed mucin metabolism of EcN. Multiomics revealed that fucose metabolism contributes to the intestinal colonization of EcN by enhancing the synthesis of flagella and nutrient uptake. The multiomics results also revealed that excessive intracellular trehalose synthesis in EcN, which is responsible for galactose metabolism, acts as a metabolic bottleneck, adversely affecting growth. To improve the ability of EcN to metabolize galactose, otsAB genes for trehalose synthesis were deleted, resulting in the ΔotsAB strain; the ΔotsAB strain exhibited a 1.47-fold increase in the growth rate and a 1.37-fold increase in the substrate consumption rate relative to wild-type EcN.
Assuntos
Escherichia coli , Intestinos , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Intestinos/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Probióticos/metabolismo , Galactose/metabolismo , Fermentação , Trealose/metabolismo , Humanos , Fucose/metabolismoRESUMO
L-arabinose isomerase (L-AI) is a functional enzyme for the isomerizing of D-galactose to produce D-tagatose. In this study, L-AI-C6-encoding gene from the probiotic Lactobacillus fermentum C6 was cloned and expressed in Bacillus subtilis WB600 for investigating enzymatic characteristics and bioconverting D-tagatose by means of whole-cell catalysis. Results showed that the engineered B. subtilis WB600-pMA5-LAI achieved a maximum specific activity of L-AI-C6 (232.65 ± 15.54 U/mg protein) under cultivation in LB medium at 28 °C for 40 h. The recombinant L-AI-C6 was purified, and enzymatic characteristics test showed its optimum reaction temperature and pH at 60 °C and 8.0, respectively. In addition, L-AI-C6 exhibited good stability within the pH range of 5.5-9.0. By using B. subtilis WB600-pMA5-LAI cells as whole-cell catalyst, the highest D-tagatose yield reached 42.91 ± 0.28 % with D-galactose as substrate, which was 2.41 times that of L. fermentum C6 (17.79 ± 0.11 %). This suggested that the cloning and heterologous expression of L-AI-C6 was an effective strategy for improving D-tagatose conversion by whole-cell catalysis. In brief, the present study demonstrated that the reaction temperature, pH, and stability of L-AI-C6 from L. fermentum C6 meet the demands of industrial application, and the constructed B. subtilis WB600-pMA5-LAI shows promising potential for the whole-cell biotransformation of D-tagatose.
Assuntos
Aldose-Cetose Isomerases , Bacillus subtilis , Hexoses , Limosilactobacillus fermentum , Proteínas Recombinantes , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Hexoses/metabolismo , Hexoses/biossíntese , Limosilactobacillus fermentum/enzimologia , Limosilactobacillus fermentum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Concentração de Íons de Hidrogênio , Temperatura , Clonagem Molecular/métodos , Estabilidade Enzimática , Galactose/metabolismo , CinéticaRESUMO
Classic galactosemia is an inborn error of metabolism caused by mutations in the GALT gene resulting in the diminished activity of the galactose-1-phosphate uridyltransferase enzyme. This reduced GALT activity leads to the buildup of the toxic intermediate galactose-1-phosphate and a decrease in ATP levels upon exposure to galactose. In this work, we focused our attention on mitochondrial oxidative phosphorylation in the context of this metabolic disorder. We observed that galactose-1-phosphate accumulation reduced respiratory rates in vivo and changed mitochondrial function and morphology in yeast models of galactosemia. These alterations are harmful to yeast cells since the mitochondrial retrograde response is activated as part of the cellular adaptation to galactose toxicity. In addition, we found that galactose-1-phosphate directly impairs cytochrome c oxidase activity of mitochondrial preparations derived from yeast, rat liver, and human cell lines. These results highlight the evolutionary conservation of this biochemical effect. Finally, we discovered that two compounds - oleic acid and dihydrolipoic acid - that can improve the growth of cell models of mitochondrial diseases, were also able to improve galactose tolerance in this model of galactosemia. These results reveal a new molecular mechanism relevant to the pathophysiology of classic galactosemia - galactose-1-phosphate-dependent mitochondrial dysfunction - and suggest that therapies designed to treat mitochondrial diseases may be repurposed to treat galactosemia.
Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Galactosemias , Galactosefosfatos , Mitocôndrias , Galactosemias/metabolismo , Galactosemias/patologia , Galactosemias/genética , Galactosefosfatos/metabolismo , Humanos , Animais , Ratos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/efeitos dos fármacos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fosforilação Oxidativa/efeitos dos fármacos , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/genética , Galactose/metabolismoRESUMO
The marine Bacteroidota Zobellia galactanivorans has a polysaccharide utilization locus dedicated to the catabolism of the red algal cell wall galactan carrageenan and its unique and industrially important α-3,6-anhydro-D-galactose (ADG) monosaccharide. Here we present the first analysis of the specific molecular interactions that the exo-(α-1,3)-3,6-anhydro-D-galactosidase ZgGH129 uses to cope with the strict steric restrictions imposed by its bicyclic ADG substrate - which is ring flipped relative to D-galactose. Crystallographic snapshots of key catalytic states obtained with the natural substrate and novel chemical tools designed to mimic species along the reaction coordinate, together with quantum mechanics/molecular mechanics (QM/MM) metadynamics methods and kinetic studies, demonstrate a retaining mechanism where the second step is rate limiting. The conformational landscape of the constrained 3,6-anhydro-D-galactopyranose ring proceeds through enzyme glycosylation B1,4â[E4]≠âE4/1C4 and deglycosylation E4/1C4â[E4]≠âB1,4 itineraries limited to the Southern Hemisphere of the Cremer-Pople sphere. These results demonstrate the conformational changes throughout catalysis in a non-standard, sterically restrained, bicyclic monosaccharide, and provide a molecular framework for mechanism-based inhibitor design for anhydro-type carbohydrate-processing enzymes and for future applications involving carrageenan degradation. In addition, our study provides a rare example of distinct niche-based conformational itineraries within the same carbohydrate-active enzyme family.
Assuntos
Parede Celular , Galactose , Rodófitas , Parede Celular/metabolismo , Parede Celular/enzimologia , Rodófitas/enzimologia , Galactose/análogos & derivados , Galactose/metabolismo , Galactose/química , Galactosidases/metabolismo , Biocatálise , Bacteroidetes/enzimologia , Teoria Quântica , Carragenina/metabolismo , Carragenina/química , Simulação de Dinâmica MolecularRESUMO
Invertebrate lectins exhibit structural diversity and play crucial roles in the innate immune responses by recognizing and eliminating pathogens. In the present study, a novel lectin containing a Gal_Lectin, a CUB and a transmembrane domain was identified from the Pacific oyster Crassostrea gigas (defined as CgGal-CUB). CgGal-CUB mRNA was detectable in all the examined tissues with the highest expression in adductor muscle (11.00-fold of that in haemocytes, p < 0.05). The expression level of CgGal-CUB mRNA in haemocytes was significantly up-regulated at 3, 24, 48 and 72 h (8.37-fold, 12.13-fold, 4.28-fold and 10.14-fold of that in the control group, respectively) after Vibrio splendidus stimulation. The recombinant CgGal-CUB (rCgGal-CUB) displayed binding capability to Mannan (MAN), peptidoglycan (PGN), D-(+)-Galactose and L-Rhamnose monohydrate, as well as Gram-negative bacteria (Escherichia coli, V. splendidus and Vibrio anguillarum), Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, and Bacillus sybtilis) and fungus (Pichia pastoris). rCgGal-CUB was also able to agglutinate V. splendidus, and inhibit V. splendidus growth. Furthermore, rCgGal-CUB exhibited the activities of enhancing the haemocyte phagocytosis towards V. splendidus, and the phagocytosis rate of haemocytes was descended in blockage assay with CgGal-CUB antibody. These results suggested that CgGal-CUB served as a pattern recognition receptor to bind various PAMPs and bacteria, and enhanced the haemocyte phagocytosis towards V. splendidus.