Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.509
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000537

RESUMO

This research compared how different levels of dietary crude protein (CP) and apparent metabolizable energy (AME) affect the growth performance, nitrogen utilization, serum parameters, protein synthesis, and amino acid (AA) metabolism in broilers aged 1 to 10 days. In a 4 × 3 factorial experimental design, the broilers were fed four levels of dietary CP (20%, 21%, 22%, and 23%) and three levels of dietary AME (2800 kcal/kg, 2900 kcal/kg, and 3000 kcal/kg). A total of 936 one-day-old male Arbor Acres broilers were randomly allocated to 12 treatments with 6 replications each. Growth performance, nitrogen utilization, serum parameter, gene expression of protein synthesis, and AA metabolism were evaluated at 10 d. The results revealed no interaction between dietary CP and AME levels on growth performance (p > 0.05). However, 22% and 23% CP enhanced body weight gain (BWG), the feed conversion ratio (FCR), total CP intake, and body protein deposition but had a detrimental effect on the protein efficiency ratio (PER) compared to 20% or 21% CP (p < 0.05). Broilers fed diets with 2800 kcal/kg AME showed increased feed intake (FI) and inferior PER (p < 0.05). Broilers fed diets with 3000 kcal/kg AME showed decreased muscle mRNA expression of mammalian target of the rapamycin (mTOR) and Atrogin-1 compared to those fed diets with 2800 kcal/kg and 2900 kcal/kg AME (p < 0.05). Increasing dietary CP level from 20% to 23% decreased muscle mTOR and increased S6K1 mRNA expression, respectively (p < 0.05). The muscle mRNA expression of Atrogin-1 was highest for broilers fed 23% CP diets (p < 0.05). The mRNA expression of betaine homocysteine methyltransferase (BHMT) and Liver alanine aminotransferase of the 22% and 23% CP groups were higher than those of 20% CP (p < 0.05). Significant interactions between dietary CP and AME levels were observed for muscle AMPK and liver lysine-ketoglutarate reductase (LKR) and branched-chain alpha-keto acid dehydrogenase (BCKDH) mRNA expression (p < 0.05). Dietary AME level had no effect on muscle AMPK mRNA expression for broilers fed 21% and 22% CP diets (p > 0.05), whereas increasing dietary AME levels decreased AMPK mRNA expression for broilers fed 23% CP diets (p < 0.05). The mRNA expression of LKR and BCKDH was highest for broilers fed the diet with 2800 kcal/kg AME and 22% CP, while it was lowest for broilers fed the diet with 3000 kcal/kg AME and 20% CP. The findings suggest that inadequate energy density hindered AA utilization for protein synthesis, leading to increased AA catabolism for broilers aged 1 to 10 days, and a dietary CP level of 22% and an AME level of 2900 to 3000 kcal/kg may be recommended based on performance and dietary protein utilization.


Assuntos
Aminoácidos , Ração Animal , Galinhas , Proteínas Alimentares , Metabolismo Energético , Nitrogênio , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Masculino , Nitrogênio/metabolismo , Proteínas Alimentares/metabolismo , Proteínas Alimentares/administração & dosagem , Aminoácidos/metabolismo , Ração Animal/análise , Metabolismo Energético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal , Dieta/veterinária
2.
J Agric Food Chem ; 72(28): 15530-15540, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38963795

RESUMO

The skeletal muscle is the major muscle tissue in animals, and its production is subject to a complex and strict regulation. The proliferation and differentiation of myoblasts are important factors determining chicken muscle development. Circular RNAs (circRNAs) are endogenous RNAs that are widely present in various tissues of organisms. Recent studies have shown that circRNA plays key roles in the development of skeletal muscles. The solute carrier (SLC) family functions in the transport of metabolites such as amino acids, glucose, nucleotides, and essential nutrients and is widely involved in various basic physiological metabolic processes within the body. In this study, we have cloned a novel chicken circular RNA circSLC2A13 generated from the solute carrier family 2 member 13 gene (SLC2A13). Also, circSLC2A1 was confirmed by sequencing verification, RNase R treatment, and reverse transcription analysis. Currently, our results show that circSLC2A13 promoted the proliferation and differentiation of chicken myoblasts. The double luciferase reporter system revealed that circSLC2A13 regulated the proliferation and differentiation of myoblasts by competitive binding with miR-34a-3p. In addition, results indicated that circSLC2A13 acts as a miR-34a-3p sponge to relieve its inhibitory effect on the target SMAD3 gene. In summary, this study found that chicken circSLC2A13 can bind to miR-34a-3p and weaken its inhibitory effect on the SMAD family member 3 gene (SMAD3), thereby promoting the proliferation and differentiation of myoblasts. This study laid foundations for broiler industry and muscle development research.


Assuntos
Diferenciação Celular , Proliferação de Células , Galinhas , MicroRNAs , Desenvolvimento Muscular , Músculo Esquelético , Mioblastos , RNA Circular , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/metabolismo , Mioblastos/citologia
3.
J Agric Food Chem ; 72(28): 15662-15671, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38976570

RESUMO

This study determined the effects of two methionine (Met) sources at three total sulfur amino acids (TSAA) to lysine ratios (TSAA/Lys) on gut pH, digestive enzyme activity, amino acid transporter expression, and Met metabolism of broilers. The birds were randomly assigned to a 2 × 3 factorial arrangement with Met sources (dl-Met and dl-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met)) and TSAA/Lys (0.58, 0.73, and 0.88) from 1 to 21 days. The results demonstrated that dl-Met and OH-Met supported the same growth performance, but high TSAA/Lys ratio reduced the feed intake and body weight (P < 0.05). OH-Met reduced the crop chyme pH and enhanced the jejunal lipase activity (P < 0.05). ATB0,+ expression decreased with increased dl-Met levels in the duodenum; the low TSAA/Lys ratio induced a stronger mRNA expression of basolateral Met transporters. OH-Met resulted in an increase of cystathionine ß-synthase expression in the liver and a decrease in serum homocysteine levels at middle TSAA/Lys ratio compared with dl-Met treatment (P < 0.05). In conclusion, two Met sources support the same growth, but OH-Met acidified the crop chyme. The investigated transporter transcripts differed significantly along the small intestine. At the middle TSAA/Lys ratio, OH-Met showed a higher metabolic tendency of the trans-sulfuration pathway compared with dl-Met.


Assuntos
Sistemas de Transporte de Aminoácidos , Ração Animal , Galinhas , Metionina , Animais , Metionina/metabolismo , Galinhas/genética , Galinhas/metabolismo , Ração Animal/análise , Concentração de Íons de Hidrogênio , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Masculino , Fígado/metabolismo
4.
Anim Sci J ; 95(1): e13981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39030799

RESUMO

The current study evaluated the effects of parsley essential oil on broiler growth performance, carcass features, liver and kidney functions, immunity and antioxidant activity, and lipid profile. A total of 160 unsexed 7-day broiler chicks (Cobb500) were distributed into five groups; each group contained five replicates with eight birds each. The treatments were (1) basal diet (no additive, T1), (2) basal diet + 0.5 mL parsley essential oil/kg (T2), (3) basal diet + 1 mL parsley essential oil/kg (T3), (4) basal diet + 1.5 mL parsley essential oil/kg (T4), and (5) basal diet + 2 mL parsley essential oil/kg (T5). According to GC-MS analysis, parsley oil contains D-limonene, hexadecanoic acid, α-cyclocitral, globulol, α-pinene, myristicin, cryophyllene, bergapten, α-chamigrene, etc. The current results indicated that the most abundant molecules in parsley oil were D-limonene (18.82%), oleic acid (14.52%), α-cyclocitral (11.75%), globulol (11.24%), α-guaiene (7.34%), apiol (5.45%), and hexadecanoic acid (4.69%). Adding parsley essential oil to the broiler diet quadratically increased body weight (BW) during 1-3 weeks of age. The T5 group recorded the highest value (869.37 g) of BW in comparison to other treatments and the control group. The cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and total immunoglobulin, including immunoglobulin G (IgG) and immunoglobulin M (IgM) levels in the birds fed parsley essential oil were not affected. The T3 group recorded the highest value (159 ng/mL) of superoxide dismutase (SOD) and the lowest value (2.01 ng/mL) of malondialdehyde (MDA) when compared to the control and other treatment. In conclusion, we recommend using parsley oil at levels of 1 mL/kg diet of broiler chicks.


Assuntos
Ração Animal , Antioxidantes , Galinhas , Dieta , Rim , Fígado , Óleos Voláteis , Petroselinum , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Galinhas/imunologia , Galinhas/fisiologia , Antioxidantes/metabolismo , Ração Animal/análise , Óleos Voláteis/administração & dosagem , Óleos Voláteis/farmacologia , Fígado/metabolismo , Dieta/veterinária , Rim/metabolismo , Petroselinum/química , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Lipídeos/sangue , Lipídeos/análise , Fenômenos Fisiológicos da Nutrição Animal , Aditivos Alimentares , Suplementos Nutricionais , Masculino
5.
Trop Anim Health Prod ; 56(5): 186, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842640

RESUMO

Nutrient supply regulates overall body growth directly or indirectly through its influence on regulatory factors optimizing nutrient requirements becomes crucial before embarking on genetic improvements. Hence this study addresses this gap by evaluating the effect of feeding varying energy and crude protein levels on growth performance and gene expression related to the growth of indigenous Siruvidai chicken from 0 to 12 weeks. A 360-day-old straight-run Siruvidai chick were randomly distributed into six experimental groups with three replicates of each 20 chicks. The birds were fed corn-soy-based diets formulated with two levels of energy (2500 and 2700 kcal ME/kg) each with three levels of crude protein (16, 18, and 20%) during the brooder stage (0-12 weeks) in 2 × 3 factorial design. Results revealed that there was no significant effect on the energy and protein interaction levels on average feed intake, body weight gain and feed conversion ratio in Siruvidai chicken at 12 weeks. The results showed significantly (P < 0.05) lower feed intake in 18% protein fed groups and significantly (P < 0.01) lower feed intake in higher energy 2700 kcal ME/kg fed groups. A better feed conversion ratio (4.06 and 4.21) was observed on the effect of protein levels in bird diets with 18% and 20% protein fed groups. The Growth Hormone (GH) and Myostatin (MSTN) gene expression were significantly (P < 0.01) higher in 16% CP and 2500 kcal ME/kg in hepatic tissue. The high protein and low energy diet up-regulated the Insulin-like Growth Factor-1 (IGF-1) gene expression in hepatic tissue. The study concluded that Siruvidai chicken fed with 18% crude protein and 2500 kcal ME/kg is optimum for 0-12 weeks of age.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Proteínas Alimentares , Animais , Galinhas/crescimento & desenvolvimento , Galinhas/genética , Galinhas/metabolismo , Ração Animal/análise , Dieta/veterinária , Proteínas Alimentares/metabolismo , Proteínas Alimentares/análise , Proteínas Alimentares/administração & dosagem , Ingestão de Energia , Distribuição Aleatória , Expressão Gênica , Aumento de Peso , Masculino
6.
BMC Vet Res ; 20(1): 246, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849831

RESUMO

BACKGROUND: Reducing production costs while producing high-quality livestock and poultry products is an ongoing concern in the livestock industry. The addition of oil to livestock and poultry diets can enhance feed palatability and improve growth performance. Emulsifiers can be used as potential feed supplements to improve dietary energy utilization and maintain the efficient productivity of broilers. Therefore, further investigation is warranted to evaluate whether dietary emulsifier supplementation can improve the efficiency of fat utilization in the diet of yellow-feathered broilers. In the present study, the effects of adding emulsifier to the diet on lipid metabolism and the performance of yellow-feathered broilers were tested. A total of 240 yellow-feasted broilers (21-day-old) were randomly divided into 4 groups (6 replicates per group, 10 broilers per replicate, half male and half female within each replicate). The groups were as follows: the control group (fed with basal diet), the group fed with basal diet supplemented with 500 mg/kg emulsifier, the group fed with a reduced oil diet (reduced by 1%) supplemented with 500 mg/kg emulsifier, and the group fed with a reduced oil diet supplemented with 500 mg/kg emulsifier. The trial lasted for 42 days, during which the average daily feed intake, average daily gain, and feed-to-gain ratio were measured. Additionally, the expression levels of lipid metabolism-related genes in the liver, abdominal fat and each intestinal segment were assessed. RESULTS: The results showed that compared with the basal diet group, (1) The average daily gain of the basal diet + 500 mg/kg emulsifier group significantly increased (P < 0.05), and the half-even-chamber rate was significantly increased (P < 0.05); (2) The mRNA expression levels of Cd36, Dgat2, Apob, Fatp4, Fabp2, and Mttp in the small intestine were significantly increased (P < 0.05). (3) Furthermore, liver TG content significantly decreased (P < 0.05), and the mRNA expression level of Fasn in liver was significantly decreased (P < 0.05), while the expression of Apob, Lpl, Cpt-1, and Pparα significantly increased (P < 0.05). (4) The mRNA expression levels of Lpl and Fatp4 in adipose tissue were significantly increased (P < 0.05), while the expression of Atgl was significantly decreased (P < 0.05). (5) Compared with the reduced oil diet group, the half-evading rate and abdominal fat rate of broilers in the reduced oil diet + 500 mg/kg emulsifier group were significantly increased (P < 0.05), and the serum level of LDL-C increased significantly (P < 0.05)0.6) The mRNA expression levels of Cd36, Fatp4, Dgat2, Apob, and Mttp in the small intestine were significantly increased (P < 0.05). 7) The mRNA expression levels of Fasn and Acc were significantly decreased in the liver (P < 0.05), while the mRNA expression levels of Lpin1, Dgat2, Apob, Lpl, Cpt-1, and Pparα were significantly increased (P < 0.05). CONCLUSIONS: These results suggest that dietary emulsifier can enhance the fat utilization efficiency of broilers by increasing the small intestinal fatty acid uptake capacity, inhibiting hepatic fatty acid synthesis and promoting hepatic TG synthesis and transport capacity. This study provides valuable insights for the potential use of emulsifier supplementation to improve the performance of broiler chickens.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Emulsificantes , Metabolismo dos Lipídeos , Animais , Galinhas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Emulsificantes/farmacologia , Ração Animal/análise , Masculino , Feminino , Dieta/veterinária , Fígado/metabolismo , Fígado/efeitos dos fármacos
7.
BMC Genomics ; 25(1): 634, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918701

RESUMO

BACKGROUND: Previous studies have demonstrated the role of N6-methyladenosine (m6A) RNA methylation in various biological processes, our research is the first to elucidate its specific impact on LCAT mRNA stability and adipogenesis in poultry. RESULTS: The 6 100-day-old female chickens were categorized into high (n = 3) and low-fat chickens (n = 3) based on their abdominal fat ratios, and their abdominal fat tissues were processed for MeRIP-seq and RNA-seq. An integrated analysis of MeRIP-seq and RNA-seq omics data revealed 16 differentially expressed genes associated with to differential m6A modifications. Among them, ELOVL fatty acid elongase 2 (ELOVL2), pyruvate dehydrogenase kinase 4 (PDK4), fatty acid binding protein 9 (PMP2), fatty acid binding protein 1 (FABP1), lysosomal associated membrane protein 3 (LAMP3), lecithin-cholesterol acyltransferase (LCAT) and solute carrier family 2 member 1 (SLC2A1) have ever been reported to be associated with adipogenesis. Interestingly, LCAT was down-regulated and expressed along with decreased levels of mRNA methylation methylation in the low-fat group. Mechanistically, the highly expressed ALKBH5 gene regulates LCAT RNA demethylation and affects LCAT mRNA stability. In addition, LCAT inhibits preadipocyte proliferation and promotes preadipocyte differentiation, and plays a key role in adipogenesis. CONCLUSIONS: In conclusion, ALKBH5 mediates RNA stability of LCAT through demethylation and affects chicken adipogenesis. This study provides a theoretical basis for further understanding of RNA methylation regulation in chicken adipogenesis.


Assuntos
Adenosina , Adipogenia , Homólogo AlkB 5 da RNA Desmetilase , Galinhas , Fosfatidilcolina-Esterol O-Aciltransferase , Estabilidade de RNA , Animais , Adipogenia/genética , Galinhas/genética , Galinhas/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Feminino , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação
8.
J Agric Food Chem ; 72(23): 13348-13359, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829852

RESUMO

Lasalocid sodium is a polyether carboxylic ionophore agent authorized by the EU for use as a coccidiostat in broilers, turkeys, and pullets up to 16 weeks of age, except for laying hens. However, laying hens are the most common nontarget species exposed to lasalocid sodium, mainly due to cross-contamination from feed mills. This exposure may result in potential drug residue deposition in eggs, which could potentially expose consumers to the drug. The breeds commonly used for commercial egg production in Poland are Isa Brown and Green-legged Partridge hens, which have been found to significantly differ in egg-laying performance. This variability may also affect the pharmacokinetics of lasalocid. Data on lasalocid plasma pharmacokinetics in laying hens are lacking. In this study, we aimed to determine typical population pharmacokinetic parameters, absolute oral bioavailability, and how breed may influence the pharmacokinetics of lasalocid. Twenty-layer hens of the two breeds were used in this study. Lasalocid was administered orally at a single dose of either 1 mg or 5 mg/kg body weight or intravenously at a dose of 1 mg/kg body weight, in a crossover design with a three-week washout period between study periods. Blood samples were collected for 72 h, and lasalocid concentrations were measured using high-performance liquid chromatography with fluorescence detection. A population pharmacokinetic analysis was conducted using nonlinear mixed effects modeling. Standard numerical and graphical criteria were used to select the best model, and a stepwise covariate modeling approach was used to determine any influencing factors. The best model was a three-compartment mammillary model with first-order absorption, transit compartments, and linear elimination. The estimated absolute oral bioavailability was low (36%). It was found that breed significantly influenced not only absorption but also the elimination of lasalocid. This study revealed that lasalocid absorption and elimination varied between the two breeds. This variability in pharmacokinetics may result in breed-related differences in drug residue accumulation in eggs, and ultimately, the risk associated with consumer exposure to drug residues may also vary.


Assuntos
Disponibilidade Biológica , Galinhas , Lasalocida , Animais , Galinhas/metabolismo , Feminino , Lasalocida/farmacocinética , Lasalocida/administração & dosagem , Lasalocida/metabolismo , Administração Oral , Coccidiostáticos/farmacocinética , Coccidiostáticos/administração & dosagem , Coccidiostáticos/sangue , Ovos/análise , Polônia
9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38738625

RESUMO

Inosine monphosphate (IMP) is one of the important indicators for evaluating meat flavor, and long noncoding RNAs (lncRNAs) play an important role in its transcription and post-transcriptional regulation. Currently, there is little information about how lncRNA regulates the specific deposition of IMP in chicken muscle. In this study, we used transcriptome sequencing to analyze the lncRNAs of the breast and leg muscles of the Jingyuan chicken and identified a total of 357 differentially expressed lncRNAs (DELs), of which 158 were up-regulated and 199 were down-regulated. There were 2,203 and 7,377 cis- and trans-regulated target genes of lncRNAs, respectively, and we identified the lncRNA target genes that are involved in NEGF signaling pathway, glycolysis/glucoseogenesis, and biosynthesis of amino acids pathways. Meanwhile, 621 pairs of lncRNA-miRNA-mRNA interaction networks were constructed with target genes involved in purine metabolism, fatty acid metabolism, and biosynthesis of amino acids. Next, three interacting meso-networks gga-miR-1603-LNC_000324-PGM1, gga-miR-1768-LNC_000324-PGM1, and gga-miR-21-LNC_011339-AMPD1 were identified as closely associated with IMP-specific deposition. Both differentially expressed genes (DEGs) PGM1 and AMPD1 were significantly enriched in IMP synthesis and metabolism-related pathways, and participated in the anabolic process of IMP in the form of organic matter synthesis and energy metabolism. This study obtained lncRNAs and target genes affecting IMP-specific deposition in Jingyuan chickens based on transcriptome analysis, which deepened our insight into the role of lncRNAs in chicken meat quality.


Jingyuan chicken is an excellent local chicken breed listed in the Catalogue of Livestock and Poultry Genetic Resources of China. Its unique growing environment has enabled Jingyuan chicken to develop the characteristics of compact meat, unique flavor, and high nutritional value, which makes it the first choice for chicken food. Inosine monophosphate (IMP) is widely recognized as an important indicator for evaluating the flavor of livestock and poultry meat. To mine potential long noncoding RNAs (lncRNAs) and their regulatory IMP-specific deposition interaction networks, we used transcriptome sequencing to identify 357 lncRNAs that were differentially expressed in breast and leg muscles of 180-d-old Jingyuan hens. We screened the key lncRNAs affecting IMP and three lncRNA-miRNA-mRNA regulatory networks by bioinformatics methods. This provides a new approach to studying IMP-specific deposition, improvement of chicken meat flavor, and breed improvement in Jingyuan chickens.


Assuntos
Galinhas , Perfilação da Expressão Gênica , Inosina Monofosfato , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Galinhas/genética , Galinhas/metabolismo , Inosina Monofosfato/metabolismo , Transcriptoma , MicroRNAs/genética , MicroRNAs/metabolismo , Carne/análise , Inosina/metabolismo , Inosina/genética , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica
10.
Br Poult Sci ; 65(3): 361-369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38787328

RESUMO

1. The objective of this study was to determine the nutritional and energy values of four maize distiller's dried grains with solubles (DDGS) and one maize high protein distiller's dried grains (HP-DDG) from ethanol production plants in Brazil; to evaluate the digestibility, performance, nitrogen balance and energy values for broiler chickens fed diets containing these coproducts (Experiment I); and to evaluate the effects of xylanase inclusion in diets containing maize DDGS for broilers on energy availability, digestibility, nitrogen balance and gastrointestinal morphometry (Experiment II).2. For each experiment, 180 broiler chickens aged 17 and 30 days with initial weights of 450 ± 18 g and 1228 ± 33 g, respectively, were used; the chickens were distributed into 36 metabolism cages. The experimental design consisted of complete randomised blocks, with six replications per treatment and five birds per experimental unit. The treatments consisted of a basal diet (BD) and five test diets containing maize ethanol coproducts (Experiment I) one BD and five test diets containing DDGS with inclusions of 0, 8,000, 16,000, 24,000 and 32,000 BXU/kg xylanase (Experiment II). In Experiment I, HP-DDG and DDGS2 presented higher AME and AMEn values (14.1 and 13.9 MJ/kg and 13.4 and 13.3 MJ/kg, respectively), than did the other coproducts (p < 0.05). Compared with DDGS1 and DDGS3, DDGS4 and HP-DDG had higher digestible CP values (p < 0.05). In Experiment II, the inclusion of the enzyme quadratically affected the values of digestible CP and digestible EE (p < 0.05), with the maximum values occurring with the inclusion of 18 750 and 22,170 BXU/kg of xylanase, respectively.3. The digestible NDF and digestible MM values linearly increased with the inclusion of xylanase (p < 0.05). The addition of xylanase had no effect on gastrointestinal morphometry (p > 0.05). It was concluded that the inclusion of between 18,000 and 22,000 BXU/kg of xylanase resulted in better digestible CP and digestible EE values.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Digestão , Endo-1,4-beta-Xilanases , Zea mays , Animais , Galinhas/fisiologia , Galinhas/metabolismo , Zea mays/química , Ração Animal/análise , Digestão/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Dieta/veterinária , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/administração & dosagem , Masculino , Distribuição Aleatória , Etanol , Valor Nutritivo , Trato Gastrointestinal/metabolismo , Suplementos Nutricionais/análise
11.
Br Poult Sci ; 65(3): 250-258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808584

RESUMO

1. The liver of chickens is a dominant lipid biosynthetic tissue and plays a vital role in fat deposition, particularly in the abdomen. To determine the molecular mechanisms involved in its lipid metabolism, the livers of chickens with high (H) or low (L) abdominal fat content were sampled and sequencing on long non-coding RNA (lncRNA), messenger RNA (mRNA) and small RNA (microRNA) was performed.2. In total, 351 expressed protein-coding genes for long non-coding RNA (DEL; 201 upregulated and 150 downregulated), 400 differentially expressed genes (DEG; 223 upregulated and 177 downregulated) and 10 differentially expressed miRNA (DEM; four upregulated and six downregulated) were identified between the two groups. Multiple potential signalling pathways related to lipogenesis and lipid metabolism were identified via pathway enrichment analysis. In addition, 173 lncRNA - miRNA - mRNA interaction regulatory networks were identified, including 30 lncRNA, 27 mRNA and seven miRNA.3. These networks may help regulate lipid metabolism and fat deposition. Five promising candidate genes and two lncRNA may play important roles in the regulation of adipogenesis and lipid metabolism in chickens.


Assuntos
Gordura Abdominal , Galinhas , Metabolismo dos Lipídeos , Fígado , MicroRNAs , RNA Longo não Codificante , RNA Mensageiro , Animais , Galinhas/genética , Galinhas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Gordura Abdominal/metabolismo , Fígado/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metabolismo dos Lipídeos/genética , Masculino
12.
Poult Sci ; 103(7): 103783, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713987

RESUMO

Heterosis has been widely utilized in chickens. The nonadditive inheritance of genes contributes to this biological phenomenon. However, the role of circRNAs played in the heterosis is poorly determined. In this study, we observed divergent heterosis for residual feed intake (RFI) between 2 crossbreds derived from a reciprocal cross between White Leghorns and Beijing You chickens. Then, circRNA landscape for 120 samples covering the hypothalamus, liver, duodenum mucosa and ovary were profiled to elucidate the regulatory mechanisms of heterosis. We detected that a small proportion of circRNAs (7.83-20.35%) were additively and non-additively expressed, in which non-additivity was a major inheritance of circRNAs in the crossbreds. Tissue-specific expression of circRNAs was prevalent across 4 tissues. Weighted gene co-expression network analysis revealed circRNA-mRNA co-expression modules associated with feed intake and RFI in the hypothalamus and liver, and the co-expressed genes were enriched in oxidative phosphorylation pathway. We further identified 8 nonadditive circRNAs highly correlated with 16 nonadditive genes regulating negative heterosis for RFI in the 2 tissues. Circ-ITSN2 was validated in the liver tissue for its significantly positive correlation with PGPEP1L. Moreover, the bioinformatic analysis indicated that candidate circRNAs might be functioned by binding the microRNAs and interacting with the RNA binding proteins. The integration of multi-tissue transcriptome firstly linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken, which provide novel insights into the molecular mechanism underlying heterosis for feed efficiency. The validated circRNAs can act as potential biomarkers for predicting RFI and its heterosis.


Assuntos
Galinhas , Perfilação da Expressão Gênica , Vigor Híbrido , RNA Circular , Animais , Galinhas/genética , Galinhas/metabolismo , Vigor Híbrido/genética , Perfilação da Expressão Gênica/veterinária , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Ingestão de Alimentos/genética , Transcriptoma , Masculino
13.
Poult Sci ; 103(7): 103855, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796988

RESUMO

Lipid metabolic capacity, feed utilization, and the diversity of gut microbiota are reduced in the late laying stage for laying hens. This experiment aimed to investigate the effects of different levels of dietary metabolizable energy (ME) on hepatic lipid metabolism and cecal microbiota in late laying hens. The 216 Peking Pink laying hens (57-wk-old) were randomly assigned to experimental diets of 11.56 (HM = high ME), 11.14 (MM = medium ME), or 10.72 (LM = low ME) MJ of ME/kg, with each dietary treatment containing 6 replicates per group and 12 chickens per replicate. The HM group showed higher triglyceride (TG), total cholesterol (T-CHO), and low-density lipoprotein cholesterol (LDL-C) concentrations in the liver compared with the LM group; second, the HM group showed higher TG concentration and the LM group showed lower T-CHO concentration compared with MM group; finally, the HM group showed a lower hepatic lipase (HL) activity compared with the MM and LM groups (P < 0.05). There was a significant difference in the microbial community structure of the cecum between the HM and MM groups (P < 0.05). The decrease of dietary ME level resulted in a gradual decrease relative abundance of Proteobacteria. At the genus level, beneficial bacteria were significantly enriched in the LM group compared to the MM group, including Faecalibacterium, Lactobacillus, and Bifidobacterium, (linear discriminant analysis [LDA] >2, P <0.05). In addition, at the species level, Lactobacillus crispatus, Parabacteroides gordonii, Blautia caecimuris, and Lactobacillus johnsonii were significantly enriched in the LM group (LDA>2, P < 0.05). The HM group had a higher abundance of Sutterella spp. compared to the LM group (LDA>2, P <0.05). In conclusion, this research suggests that the reduction in dietary energy level did not adversely affect glycolipid metabolism or low dietary ME (10.72 MJ/kg). The findings can be helpful for maintaining intestinal homeostasis and increasing benefit for gut microbiota in late laying hens.


Assuntos
Ração Animal , Ceco , Galinhas , Dieta , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Fígado , Animais , Galinhas/microbiologia , Galinhas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ceco/microbiologia , Ceco/metabolismo , Ceco/efeitos dos fármacos , Dieta/veterinária , Feminino , Ração Animal/análise , Fígado/metabolismo , Fígado/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Distribuição Aleatória , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ingestão de Energia
14.
J Therm Biol ; 121: 103861, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38714146

RESUMO

The study investigated the impact of Mistletoe Leaf Powder (MLP) supplementation on some parameters in heat-stressed broiler chickens. The standard baseline diets, comprising four different formulations, were provided during the starter and finisher stages. Chickens were randomly assigned to the 4 dietary groups: a negative control (CON) with no supplementation, a positive control (VTC) with 200 mg/kg vitamin C, and 2 experimental treatment groups with 2500 mg/kg (MLP2) and 5000 mg/kg (MLP5) MLP supplementation. The Body Weight Gain (BWG) in MLP2 and MLP5 treatment groups was comparable (P > 0.05) to those in VTC, while the CON group exhibited significantly (P < 0.05) lower BWG. Feed consumption was significantly (P < 0.05) lower broiler chickens in the CON group compared to those VTC, MLP2, and MLP5. Heat shock protein 70 (HSP70) levels were lower in broiler chickens belonging to VTC, MLP2, and MLP5 groups compared to those in CON, and MLP2 showed no difference (P > 0.05) from MLP5 and VTC. Serum glutathione peroxidase and catalase concentrations were higher (P < 0.05) in birds belonging to MLP5, MLP2, and VTC groups compared to CON. The 8-hydroxy-2'-deoxyguanosine concentration was lower (P < 0.05) in birds of VTC, MLP2, and MLP5 compared to the CON, with VTC showing the least concentration. Serum insulin levels were higher (P < 0.05) in MLP5 compared to those in CON, while serum triiodothyronine and leptin concentrations were lower (P < 0.05) in CON compared to birds in VTC, MLP2, and MLP5. Microbiota analysis revealed that the Coliform bacteria population was higher (P < 0.05) in birds belonging to CON compared to those in VTC, MLP2, and MLP5 groups, whereas lactic acid-producing bacteria were significantly (P < 0.05) lower in birds of CON and highest in MLP2 and MLP5 groups. In conclusion, dietary supplementation of MLP at 5000 mg/kg enhanced performance, oxidative status, influenced metabolic hormones, and gut microbiota in broiler chickens raised under high ambient temperature.


Assuntos
Ração Animal , Galinhas , Dano ao DNA , Suplementos Nutricionais , Microbioma Gastrointestinal , Proteínas de Choque Térmico HSP70 , Folhas de Planta , Animais , Masculino , Ração Animal/análise , Antioxidantes/metabolismo , Biomarcadores/sangue , Galinhas/metabolismo , Galinhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Feminino
15.
Theriogenology ; 226: 10-19, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38820772

RESUMO

The lipogenesis and steroidogenesis of granulosa cells are crucial during follicular development, yet it remains unclear whether dual-specificity phosphatase 8 (DUSP8) is involved. In this study, the specific role of DUSP8 in lipogenesis and steroidogenesis was investigated through culturing chicken granulosa cells in vitro. The results revealed that the expression levels of adipogenic genes were elevated after DUSP8 overexpression and reduced after knockdown. The same was observed for lipid deposition in granulosa cells. Meanwhile, the steroidogenic gene expression and progesterone synthesis were promoted after DUSP8 overexpression and inhibited after knockdown. In addition, we also found that DUSP8 blocked the phosphorylation of extracellular regulatory kinase 1/2 (ERK1/2). Based on the previous results that activated ERK1/2 signaling inhibited lipid deposition and progesterone synthesis in chicken granulosa cells, we demonstrated that DUSP8 promoted lipid deposition and progesterone synthesis through mediating the ERK1/2 signaling pathway. The results will improve our understanding of the molecular regulatory mechanisms regarding lipid metabolism and progesterone synthesis in chicken granulosa cells.


Assuntos
Galinhas , Células da Granulosa , Lipogênese , Sistema de Sinalização das MAP Quinases , Animais , Feminino , Células da Granulosa/metabolismo , Galinhas/metabolismo , Lipogênese/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Progesterona/biossíntese , Progesterona/metabolismo , Regulação da Expressão Gênica , Células Cultivadas
16.
Poult Sci ; 103(7): 103820, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759565

RESUMO

The "KNDy neurons" located in the hypothalamic arcuate nucleus (ARC) of mammals are known to co-express kisspeptin, neurokinin B (NKB), and dynorphin (DYN), and have been identified as key mediators of the feedback regulation of steroid hormones on gonadotropin-releasing hormone (GnRH). However, in birds, the genes encoding kisspeptin and its receptor GPR54 are genomic lost, leaving unclear mechanisms for feedback regulation of GnRH by steroid hormones. Here, the genes tachykinin 3 (TAC3) and prodynorphin (PDYN) encoding chicken NKB and DYN neuropeptides were successfully cloned. Temporal expression profiling indicated that TAC3, PDYN and their receptor genes (TACR3, OPRK1) were mainly expressed in the hypothalamus, with significantly higher expression at 30W than at 15W. Furthermore, overexpression or interference of TAC3 and PDYN can regulate the GnRH mRNA expression. In addition, in vivo and in vitro assays showed that estrogen (E2) could promote the mRNA expression of TAC3, PDYN, and GnRH, as well as the secretion of GnRH/LH. Mechanistically, E2 could dimerize the nuclear estrogen receptor 1 (ESR1) to regulate the expression of TAC3 and PDYN, which promoted the mRNA and protein expression of GnRH gene as well as the secretion of GnRH. In conclusion, these results revealed that E2 could regulate the GnRH expression through TAC3 and PDYN systems, providing novel insights for reproductive regulation in chickens.


Assuntos
Proteínas Aviárias , Galinhas , Hormônio Liberador de Gonadotropina , Precursores de Proteínas , Taquicininas , Animais , Galinhas/genética , Galinhas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Taquicininas/genética , Taquicininas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Estrogênios/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Feminino , Masculino
17.
mSystems ; 9(6): e0021424, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38780275

RESUMO

The gut microbiota contributes to skeletal muscle energy metabolism and is an indirect factor affecting meat quality. However, the role of specific gut microbes in energy metabolism and fiber size of skeletal muscle in chickens remains largely unknown. In this study, we first performed cecal microbiota transplantation from Chinese indigenous Jingyuan chickens (JY) to Arbor Acres chickens (AA), to determine the effects of microbiota on skeletal muscle fiber and energy metabolism. Then, we used metagenomics, gas chromatography, and metabolomics analysis to identify functional microbes. Finally, we validated the role of these functional microbes in regulating the fiber size via glucose metabolism in the skeletal muscle of chickens through feeding experiments. The results showed that the skeletal muscle characteristics of AA after microbiota transplantation tended to be consistent with that of JY, as the fiber diameter was significantly increased, and glucose metabolism level was significantly enhanced in the pectoralis muscle. L. plantarum, L. ingluviei, L. salivarius, and their mixture could increase the production of the microbial metabolites protoporphyrin IX and short-chain fatty acids, therefore increasing the expression levels of genes related to the oxidative fiber type (MyHC SM and MyHC FRM), mitochondrial function (Tfam and CoxVa), and glucose metabolism (PFK, PK, PDH, IDH, and SDH), thereby increasing the fiber diameter and density. These three Lactobacillus species could be promising probiotics to improve the meat quality of chicken.IMPORTANCEThis study revealed that the L. plantarum, L. ingluviei, and L. salivarius could enhance the production of protoporphyrin IX and short-chain fatty acids in the cecum of chickens, improving glucose metabolism, and finally cause the increase in fiber diameter and density of skeletal muscle. These three microbes could be potential probiotic candidates to regulate glucose metabolism in skeletal muscle to improve the meat quality of chicken in broiler production.


Assuntos
Galinhas , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Glucose , Lactobacillus , Animais , Galinhas/metabolismo , Galinhas/microbiologia , Glucose/metabolismo , Microbioma Gastrointestinal/fisiologia , Ácidos Graxos Voláteis/metabolismo , Lactobacillus/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Metabolismo Energético , Transplante de Microbiota Fecal
18.
BMC Genomics ; 25(1): 438, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698322

RESUMO

BACKGROUND: Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS: We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid ß-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS: Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.


Assuntos
Galinhas , Fígado , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Fígado/metabolismo , Fígado/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Feminino , Músculos Peitorais/metabolismo , Músculos Peitorais/crescimento & desenvolvimento , Masculino , Perfilação da Expressão Gênica , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento
19.
Sci China Life Sci ; 67(7): 1468-1478, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703348

RESUMO

Dietary exposure to aflatoxin B1 (AFB1) is harmful to the health and performance of domestic animals. The hepatic cytochrome P450s (CYPs), CYP1A1 and CYP2A6, are the primary enzymes responsible for the bioactivation of AFB1 to the highly toxic exo-AFB1-8,9-epoxide (AFBO) in chicks. However, the transcriptional regulation mechanism of these CYP genes in the liver of chicks in AFB1 metabolism remains unknown. Dual-luciferase reporter assay, bioinformatics and site-directed mutation results indicated that specificity protein 1 (SP1) and activator protein-1 (AP-1) motifs were located in the core region -1,063/-948, -606/-541 of the CYP1A1 promoter as well as -636/-595, -503/-462, -147/-1 of the CYP2A6 promoter. Furthermore, overexpression and decoy oligodeoxynucleotide technologies demonstrated that SP1 and AP-1 were pivotal transcriptional activators regulating the promoter activity of CYP1A1 and CYP2A6. Moreover, bioactivation of AFB1 to AFBO could be increased by upregulation of CYP1A1 and CYP2A6 expression, which was trans-activated owing to the upregulalion of AP-1, rather than SP1, stimulated by AFB1-induced reactive oxygen species. Additionally, nano-selenium could reduce ROS, downregulate AP-1 expression and then decrease the expression of CYP1A1 and CYP2A6, thus alleviating the toxicity of AFB1. In conclusion, AP-1 and SP1 played important roles in the transactivation of CYP1A1 and CYP2A6 expression and further bioactivated AFB1 to AFBO in chicken liver, which could provide novel targets for the remediation of aflatoxicosis in chicks.


Assuntos
Aflatoxina B1 , Galinhas , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP2A6 , Fígado , Regiões Promotoras Genéticas , Fator de Transcrição Sp1 , Fator de Transcrição AP-1 , Animais , Aflatoxina B1/metabolismo , Galinhas/metabolismo , Fígado/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição AP-1/genética , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2A6/genética , Ativação Transcricional
20.
Chem Biol Interact ; 395: 111005, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38615975

RESUMO

Poultry feed is often contaminated with fumonisins, deoxynivalenol, and zearalenone, which can result in oxidative damage, inflammation and change in lipid metabolism. Although sphingolipids play key roles in cells, only the effects of fumonisins on the sphingolipidome are well-documented. In chickens, fumonisins have been shown to increase the sphinganine to sphingosine ratio and the C22-24:C16 sphingolipid ratio, which has been proposed as a new biomarker of toxicity. In this study, we used UHPLC-MSMS targeted analysis to measure the effect of fusariotoxins on sphingolipids in the livers of chickens fed with diets containing fusariotoxins administered individually and in combination, at the maximum levels recommended by the European Commission. Chickens were exposed from hatching until they reached 35 days of age. This study revealed for the first time that fumonisins, deoxynivalenol, and zearalenone alone and in combination have numerous effects on the sphingolipidome in chicken livers. A 30-50 % decrease in ceramide, dihydroceramide, sphingomyelin, dihydrosphingomyelin, monohexosylceramide and lactosylceramide measured at the class level was observed when fusariotoxins were administered alone, whereas a 30-100 % increase in dihydroceramide, sphingomyelin, dihydrosphingomyelin, and monohexosylceramide was observed when the fusariotoxins were administered in combination. For these different variables, strong significant interactions were observed between fumonisins and zearalenone and between fumonisins and deoxynivalenol, whereas interactions between deoxynivalenol and zearalenone were less frequent and less significant. Interestingly, an increase in the C22-24:C16 ratio of ceramides, sphingomyelins, and monohexosylceramides was observed in chickens fed the diets containing fumonisins only, and this increase was close when the toxin was administered alone or in combination with deoxynivalenol and zearalenone. This effect mainly corresponded to a decrease in sphingolipids with a fatty acid chain length of 16 carbons, whereas C22-24 sphingolipids were unaffected or increased. In conclusion the C22-24:C16 ratio emerged as a specific biomarker, with variations dependent only on the presence of fumonisins.


Assuntos
Galinhas , Fumonisinas , Fígado , Esfingolipídeos , Tricotecenos , Zearalenona , Animais , Galinhas/metabolismo , Tricotecenos/toxicidade , Fumonisinas/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Zearalenona/toxicidade , Esfingolipídeos/metabolismo , Esfingolipídeos/análise , Cromatografia Líquida de Alta Pressão , Ração Animal/análise , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...