Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.012
Filtrar
1.
Science ; 384(6696): 697-703, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723080

RESUMO

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Assuntos
Anopheles , Hidrologia , Malária , Mosquitos Vetores , Animais , Malária/transmissão , África , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Mudança Climática , Humanos , Estações do Ano , Chuva , Modelos Teóricos , Água , Gases de Efeito Estufa/análise
2.
Lancet Planet Health ; 8(5): e327-e333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38729672

RESUMO

Health care contributes 4·4% of global net carbon emissions. Hospitals are resource-intensive settings, using a large amount of supplies in patient care and have high energy, ventilation, and heating needs. This Viewpoint investigates emissions related to health care in a patient's last year of life. End of life (EOL) is a period when health-care use and associated emissions production increases exponentially due primarily to hospital admissions, which are often at odds with patients' values and preferences. Potential solutions detailed within this Viewpoint are facilitating advanced care plans with patients to ensure their EOL wishes are clear, beginning palliative care interventions earlier when treating a life-limiting illness, deprescribing unnecessary medications because medications and their supply chains make up a significant portion of health-care emissions, and, enhancing access to low-intensity community care settings (eg, hospices) within the last year of life if home care is not available. Our analysis was done using Canadian data, but the findings can be applied to other high-income countries.


Assuntos
Gases de Efeito Estufa , Assistência Terminal , Humanos , Canadá , Gases de Efeito Estufa/análise
3.
Nutr J ; 23(1): 55, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762743

RESUMO

BACKGROUND: Assessing the trends in dietary GHGE considering the social patterning is critical for understanding the role that food systems have played and will play in global emissions in countries of the global south. Our aim is to describe dietary greenhouse gas emissions (GHGE) trends (overall and by food group) using data from household food purchase surveys from 1989 to 2020 in Mexico, overall and by education levels and urbanicity. METHODS: We used cross-sectional data from 16 rounds of Mexico's National Income and Expenditure Survey, a nationally representative survey. The sample size ranged from 11,051 in 1989 to 88,398 in 2020. We estimated the mean total GHGE per adult-equivalent per day (kg CO2-eq/ad-eq/d) for every survey year. Then, we estimated the relative GHGE contribution by food group for each household. These same analyses were conducted stratifying by education and urbanicity. RESULTS: The mean total GHGE increased from 3.70 (95%CI: 3.57, 3.82) to 4.90 (95% CI 4.62, 5.18) kg CO2-eq/ad-eq/d between 1989 and 2014 and stayed stable between 4.63 (95% CI: 4.53, 4.72) and 4.89 (95% CI: 4.81, 4.96) kg CO2-eq/ad-eq/d from 2016 onwards. In 1989, beef (19.89%, 95% CI: 19.18, 20.59), dairy (16.87%, 95% CI: 16.30, 17.42)), corn (9.61%, 95% CI: 9.00, 10.22), legumes (7.03%, 95% CI: 6.59, 7.46), and beverages (6.99%, 95% CI: 6.66, 7.32) had the highest relative contribution to food GHGE; by 2020, beef was the top contributor (17.68%, 95%CI: 17.46, 17.89) followed by fast food (14.17%, 95% CI: 13.90, 14.43), dairy (11.21%, 95%CI: 11.06, 11.36), beverages (10.09%, 95%CI: 9.94, 10.23), and chicken (10.04%, 95%CI: 9.90, 10.17). Households with higher education levels and those in more urbanized areas contributed more to dietary GHGE across the full period. However, households with lower education levels and those in rural areas had the highest increase in these emissions from 1989 to 2020. CONCLUSIONS: Our results provide insights into the food groups in which the 2023 Mexican Dietary Guidelines may require to focus on improving human and planetary health.


Assuntos
Gases de Efeito Estufa , México , Gases de Efeito Estufa/análise , Humanos , Estudos Transversais , Bebidas/estatística & dados numéricos , Dieta/estatística & dados numéricos , Dieta/tendências , Alimentos/estatística & dados numéricos , Efeito Estufa , Características da Família
4.
Environ Monit Assess ; 196(6): 563, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771410

RESUMO

The greenhouse gas (GHG) emissions inventories in our context result from the production of electricity from fuel oil at the Mbalmayo thermal power plant between 2016 and 2020. Our study area is located in the Central Cameroon region. The empirical method of the second level of industrialisation was applied to estimate GHG emissions and the application of the genetic algorithm-Gaussian (GA-Gaussian) coupling method was used to optimise the estimation of GHG emissions. Our work is of an experimental nature and aims to estimate the quantities of GHG produced by the Mbalmayo thermal power plant during its operation. The search for the best objective function using genetic algorithms is designed to bring us closer to the best concentration, and the Gaussian model is used to estimate the concentration level. The results obtained show that the average monthly emissions in kilograms (kg) of GHGs from the Mbalmayo thermal power plant are: 526 kg for carbon dioxide (CO2), 971.41 kg for methane (CH4) and 309.41 kg for nitrous oxide (N2O), for an average monthly production of 6058.12 kWh of energy. Evaluation of the stack height shows that increasing the stack height helps to reduce local GHG concentrations. According to the Cameroonian standards published in 2021, the limit concentrations of GHGs remain below 30 mg/m3 for CO2 and 200 µg/m3 for N2O, while for CH4 we reach the limit value of 60 µg/m3. These results will enable the authorities to take appropriate measures to reduce GHG concentrations.


Assuntos
Poluentes Atmosféricos , Algoritmos , Monitoramento Ambiental , Gases de Efeito Estufa , Metano , Centrais Elétricas , Gases de Efeito Estufa/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Camarões , Metano/análise , Dióxido de Carbono/análise , Óxido Nitroso/análise , Poluição do Ar/estatística & dados numéricos , Distribuição Normal
5.
Lasers Med Sci ; 39(1): 134, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771416

RESUMO

PURPOSE: Climate change has serious consequences for our wellbeing. Healthcare systems themselves contribute significantly to our total carbon footprint, of which emissions from surgical practice are a major component. The primary sources of emissions identified are anaesthetic gases, disposal of single-use equipment, energy usage, and travel to and from clinical areas. We sought to quantify the waste generated by laser surgery which, to our knowledge, has not been previously reported. METHODS: The carbon footprint of two laser centres operating within the United Kingdom were measured. The internationally recognised Greenhouse Gas Protocol was used as a guiding framework to classify sources of waste and conversion factors issued by the UK government were used to quantify emissions. RESULTS: The total carbon footprints per day at each unit were 299.181 carbon dioxide equivalents (kgCo2eq) and 121.512 kgCO2eq, respectively. We found the carbon footprint of individual laser treatments to be approximately 15 kgCO2eq per procedure. The biggest overall contributor to the carbon footprint was found to be the emissions generated from staff, patient and visitor travel. This was followed by electricity usage, and indirect emissions from physical waste and laundry. CONCLUSIONS: The carbon footprint of laser procedures was considerably less than the average surgical operation in the UK. This initial study measures the carbon footprint of a laser center in a clinical setting and allows us to identify where improvements can be made to eventually achieve a net carbon zero health care system.


Assuntos
Pegada de Carbono , Pegada de Carbono/estatística & dados numéricos , Reino Unido , Humanos , Terapia a Laser/métodos , Terapia a Laser/estatística & dados numéricos , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise
6.
Trop Anim Health Prod ; 56(5): 172, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771474

RESUMO

The increasing global demand for food and the strong effect of climate change have forced animal science to advance regarding new methods of selection in search of more efficient animals in production systems. Feed consumption represents more than 70% of the costs of sheep farms, and more efficient animals can increase the farmers' profitability. One of the main measures of feed efficiency is estimated residual feed intake (RFI), created in 1963 by Robert Koch for estimation in cattle and later adapted for sheep. Animals with negative RFI values (RFI-) are more efficient than animals with positive values (RFI+), with influence on the variables of performance, carcass quality and production of enteric gases. The RFI is the most common and accepted metric of the feed efficiency trait for genetic selection, since it is independent of growth traits, unlike the feed conversion ratio. The purpose of this review article was to present updated literature information on the relationship of RFI estimates with performance measures, molecular markers, greenhouse gas production and feed efficiency, the technical aspects and physiological basis of metabolic in sheep.


Assuntos
Ração Animal , Animais , Ração Animal/análise , Criação de Animais Domésticos/métodos , Ingestão de Alimentos/fisiologia , Ovinos/fisiologia , Ovinos/crescimento & desenvolvimento , Carneiro Doméstico/fisiologia , Carneiro Doméstico/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Gases de Efeito Estufa/análise
7.
Animal ; 18(5): 101158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703756

RESUMO

The transformation of pastures from a degraded state to sustainable productivity is a major challenge in tropical livestock production. Stoloniferous forage legumes such as Arachis pintoi (forage peanut) are one of the most promising alternatives for intensifying pasture-based beef livestock operations with reduced greenhouse gas (GHG) emissions. This 2-year study assessed beef cattle performance, nutrient intake and digestibility, and balance of GHG emissions in three pasture types (PT): (1) mixed Palisade grass - Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster (syn. Brachiaria brizantha Stapf cv. Marandu) and forage peanut (A. pintoi Krapov. & W.C. Greg. cv. BRS Mandobi) pastures (Mixed), (2) monoculture Palisade grass pastures with 150 kg of N/ha per year (Fertilised), and (3) monoculture Palisade grass without N fertiliser (Control). Continuous stocking with a variable stocking rate was used in a randomised complete block design, with four replicates per treatment. The average daily gain and carcass gain were not influenced by the PT (P = 0.439 and P = 0.100, respectively) and were, on average, 0.433 kg/animal per day and 83.4 kg/animal, respectively. Fertilised and Mixed pastures increased by 102 and 31.5%, respectively, the liveweight gain per area (kg/ha/yr) compared to the Control pasture (P < 0.001). The heifers in the Mixed pasture had lower CH4 emissions (g/animal per day; P = 0.009), achieving a reduction of 12.6 and 10.1% when compared to the Fertilised and Control pastures, respectively. Annual (N2O) emissions (g/animal) and per kg carcass weight gain were 59.8 and 63.1% lower, respectively, in the Mixed pasture compared to the Fertilised pasture (P < 0.001). Mixed pasture mitigated approximately 23% of kg CO2eq/kg of carcass when substituting 150 kg of N/ha per year via fertiliser. Mixed pastures with forage peanut are a promising solution to recover degraded tropical pastures by providing increased animal production with lower GHG emissions.


Assuntos
Ração Animal , Criação de Animais Domésticos , Arachis , Gases de Efeito Estufa , Animais , Bovinos/fisiologia , Ração Animal/análise , Gases de Efeito Estufa/análise , Criação de Animais Domésticos/métodos , Dieta/veterinária , Masculino , Feminino , Fenômenos Fisiológicos da Nutrição Animal , Digestão , Fabaceae
8.
Environ Sci Technol ; 58(19): 8349-8359, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696360

RESUMO

Agricultural ponds are a significant source of greenhouse gases, contributing to the ongoing challenge of anthropogenic climate change. Nations are encouraged to account for these emissions in their national greenhouse gas inventory reports. We present a remote sensing approach using open-access satellite imagery to estimate total methane emissions from agricultural ponds that account for (1) monthly fluctuations in the surface area of individual ponds, (2) rates of historical accumulation of agricultural ponds, and (3) the temperature dependence of methane emissions. As a case study, we used this method to inform the 2024 National Greenhouse Gas Inventory reports submitted by the Australian government, in compliance with the Paris Agreement. Total annual methane emissions increased by 58% from 1990 (26 kilotons CH4 year-1) to 2022 (41 kilotons CH4 year-1). This increase is linked to the water surface of agricultural ponds growing by 51% between 1990 (115 kilo hectares; 1,150 km2) and 2022 (173 kilo hectares; 1,730 km2). In Australia, 16,000 new agricultural ponds are built annually, expanding methane-emitting water surfaces by 1,230 ha yearly (12.3 km2 year-1). On average, the methane flux of agricultural ponds in Australia is 0.238 t CH4 ha-1 year-1. These results offer policymakers insights into developing targeted mitigation strategies to curb these specific forms of anthropogenic emissions. For instance, financial incentives, such as carbon or biodiversity credits, can mobilize widespread investments toward reducing greenhouse gas emissions and enhancing the ecological and environmental values of agricultural ponds. Our data and modeling tools are available on a free cloud-based platform for other countries to adopt this approach.


Assuntos
Agricultura , Gases de Efeito Estufa , Metano , Lagoas , Metano/análise , Gases de Efeito Estufa/análise , Austrália , Monitoramento Ambiental , Mudança Climática
9.
Sci Total Environ ; 932: 173066, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729366

RESUMO

Agriculture activity contributes to greenhouse gas (GHG) emissions through its utilization of land, water, and energy for food production. Hence, the interactions between land, water, and GHG emissions in agricultural production need to be comprehensively studied. The study aimed to assess the Land-Water-GHG-Food Nexus Index (LWGFNI) of rice cultivation across various land suitability classes in Central Thailand and determining the physical, socio-economic, and policy factors that can influence farmers' decisions to choose for cultivating rice instead of shifting to other crops. The results indicated that the highest LWGFNI score was 0.69 for the rice grown in the moderate suitability land class which revealed a lower use of land and water resources as well as GHG emissions compared to other levels of land suitability. The LWGFNI scores of major rice cultivation were greater compared to the second rice in all four-land suitability. The use of fertilizers had a crucial role in enhancing productivity levels and was a significant factor in the generation of GHG emissions. Hence, improving effective production should consider the appropriate use of fertilizer. The physical, socio-economic, and policy-related aspects that significantly influenced farmers' decisions on cultivation of rice included topography, water resources, inherited professions, price guarantee, and knowledge/training factors. The methodology used and results obtained can help policy makers to plan the use of water and land resources efficiently and appropriately with local resources based on land suitability class. The assessment results revealed the GHG hotspots and the strategies to mitigate GHG emissions associated with rice cultivation.


Assuntos
Agricultura , Gases de Efeito Estufa , Oryza , Oryza/crescimento & desenvolvimento , Tailândia , Agricultura/métodos , Gases de Efeito Estufa/análise , Fatores Socioeconômicos , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/análise
10.
J Environ Manage ; 359: 120848, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38696850

RESUMO

This study investigates the least-cost decarbonization pathways in the Finnish electricity generation industry in order to achieve the national carbon neutrality goal by 2035. Various abatement measures, such as downscaling production, capital investment, and increasing labor and intermediate inputs, are considered. The marginal abatement costs (MACs) of greenhouse gas emissions are estimated using the convex quantile regression method and applied to unique register-based firm-level greenhouse gas emission data merged with financial statement data. We adjust the MAC estimates for the sample selection bias caused by zero-emission firms by applying the two-stage Heckman correction. Our empirical findings reveal that the median MAC ranges from 0.1 to 3.5 euros per tonne of CO2 equivalent. The projected economic cost of a 90% reduction in emissions is 62 million euros, while the estimated cost of achieving zero emissions is 83 million euros.


Assuntos
Eletricidade , Finlândia , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise
11.
Sci Total Environ ; 931: 172942, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38719032

RESUMO

Biochar is increasingly used in climate-smart agriculture, yet its impact on greenhouse gas (GHG) emissions and soil carbon (C) sequestration remains poorly understood. This study examined biochar-mediated changes in soil properties and their contribution to C stabilization and GHG mitigation by evaluating four types of biochar. Soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions, soil chemical and biological properties, and soil organic carbon (SOC) mineralization kinetics were monitored using greenhouse, laboratory, and modeling experiments. Three pine wood biochars pyrolyzed at 460 °C (PB-460), 500 °C (PB-500), 700 °C (PB-700), and one pine bark biochar from gasification at 760 °C (GB-760) were added into soil at 1 % w/w basis. Soils amended with biochar were used to cultivate sorghum for three months in a greenhouse, followed by three months of laboratory incubation. Data obtained from laboratory incubation was modeled using various statistical approaches. The PB-500 and PB-700 reduced cumulative N2O-N emissions by 68.5 % and 73.9 % and CO2 equivalent C emissions by 66.9 % and 72.4 %, respectively, compared to unamended control. The N2O emissions were positively associated with soil nitrate N, available P, and biochar ash content while negatively associated with SOC. The CO2 emission was negatively related to biochar C:N ratio and volatile matter content. Biochar amended soils had 49.2 % (PB-500) to 87.7 % (PB-700) greater SOC and 22.9 % (PB-700) to 48.1 % (GB-760) greater sorghum yield than the control. While PB-700 had more saprophytes than the control, the GB-760 yielded a greater yield than biochars prepared by pyrolysis. Microbial biomass C was 7.23 to 23.3 % greater in biochar amended soils than in control. The double exponential decay model best explained the dynamics of C mineralization, which was associated with initial soil nitrate N and available P positively and total fungi and protozoa biomass negatively. Biochar amendment could be a climate smart agricultural strategy. Pyrolysis pine wood biochar showed the greatest potential to reduce GHG emissions and enhance SOC storage and stability, and gasification biochar contributed more to SOC storage and increased crop yield.


Assuntos
Carbono , Carvão Vegetal , Gases de Efeito Estufa , Solo , Carvão Vegetal/química , Solo/química , Gases de Efeito Estufa/análise , Carbono/análise , Florestas , Sequestro de Carbono , Óxido Nitroso/análise , Dióxido de Carbono/análise , Agricultura/métodos , Poluentes Atmosféricos/análise
12.
PLoS One ; 19(5): e0301254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713689

RESUMO

Oil seed crops are the second most important field crops after cereals in the agricultural economy globally. The use and demand for oilseed crops such as groundnut, soybean and sunflower have grown significantly, but climate change is expected to alter the agroecological conditions required for oilseed crop production. This study aims to present an approach that utilizes decision-making tools to assess the potential climate change impacts on groundnut, soybean and sunflower yields and the greenhouse gas emissions from the management of the crops. The Decision Support Tool for Agrotechnology Transfer (DSSAT v4.7), a dynamic crop model and the Cool Farm Tool, a GHG calculator, was used to simulate yields and estimate GHG emissions from these crops, respectively. Four representative concentration pathways (RCPs 2.6, 4.5, 6.0, and 8.5), three nitrogen (0, 75, and 150 kg/ha) and phosphorous (0, 30 and 60 P kg/ha) fertilizer rates at three sites in Limpopo, South Africa (Ofcolaco, Syferkuil and Punda Maria) were used in field trials for calibrating the models. The highest yield was achieved by sunflower across all crops, years and sites. Soybean yield is projected to decrease across all sites and scenarios by 2030 and 2050, except at Ofcolaco, where yield increases of at least 15.6% is projected under the RCP 4.5 scenario. Positive climate change impacts are predicted for groundnut at Ofcolaco and Syferkuil by 2030 and 2050, while negative impacts with losses of up to 50% are projected under RCP8.5 by 2050 at Punda Maria. Sunflower yield is projected to decrease across all sites and scenarios by 2030 and 2050. A comparison of the climate change impacts across sites shows that groundnut yield is projected to increase under climate change while notable yield losses are projected for sunflower and soybean. GHG emissions from the management of each crop showed that sunflower and groundnut production had the highest and lowest emissions across all sites respectively. With positive climate change impacts, a reduction of GHG emissions per ton per hectare was projected for groundnuts at Ofcolaco and Syferkuil and for sunflower in Ofcolaco in the future. However, the carbon footprint from groundnut is expected to increase by 40 to 107% in Punda Maria for the period up to 2030 and between 70-250% for 2050, with sunflower following a similar trend. We conclude that climate change will potentially reduce yield for oilseed crops while management will increase emissions. Therefore, in designing adaptation measures, there is a need to consider emission effects to gain a holistic understanding of how both climate change impacts on crops and mitigation efforts could be targeted.


Assuntos
Mudança Climática , Produtos Agrícolas , Produtos Agrícolas/crescimento & desenvolvimento , África do Sul , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Helianthus/crescimento & desenvolvimento , Modelos Teóricos , Fertilizantes/análise , Gases de Efeito Estufa/análise , Óleos de Plantas , Agricultura/métodos
13.
J Environ Manage ; 359: 121055, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701585

RESUMO

Globally, forest soils are considered as important sources and sinks of greenhouse gases (GHGs). However, most studies on forest soil GHG fluxes are confined to the topsoils (above 20 cm soil depths), with only very limited information being available regarding these fluxes in the subsoils (below 20 cm soil depths), especially in managed forests. This limits deeper understanding of the relative contributions of different soil depths to GHG fluxes and global warming potential (GWP). Here, we used a concentration gradient-based method to comprehensively investigate the effects of thinning intensity (15% vs. 35%) and nutrient addition (no fertilizer vs. NPK fertilizers) on soil GHG fluxes from the 0-40 cm soil layers at 10 cm depth intervals in a Chinese fir (Cunninghamia lanceolata) plantation. Results showed that forest soils were the sources of CO2 and N2O, but the sinks of CH4. Soil GHG fluxes decreased with increasing soil depth, with the 0-20 cm soil layers identified as the dominant producers of CO2 and N2O and consumers of CH4. Thinning intensity did not significantly affect soil GHG fluxes. However, fertilization significantly increased CO2 and N2O emissions and CH4 uptake at 0-20 cm soil layers, but decreased them at 20-40 cm soil layers. This is because fertilization alleviated microbial N limitation and decreased water filled pore space (WFPS) in topsoils, while it increased WFPS in subsoils, ultimately suggesting that soil WFPS and N availability (especially NH4+-N) were the predominant regulators of GHG fluxes along soil profiles. Generally, there were positive interactive effects of thinning and fertilization on soil GHG fluxes. Moreover, the 35% thinning intensity without fertilization had the lowest GWP among all treatments. Overall, our results suggest that fertilization may not only cause depth-dependent effects on GHG fluxes within soil profiles, but also impede efforts to mitigate climate change by promoting GHG emissions in managed forest plantations.


Assuntos
Fertilizantes , Gases de Efeito Estufa , Solo , Gases de Efeito Estufa/análise , Solo/química , Florestas , Metano/análise , Dióxido de Carbono/análise , Cunninghamia/crescimento & desenvolvimento , Aquecimento Global , Óxido Nitroso/análise , China
14.
Chemosphere ; 358: 142186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701860

RESUMO

Fluorinated compounds (FCs) such as sulfur hexafluoride (SF6) and nitrogen trifluoride (NF3) have garnered attention due to their environmental impact. This study investigates the mineralization and removal of two potent FCs: SF6 and NF3. The results confirm that utilizing various oxalate salts leads to the formation of corresponding metallic fluorides: lithium fluoride (LiF), sodium fluoride (NaF), and potassium fluoride (KF), validating the occurrence of mineralization reactions. Among the oxalate salts, sodium oxalate demonstrates the highest mineralization efficiency in both SF6 and NF3 removal. Real-time Fourier transform infrared spectroscopy (FT-IR) gas-phase analysis confirms rapid and complete gas removal within a short reaction time using the selected oxalate salts. Meticulous mass balance calculations revealed that oxalates (LiF, NaF, and KF) yielded sulfur (S) at rates of 92.09%, 91.85%, and 84.98% following SF6 mineralization. Additionally, the conversion rates of oxalates to the corresponding metallic fluorides (LiF, NaF, and KF) after SF6 mineralization were 98.18%, 95.82%, and 95.21%, respectively. Similarly, after NF3 mineralization, these conversion rates stood at 92.18%, 90.67%, and 90.02%, respectively. The removal efficiencies for SF6 (1000 ppm) were 4.98, 12.01, and 7.23 L/g, while those for NF3 (1000 ppm) were 14.1, 12.6, and 11.7 L/g, respectively. Notably, sodium oxalate exhibits superior effectiveness, achieving 100% SF6 conversion within 30 min and 100% NF3 conversion within 50 min. This work underscores the potential of oxalate mineralization as a promising strategy for efficient and rapid removal of potent fluorinated compounds, paving the way for environmentally benign FC remediation techniques with broader implications for sustainable gas treatment technologies.


Assuntos
Fluoretos , Gases de Efeito Estufa , Oxalatos , Hexafluoreto de Enxofre , Oxalatos/química , Hexafluoreto de Enxofre/química , Fluoretos/química , Gases de Efeito Estufa/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Recuperação e Remediação Ambiental/métodos
15.
Int J Behav Nutr Phys Act ; 21(1): 36, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566176

RESUMO

BACKGROUND: The Planetary Health Diet Index (PHDI) measures adherence to the dietary pattern presented by the EAT-Lancet Commission, which aligns health and sustainability targets. There is a need to understand how PHDI scores correlate with dietary greenhouse gas emissions (GHGE) and how this differs from the carbon footprints of scores on established dietary recommendations. The objectives of this study were to compare how the PHDI, Healthy Eating Index-2015 (HEI-2015) and Dietary Approaches to Stop Hypertension (DASH) relate to (a) dietary GHGE and (b) to examine the influence of PHDI food components on dietary GHGE. METHODS: We used life cycle assessment data from the Database of Food Recall Impacts on the Environment for Nutrition and Dietary Studies to calculate the mean dietary GHGE of 8,128 adult participants in the 2015-2016 and 2017-2018 cycles of the National Health and Nutrition Examination Survey (NHANES). Poisson regression was used to estimate the association of (a) quintiles of diet score and (b) standardized dietary index Z-scores with dietary GHGE for PHDI, HEI-2015, and DASH scores. In secondary analyses, we used Poisson regression to assess the influence of individual PHDI component scores on dietary GHGE. RESULTS: We found that higher dietary quality on all three indices was correlated with lower dietary GHGE. The magnitude of the dietary quality-dietary GHGE relationship was larger for PHDI [-0.4, 95% CI (-0.5, -0.3) kg CO2 equivalents per one standard deviation change] and for DASH [-0.5, (-0.4, -0.6) kg CO2-equivalents] than for HEI-2015 [-0.2, (-0.2, -0.3) kg CO2-equivalents]. When examining PHDI component scores, we found that diet-related GHGE were driven largely by red and processed meat intake. CONCLUSIONS: Improved dietary quality has the potential to lower the emissions impacts of US diets. Future efforts to promote healthy, sustainable diets could apply the recommendations of the established DASH guidelines as well as the new guidance provided by the PHDI to increase their environmental benefits.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Gases de Efeito Estufa , Adulto , Humanos , Dieta Saudável , Gases de Efeito Estufa/análise , Inquéritos Nutricionais , Dióxido de Carbono/análise , Dieta
16.
J Environ Manage ; 357: 120736, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574706

RESUMO

Onsite sanitation systems (OSS) are significant sources of greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). While a handful of studies have been conducted on GHG emissions from OSS, systematic evaluation of literature on this subject is limited. Our systematic review and meta-analysis provides state-of-the- art information on GHG emissions from OSS and identifies novel areas for investigation. The paper analyzes GHG emission rates from different OSS, the influence of various design, operational, and environmental factors on emission rates and proffers mitigation measures. Following the Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) guidelines, we identified 16 articles which quantified GHG emissions from OSS. Septic tanks emit substantial amounts of CO2 and CH4 ranging from 1.74 to 398.30 g CO2/cap/day and 0.06-110.13 g CH4/cap/day, respectively, but have low N2O emissions (0.01-0.06 g N2O/cap/day). CH4 emissions from pit latrines range from 0.77 to 20.30 g CH4/cap/day N2O emissions range from 0.76 to 1.20 gN2O/cap/day. We observed statistically significant correlations (p < 0.05) between temperature, biochemical oxygen demand, chemical oxygen demand, dissolved oxygen, storage period, and GHG emissions from OSS. However, no significant correlation (p > 0.05) was observed between soil volumetric water content and CO2 emissions. CH4 emissions (expressed as CO2 equivalents) from OSS estimated following Intergovernmental Panel for Climate Change (IPCC) guidelines were found to be seven times lower (90.99 g CO2e/cap/day) than in-situ field emission measurements (704.7 g CO2e/cap/day), implying that relying solely on IPCC guidelines may lead to underestimation of GHG emission from OSS. Our findings underscore the importance of considering local contexts and environmental factors when estimating GHG emissions from OSS. Plausible mitigation measures for GHG emissions from OSS include converting waste to biogas in anaerobic systems (e.g. biogas), applying biochar, and implementing mitigation policies that equally address inequalities in sanitation service access. Future research on GHG from OSS should focus on in-situ measurements of GHGs from pit latrines and other common OSS in developing countries, understanding the fate and transport of dissolved organics like CH4 in OSS effluents and impacts of microbial communities in OSS on GHG emissions. Addressing these gaps will enable more holistic and effective management of GHG emissions from OSS.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Biocombustíveis/análise , Saneamento , Solo/química , Metano/análise , Óxido Nitroso/metabolismo , Efeito Estufa
17.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622195

RESUMO

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Oryza , Solo/química , Aquecimento Global , Agricultura/métodos , Gases de Efeito Estufa/análise , Oryza/química , Metano/análise , Carbono , Óxido Nitroso/análise
18.
Sci Total Environ ; 927: 172270, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583627

RESUMO

Recent studies show that greenhouse gas (GHG) emissions from urban landscape water are significant and cannot be overlooked, underscoring the need to develop effective strategies for mitigating GHG production from global freshwater systems. Calcium peroxide (CaO2) is commonly used as an eco-friendly reagent for controlling eutrophication in water bodies, but whether CaO2 can reduce GHG emissions remains unclear. This study investigated the effects of CaO2 dosage on the production of methane (CH4) and nitrous oxide (N2O) in urban landscape water under anoxic conditions during summer. The findings reveal that CaO2 addition not only improved the physicochemical and organoleptic properties of simulated urban landscape water but also reduced N2O production by inhibiting the activity of denitrifying bacteria across various dosages. Moreover, CaO2 exhibited selective effects on methanogens. Specifically, the abundance of acetoclastic methanogen Methanosaeta and methylotrophic methanogen Candidatus_Methanofastidiosum increased whereas the abundance of the hydrogenotrophic methanogen Methanoregula decreased at low, medium, and high dosages, leading to higher CH4 production at increased CaO2 dosage. A comprehensive multi-objective evaluation indicated that an optimal dosage of 60 g CaO2/m2 achieved 41.21 % and 84.40 % reductions in CH4 and N2O production, respectively, over a 50-day period compared to the control. This paper not only introduces a novel approach for controlling the production of GHGs, such as CH4 and N2O, from urban landscape water but also suggests a methodology for optimizing CaO2 dosage, providing valuable insights for its practical application.


Assuntos
Metano , Óxido Nitroso , Peróxidos , Qualidade da Água , Metano/análise , Óxido Nitroso/análise , Peróxidos/análise , Poluentes Químicos da Água/análise , Gases de Efeito Estufa/análise
19.
Sci Total Environ ; 927: 172296, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588732

RESUMO

Constructed wetlands (CWs) are pivotal for wastewater treatment due to their high efficiency and numerous advantages. The impact of plant species and diversity on greenhouse gas (GHG) emissions from CWs requires a more comprehensive evaluation. Moreover, controversial perspectives persist about whether CWs function as carbon sinks or sources. In this study, horizontal subsurface flow (HSSF) CWs vegetated with Cyperus alternifolius, Typhae latifolia, Acorus calamus, and the mixture of these three species were constructed to evaluate pollutant removal efficiencies and GHG emissions, and estimate carbon budgets. Polyculture CWs can stably remove COD (86.79 %), NH4+-N (97.41 %), NO3--N (98.55 %), and TP (98.48 %). They also mitigated global warming potential (GWP) by suppressing N2O emissions compared with monoculture CWs. The highest abundance of the Pseudogulbenkiania genus, crucial for denitrification, was observed in polyculture CWs, indicating that denitrification dominated in nitrogen removal. While the highest nosZ copy numbers were observed in CWs vegetated with Cyperus alternifolius, suggesting its facilitation of denitrification-related microbes. Selecting Cyperus alternifolius to increase species diversity is proposed for simultaneously maintaining the water purification capacity and reducing GHG emissions. Carbon budget estimations revealed that all four types of HSSF CWs were carbon sinks after six months of operation, with carbon accumulation capacity of 4.90 ± 1.50 (Cyperus alternifolius), 3.31 ± 2.01 (Typhae latifola), 1.78 ± 1.30 (Acorus calamus), and 2.12 ± 0.88 (polyculture) kg C/m2/yr. This study implies that under these operation conditions, CWs function as carbon sinks rather than sources, aligning with carbon peak and neutrality objectives and presenting significant potential for carbon reduction efforts.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos Líquidos , Áreas Alagadas , Gases de Efeito Estufa/análise , Eliminação de Resíduos Líquidos/métodos , Cyperus/metabolismo , Carbono/metabolismo , Águas Residuárias , Typhaceae/metabolismo , Acorus/metabolismo
20.
Nat Commun ; 15(1): 3097, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600111

RESUMO

The chemical transformations of methane (CH4) and carbon dioxide (CO2) greenhouse gases typically have high energy barriers. Here we present an approach of strategic coupling of CH4 oxidation and CO2 reduction in a switched microbial process governed by redox cycling of iron minerals under temperate conditions. The presence of iron minerals leads to an obvious enhancement of carbon fixation, with the minerals acting as the electron acceptor for CH4 oxidation and the electron donor for CO2 reduction, facilitated by changes in the mineral structure. The electron flow between the two functionally active microbial consortia is tracked through electrochemistry, and the energy metabolism in these consortia is predicted at the genetic level. This study offers a promising strategy for the removal of CH4 and CO2 in the natural environment and proposes an engineering technique for the utilization of major greenhouse gases.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Oxirredução , Ferro , Metano/metabolismo , Minerais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA