Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.873
Filtrar
1.
Phys Chem Chem Phys ; 26(23): 16579-16588, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38832404

RESUMO

The transsulfuration pathway plays a key role in mammals for maintaining the balance between cysteine and homocysteine, whose concentrations are critical in several biochemical processes. Human cystathionine ß-synthase is a heme-containing, pyridoxal 5'-phosphate (PLP)-dependent enzyme found in this pathway. The heme group does not participate directly in catalysis, but has a regulatory function, whereby CO or NO binding inhibits the PLP-dependent reactions. In this study, we explore the detailed structural changes responsible for inhibition using quantum chemical calculations to validate the experimentally observed bonding patterns associated with heme CO and NO binding and molecular dynamics simulations to explore the medium-range structural changes triggered by gas binding and propagating to the PLP active site, which is more than 20 Å distant from the heme group. Our results support a previously proposed mechanical signaling model, whereby the cysteine decoordination associated with gas ligand binding leads to breaking of a hydrogen bond with an arginine residue on a neighbouring helix. In turn, this leads to a shift in position of the helix, and hence also of the PLP cofactor, ultimately disrupting a key hydrogen bond that stabilizes the PLP in its catalytically active form.


Assuntos
Cistationina beta-Sintase , Simulação de Dinâmica Molecular , Fosfato de Piridoxal , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/química , Humanos , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Gases/química , Gases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Ligação de Hidrogênio , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Heme/química , Heme/metabolismo , Domínio Catalítico , Teoria Quântica , Cisteína/química , Cisteína/metabolismo
2.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893534

RESUMO

Electrocatalytic CO2 reduction to CO and formate can be coupled to gas fermentation with anaerobic microorganisms. In combination with a competing hydrogen evolution reaction in the cathode in aqueous medium, the in situ, electrocatalytic produced syngas components can be converted by an acetogenic bacterium, such as Clostridium ragsdalei, into acetate, ethanol, and 2,3-butanediol. In order to study the simultaneous conversion of CO, CO2, and formate together with H2 with C. ragsdalei, fed-batch processes were conducted with continuous gassing using a fully controlled stirred tank bioreactor. Formate was added continuously, and various initial CO partial pressures (pCO0) were applied. C. ragsdalei utilized CO as the favored substrate for growth and product formation, but below a partial pressure of 30 mbar CO in the bioreactor, a simultaneous CO2/H2 conversion was observed. Formate supplementation enabled 20-50% higher growth rates independent of the partial pressure of CO and improved the acetate and 2,3-butanediol production. Finally, the reaction conditions were identified, allowing the parallel CO, CO2, formate, and H2 consumption with C. ragsdalei at a limiting CO partial pressure below 30 mbar, pH 5.5, n = 1200 min-1, and T = 32 °C. Thus, improved carbon and electron conversion is possible to establish efficient and sustainable processes with acetogenic bacteria, as shown in the example of C. ragsdalei.


Assuntos
Reatores Biológicos , Butileno Glicóis , Dióxido de Carbono , Monóxido de Carbono , Clostridium , Fermentação , Formiatos , Hidrogênio , Formiatos/metabolismo , Formiatos/química , Clostridium/metabolismo , Clostridium/crescimento & desenvolvimento , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Dióxido de Carbono/metabolismo , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Gases/metabolismo , Gases/química , Etanol/metabolismo
3.
ACS Appl Mater Interfaces ; 16(24): 30755-30765, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38847111

RESUMO

In recent years, enveloped micro-nanobubbles have garnered significant attention in research due to their commendable stability, biocompatibility, and other notable properties. Currently, the preparation methods of enveloped micro-nanobubbles have limitations such as complicated preparation process, large bubble size, wide distribution range, low yield, etc. There exists an urgent demand to devise a simple and efficient method for the preparation of enveloped micro-nanobubbles, ensuring both high concentration and a uniform particle size distribution. Magnetic lipid bubbles (MLBs) are a multifunctional type of enveloped micro-nanobubble combining magnetic nanoparticles with lipid-coated bubbles. In this study, MLBs are prepared simply and efficiently by a magneto internal heat bubble generation process based on the interfacial self-assembly of iron oxide nanoparticles induced by the thermogenic effect in an alternating magnetic field. The mean hydrodynamic diameter of the MLBs obtained was 384.9 ± 8.5 nm, with a polydispersity index (PDI) of 0.248 ± 0.021, a zeta potential of -30.5 ± 1.0 mV, and a concentration of (7.92 ± 0.46) × 109 bubbles/mL. Electron microscopy results show that the MLBs have a regular spherical stable core-shell structure. The superparamagnetic iron oxide nanoparticles (SPIONs) and phospholipid layers adsorbed around the spherical gas nuclei of the MLBs, leading the particles to demonstrate commendable superparamagnetic and magnetic properties. In addition, the effects of process parameters on the morphology of MLBs, including phospholipid concentration, phospholipid proportiona, current intensity, magnetothermal time, and SPION concentration, were investigated and discussed to achieve controlled preparation of MLBs. In vitro imaging results reveal that the higher the concentration of MLBs loaded with iron oxide nanoparticles, the better the in vitro ultrasound (US) imaging and magnetic resonance imaging (MRI) results. This study proves that the magneto internal heat bubble generation process is a simple and efficient technique for preparing MLBs with high concentration, regular structure, and commendable properties. These findings lay a robust foundation for the mass production and application of enveloped micro-nanobubbles, particularly in biomedical fields and other related domains.


Assuntos
Fosfolipídeos , Fosfolipídeos/química , Tamanho da Partícula , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas de Magnetita/química , Gases/química , Microbolhas , Campos Magnéticos
4.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891779

RESUMO

In this review, the principles of gas-phase proton basicity measurements and theoretical calculations are recalled as a reminder of how the basicity PA/GB scale, based on Brønsted-Lowry theory, was constructed in the gas-phase (PA-proton affinity and/or GB-gas-phase basicity in the enthalpy and Gibbs energy scale, respectively). The origins of exceptionally strong gas-phase basicity of some organic nitrogen bases containing N-sp3 (amines), N-sp2 (imines, amidines, guanidines, polyguanides, phosphazenes), and N-sp (nitriles) are rationalized. In particular, the role of push-pull nitrogen bases in the development of the gas-phase basicity in the superbasicity region is emphasized. Some reasons for the difficulties in measurements for poly-functional nitrogen bases are highlighted. Various structural phenomena being in relation with gas-phase acid-base equilibria that should be considered in quantum-chemical calculations of PA/GB parameters are discussed. The preparation methods for strong organic push-pull bases containing a N-sp2 site of protonation are briefly reviewed. Finally, recent trends in research on neutral organic superbases, leaning toward catalytic and other remarkable applications, are underlined.


Assuntos
Gases , Gases/química , Termodinâmica , Prótons , Nitrogênio/química , Compostos Orgânicos/química , Teoria Quântica
5.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891873

RESUMO

Gas-loaded nanocarriers (G-LN) show promise in improving heart transplantation (HTx) outcomes. Given their success in reducing cell death during normothermic hypoxia/reoxygenation (H/R) in vitro, we tested their integration into cardioplegic solutions and static cold storage (SCS) during simulated HTx. Wistar rat hearts underwent four hours of SCS with four G-LN variants: O2- or N2-cyclic-nigerosyl-nigerose-nanomonomers (CNN), and O2- or N2-cyclic-nigerosyl-nigerose-nanosponges (CNN-NS). We monitored physiological-hemodynamic parameters and molecular markers during reperfusion to assess cell damage/protection. Hearts treated with nanomonomers (N2-CNN or O2-CNN) showed improvements in left ventricular developed pressure (LVDP) and a trend towards faster recovery of the rate pressure product (RPP) compared to controls. However, nanosponges (N2-CNN-NS or O2-CNN-NS) did not show similar improvements. None of the groups exhibited an increase in diastolic left ventricular pressure (contracture index) during reperfusion. Redox markers and apoptosis/autophagy pathways indicated an increase in Beclin 1 for O2-CNN and in p22phox for N2-CNN, suggesting alterations in autophagy and the redox environment during late reperfusion, which might explain the gradual decline in heart performance. The study highlights the potential of nanomonomers to improve early cardiac performance and mitigate cold/H/R-induced stunning in HTx. These early improvements suggest a promising avenue for increasing HTx success. Nevertheless, further research and optimization are needed before clinical application.


Assuntos
Transplante de Coração , Ratos Wistar , Animais , Transplante de Coração/métodos , Ratos , Masculino , Nanopartículas/química , Oxigênio/metabolismo , Hipóxia/metabolismo , Hemodinâmica , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Gases/química
6.
Chemosphere ; 361: 142576, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852628

RESUMO

Photocatalytic degradation stands as a promising method for eliminating gas-phase pollutants, with the efficiency largely hinging on the capture of photogenerated electrons by oxygen. In this work, we synthesized a porous CeO2 single crystal cube with abundant oxygen vacancies as photocatalyst, employing urea as a pore-forming agent and for gas-phase formaldehyde degradation. Compared with the CeO2 cubes without pores, the porous ones were superior in specific surface area, akin to conventional CeO2 nanoparticles. The photocatalytic degradation for gas-phase formaldehyde on porous CeO2 cubes was significantly accelerated, of which degradation rate is 3.3 times and 2.1 times that of CeO2 cubes without pores and CeO2 nanoparticles, respectively. Photoelectric tests and DFT calculations revealed that this enhancement stemmed from facilitated oxygen adsorption due to pronounced oxygen vacancies. Consequently, the capture of photoelectrons by oxygen was promoted and its recombination with holes was suppressed, along with an accelerated generation of curial free radicals such as ·OH. This work reveals the pivotal role of surface oxygen vacancies in promoting adsorbed oxygen, proposing a viable strategy to enhance the photocatalytic degradation efficiency for gas-phase pollutants.


Assuntos
Cério , Formaldeído , Oxigênio , Formaldeído/química , Cério/química , Oxigênio/química , Adsorção , Porosidade , Catálise , Gases/química , Poluentes Atmosféricos/química
7.
PLoS One ; 19(6): e0304333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875253

RESUMO

Magnetic MnFe2O4 nanoparticles were successfully prepared by the rapid combustion method at 500 °C for 2 h with 30 mL absolute ethanol, and were characterized by SEM, TEM, XRD, VSM, and XPS techniques, their average particle size and the saturation magnetization were about 25.3 nm and 79.53 A·m2/kg, respectively. The magnetic MnFe2O4 nanoparticles were employed in a fixed bed experimental system to investigate the adsorption capacity of Hg0 from air. The MnFe2O4 nanoparticles exhibited the large adsorption performance on Hg0 with the adsorption capacity of 16.27 µg/g at the adsorption temperature of 50 °C with the space velocity of 4.8×104 h-1. The VSM and EDS results illustrated that the prepared MnFe2O4 nanoparticles were stable before and after adsorption and successfully adsorbed Hg0. The TG curves demonstrated that the mercury compound formed after adsorption was HgO, and both physical and chemical adsorption processes were observed. Magnetic MnFe2O4 nanoparticles revealed excellent adsorbance of Hg0 in air, which suggested that MnFe2O4 nanoparticles be promising for the removal of Hg0.


Assuntos
Compostos Férricos , Gases , Compostos de Manganês , Mercúrio , Adsorção , Mercúrio/química , Compostos de Manganês/química , Compostos Férricos/química , Gases/química , Tamanho da Partícula , Temperatura
8.
ACS Nano ; 18(24): 15590-15606, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847586

RESUMO

To date, long-term and continuous ultrasonic imaging for guiding the puncture biopsy remains a challenge. In order to address this issue, a multimodality imaging and therapeutic method was developed in the present study to facilitate long-term ultrasonic and fluorescence imaging-guided precision diagnosis and combined therapy of tumors. In this regard, certain types of photoactivated gas-generating nanocontrast agents (PGNAs), capable of exhibiting both ultrasonic and fluorescence imaging ability along with photothermal and sonodynamic function, were designed and fabricated. The advantages of these fabricated PGNAs were then utilized against tumors in vivo, and high therapeutic efficacy was achieved through long-term ultrasonic imaging-guided treatment. In particular, the as-prepared multifunctional PGNAs were applied successfully for the fluorescence-based determination of patient tumor samples collected through puncture biopsy in clinics, and superior performance was observed compared to the clinically used SonoVue contrast agents that are incapable of specifically distinguishing the tumor in ex vivo tissues.


Assuntos
Meios de Contraste , Ultrassonografia , Meios de Contraste/química , Meios de Contraste/farmacologia , Humanos , Animais , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Imagem Óptica , Gases/química , Linhagem Celular Tumoral , Feminino , Camundongos Nus
9.
Nature ; 630(8017): 636-642, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811732

RESUMO

Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process1. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility2 and quality3. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD. Oxygen-free chemical vapour deposition (OF-CVD) synthesis is fast and highly reproducible, with kinetics that can be described by a compact model, whereas adding trace oxygen leads to suppressed nucleation and slower/incomplete growth. Oxygen affects graphene quality as assessed by surface contamination, emergence of the Raman D peak and decrease in electrical conductivity. Epitaxial graphene grown in oxygen-free conditions is contamination-free and shows no detectable D peak. After dry transfer and boron nitride encapsulation, it shows room-temperature electrical-transport behaviour close to that of exfoliated graphene. A graphite-gated device shows well-developed integer and fractional quantum Hall effects. By highlighting the importance of eliminating trace oxygen, this work provides guidance for future CVD system design and operation. The increased reproducibility and quality afforded by OF-CVD synthesis will broadly influence basic research and applications of graphene.


Assuntos
Condutividade Elétrica , Grafite , Oxigênio , Grafite/química , Oxigênio/química , Reprodutibilidade dos Testes , Compostos de Boro/química , Compostos de Boro/síntese química , Análise Espectral Raman , Gases/química , Cobre/química , Cinética , Temperatura
10.
Talanta ; 276: 126280, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788380

RESUMO

The sensitive materials of current gas sensors are fabricated on planar substrates, significantly limiting the quantity of sensitive material available on the sensor and the complete exposure of the sensitive material to the target gas. In this work, we harnessed the finest, resilient, naturally degradable, and low-cost lotus silk derived from plant fibers, to fabricate a high-performance bio-sensor for toxic and harmful gas detection, employing peptides with full surface connectivity. The proposed approach to fabricate gas sensors eliminated the need for substrates and electrodes. To ascertain the effectiveness and versatility of the sensors created via this method, sensors for three distinct representative gases (isoamyl alcohol, 4-vinylanisole, and benzene) were prepared and characterized. These sensors surpassed reported detection limits by at least one order of magnitude. The inherent pliancy of lotus silk imparts adaptability to the sensor architecture, facilitating the realization of 1D, 2D, or 3D configurations, all while upholding consistent performance characteristics. This innovative sensor paradigm, grounded in lotus silk, represents great potential toward the advancement of highly proficient bio gas sensors and associated applications.


Assuntos
Técnicas Biossensoriais , Lotus , Peptídeos , Seda , Técnicas Biossensoriais/métodos , Lotus/química , Seda/química , Peptídeos/química , Peptídeos/análise , Anisóis/química , Anisóis/análise , Gases/química , Gases/análise
11.
Int J Biol Macromol ; 271(Pt 1): 132335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768923

RESUMO

Development of renewable and biodegradable plastics with good properties, such as the gas barrier, UV-shielding, solvent resistance, and antibacterial activity, remains a challenge. Herein, cellulose/ZnO based bioplastics were fabricated by dissolving cellulose carbamate in an aqueous solution of NaOH/Zn(OH)42-, followed by coagulation in aqueous Na2SO4 solution, and subsequent hot-pressing. The carbamate groups detached from cellulose, and ZnO which transformed from cosolvent to nanofiller was uniformly immobilized in the cellulose matrix during the dissolution/regeneration process. The appropriate addition of ZnO (below 10.67 wt%) not only improved the mechanical properties but also enhanced the water and oxygen barrier properties of the material. Additionally, our cellulose/ZnO based bioplastic demonstrated excellent UV-blocking capabilities, increased water contact angle, and enhanced antibacterial activity against S. aureus and E. coli, deriving from the incorporation of ZnO nanoparticles. Furthermore, the material exhibited resistance to organic solvents such as acetone, THF, and toluene. Indeed, the herein developed cellulose/ZnO based bioplastic presents a promising candidate to replace petrochemical plastics in various applications, such as plastic toys, anti-UV guardrails, window shades, and oil storage containers, offering a combination of favorable mechanical, gas barrier, UV-blocking, antibacterial, and solvent-resistant properties.


Assuntos
Antibacterianos , Celulose , Escherichia coli , Staphylococcus aureus , Raios Ultravioleta , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Celulose/química , Celulose/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Gases/química , Solventes/química
12.
Int J Biol Macromol ; 271(Pt 1): 132576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788883

RESUMO

With increasing concern for the environment, the demand for carbon dioxide separation, a key contributor to global warming, has escalated. Therefore, this paper focuses on carbon dioxide separation by creating an hydroxyethyl cellulose (HEC)(C2H6O2)x*(C6H7O2(OH)3)n/silver tetra fluoroborate (AgBF4)/aluminum nitrate (Al(NO3)3) composite film, demonstrating excellent separation performance with a permeance of 1.0 GPU and a selectivity of 100. Silver ions enhance the solubility of carbon dioxide, aiding in its separation, and we determined the optimal aluminum composition to stabilize the silver ions. To analyze this, we examined the cross-sections using SEM, confirming a selective layer of 1.7 µm for carbon dioxide separation. Furthermore, TGA, FT-IR, and NMR analyses were conducted to investigate the interaction between the polymer and additives. This revealed that the increased polymer chain due to the interaction between Ag and HEC, along with stabilized Ag facilitated by the addition of Al, maximized the interaction with carbon dioxide via the empty s-orbital. Additionally, SEM-EDX, UV-vis, XRD, XPS analyses were employed to elucidate the movement of ions within the membrane. These results provide insights into the performance of membranes based on cellulose polymer and offer valuable insights for future applications in gas separation technologies.


Assuntos
Dióxido de Carbono , Celulose , Celulose/química , Celulose/análogos & derivados , Dióxido de Carbono/química , Gases/química , Prata/química , Química Verde/métodos
13.
Chemosphere ; 361: 142464, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810795

RESUMO

Hydrogen peroxide (H2O2) synthesis by electrochemical two-electron oxygen reduction has garnered increasing interest as a wide range of potential applications. Gas diffusion electrodes (GDEs) can effectively promote the H2O2 production efficiency by overcoming the oxygen mass transfer limitations but strongly influenced by the electrowetting process along the long-term operation. In this study, the effect of trans-electrode pressure (TEP) of GDE cathode on the electrowetting process was further elucidated. We controlled the TEP values of four types of GDEs: two Ni-based GDEs and two carbon cloth GDEs prepared by hot-pressing or brushing carbon black. SBA-15 was further used to regulate the microstructure of one Ni-based GDE. It was found that an optimal range of TEP occurred for all tested GDEs in terms of the max. concentration, the yield efficiency, the energy consumption, and the stability because TEP may change the triple-phase interface and influence the anti-electrowetting effect. The porosity of hot-pressed Ni GDE can maintain the TEP window and thus enhance the production of H2O2, likely via creating oxygen-containing functional groups and a bimodal pore structure on the electrode, revealed with several characterization techniques including SEM, CA, XPS, Raman spectra, CV and EIS. The porous Ni GDE presented an efficient and stable production of H2O2 for 10 cycles: yielding H2O2 at 4393.2-4602.2 mmol m-2 h-1 with current efficiencies of 94.2-98.7%. The best accumulated H2O2 concentration can reach up to 3.58 ωt% H2O2 at 10 h. The results provide an important reference for the industrial scaleup of electro-production of H2O2 with GDEs.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Pressão , Oxirredução , Difusão , Técnicas Eletroquímicas/métodos , Oxigênio/química , Gases/química , Porosidade , Níquel/química
14.
ACS Sens ; 9(5): 2653-2661, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38710540

RESUMO

Fast and reliable semiconductor hydrogen sensors are crucially important for the large-scale utilization of hydrogen energy. One major challenge that hinders their practical application is the elevated temperature required, arising from undesirable surface passivation and grain-boundary-dominated electron transportation in the conventional nanocrystalline sensing layers. To address this long-standing issue, in the present work, we report a class of highly reactive and boundary-less ultrathin SnO2 films, which are fabricated by the topochemical transformation of 2D SnO transferred from liquid Sn-Bi droplets. The ultrathin SnO2 films are purposely made to consist of well-crystallized quasi-2D nanograins with in-plane grain sizes going beyond 30 nm, whereby the hydroxyl adsorption and grain boundary side-effects are effectively suppressed, giving rise to an activated (101)-dominating dangling-bond surface and a surface-controlled electrical transportation with an exceptional electron mobility of 209 cm2 V-1 s-1. Our work provides a new cost-effective strategy to disruptively improve the gas reception and transduction of SnO2. The proposed chemiresistive sensors exhibit fast, sensitive, and selective hydrogen sensing performance at a much-reduced working temperature of 60 °C. The remarkable sensing performance as well as the simple and scalable fabrication process of the ultrathin SnO2 films render the thus-developed sensors attractive for long awaited practical applications in hydrogen-related industries.


Assuntos
Hidrogênio , Compostos de Estanho , Compostos de Estanho/química , Hidrogênio/química , Hidrogênio/análise , Propriedades de Superfície , Gases/análise , Gases/química , Nanoestruturas/química , Semicondutores
15.
J Chromatogr A ; 1726: 464946, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38744185

RESUMO

On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak.


Assuntos
Hidrocarbonetos , Óleo Mineral , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa/métodos , Óleo Mineral/química , Óleo Mineral/análise , Hidrocarbonetos/análise , Nitrogênio/análise , Hélio/química , Hidrogênio/química , Ionização de Chama/métodos , Gases/química
16.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792198

RESUMO

Supercritical water gasification (SCWG) of lignocellulosic biomass is a promising pathway for the production of hydrogen. However, SCWG is a complex thermochemical process, the modeling of which is challenging via conventional methodologies. Therefore, eight machine learning models (linear regression (LR), Gaussian process regression (GPR), artificial neural network (ANN), support vector machine (SVM), decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical boosting regressor (CatBoost)) with particle swarm optimization (PSO) and a genetic algorithm (GA) optimizer were developed and evaluated for prediction of H2, CO, CO2, and CH4 gas yields from SCWG of lignocellulosic biomass. A total of 12 input features of SCWG process conditions (temperature, time, concentration, pressure) and biomass properties (C, H, N, S, VM, moisture, ash, real feed) were utilized for the prediction of gas yields using 166 data points. Among machine learning models, boosting ensemble tree models such as XGB and CatBoost demonstrated the highest power for the prediction of gas yields. PSO-optimized XGB was the best performing model for H2 yield with a test R2 of 0.84 and PSO-optimized CatBoost was best for prediction of yields of CH4, CO, and CO2, with test R2 values of 0.83, 0.94, and 0.92, respectively. The effectiveness of the PSO optimizer in improving the prediction ability of the unoptimized machine learning model was higher compared to the GA optimizer for all gas yields. Feature analysis using Shapley additive explanation (SHAP) based on best performing models showed that (21.93%) temperature, (24.85%) C, (16.93%) ash, and (29.73%) C were the most dominant features for the prediction of H2, CH4, CO, and CO2 gas yields, respectively. Even though temperature was the most dominant feature, the cumulative feature importance of biomass characteristics variables (C, H, N, S, VM, moisture, ash, real feed) as a group was higher than that of the SCWG process condition variables (temperature, time, concentration, pressure) for the prediction of all gas yields. SHAP two-way analysis confirmed the strong interactive behavior of input features on the prediction of gas yields.


Assuntos
Biomassa , Hidrogênio , Lignina , Aprendizado de Máquina , Água , Lignina/química , Água/química , Hidrogênio/química , Hidrogênio/análise , Gases/química , Gases/análise , Algoritmos , Redes Neurais de Computação , Dióxido de Carbono/química , Dióxido de Carbono/análise , Máquina de Vetores de Suporte , Metano/química , Metano/análise
17.
PLoS One ; 19(5): e0300436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38814924

RESUMO

In this article, Elzaki decomposition method (EDM) has been applied to approximate the analytical solution of the time-fractional gas-dynamics equation. The time-fractional derivative is used in the Caputo-Fabrizio sense. The proposed method is implemented on homogenous and non-homogenous cases of the time-fractional gas-dynamics equation. A comparison between the exact and approximate solutions is also provided to show the validity and accuracy of the technique. A graphical representation of all the retrieved solutions is shown for different values of the fractional parameter. The time development of all solutions is also represented in 2D graphs. The obtained results may help understand the physical systems governed by the gas-dynamics equation.


Assuntos
Algoritmos , Gases , Gases/química , Modelos Teóricos
18.
ACS Appl Mater Interfaces ; 16(21): 27065-27074, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748094

RESUMO

Wearable biomedical sensors have enabled noninvasive and continuous physiological monitoring for daily health management and early detection of chronic diseases. Among biomedical sensors, wearable pH sensors attracted significant interest, as pH influences most biological reactions. However, conformable pH sensors that have sweat absorption ability, are self-adhesive to the skin, and are gas permeable remain largely unexplored. In this study, we present a pioneering approach to this problem by developing a Janus membrane-based pH sensor with self-adhesiveness on the skin. The sensor is composed of a hydrophobic polyurethane-polydimethylsiloxane porous hundreds nanometer-thick substrate and a hydrophilic poly(vinyl alcohol)-poly(acrylic acid) porous nanofiber layer. This Janus membrane exhibits a thickness of around 10 µm, providing a conformable adhesion to the skin. The simultaneous realization of solution absorption, gas permeability, and self-adhesiveness makes it suitable for long-term continuous monitoring without compromising the comfort of the wearer. The pH sensor was tested successfully for continuous monitoring for 7.5 h, demonstrating its potential for stable analysis of skin health conditions. The Janus membrane-based pH sensor holds significant promise for comprehensive skin health monitoring and wearable biomedical applications.


Assuntos
Poliuretanos , Suor , Dispositivos Eletrônicos Vestíveis , Concentração de Íons de Hidrogênio , Humanos , Suor/química , Poliuretanos/química , Permeabilidade , Resinas Acrílicas/química , Membranas Artificiais , Dimetilpolisiloxanos/química , Adesividade , Nanofibras/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Porosidade , Gases/química , Gases/análise
19.
Anal Chem ; 96(21): 8518-8527, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38711366

RESUMO

Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.


Assuntos
Reagentes de Ligações Cruzadas , Ubiquitina , Ubiquitina/química , Reagentes de Ligações Cruzadas/química , Sódio/química , Gases/química , Cátions/química , Succinimidas/química , Espectrometria de Massas , Íons/química
20.
Environ Res ; 252(Pt 3): 118953, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636643

RESUMO

Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.


Assuntos
Gases , Membranas Artificiais , Poliuretanos , Poliuretanos/química , Gases/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA