Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.766
Filtrar
1.
Nat Commun ; 15(1): 6710, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112481

RESUMO

The demographical history of France remains largely understudied despite its central role toward understanding modern population structure across Western Europe. Here, by exploring publicly available Europe-wide genotype datasets together with the genomes of 3234 present-day and six newly sequenced medieval individuals from Northern France, we found extensive fine-scale population structure across Brittany and the downstream Loire basin and increased population differentiation between the northern and southern sides of the river Loire, associated with higher proportions of steppe vs. Neolithic-related ancestry. We also found increased allele sharing between individuals from Western Brittany and those associated with the Bell Beaker complex. Our results emphasise the need for investigating local populations to better understand the distribution of rare (putatively deleterious) variants across space and the importance of common genetic legacy in understanding the sharing of disease-related alleles between Brittany and people from western Britain and Ireland.


Assuntos
Genética Populacional , Humanos , França , Genoma Humano/genética , Demografia , Variação Genética , Alelos , Genótipo , História Medieval , Europa (Continente)
2.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39114967

RESUMO

Dominance refers to the effect of a heterozygous genotype relative to that of the two homozygous genotypes. The degree of dominance of mutations for fitness can have a profound impact on how deleterious and beneficial mutations change in frequency over time as well as on the patterns of linked neutral genetic variation surrounding such selected alleles. Since dominance is such a fundamental concept, it has received immense attention throughout the history of population genetics. Early work from Fisher, Wright, and Haldane focused on understanding the conceptual basis for why dominance exists. More recent work has attempted to test these theories and conceptual models by estimating dominance effects of mutations. However, estimating dominance coefficients has been notoriously challenging and has only been done in a few species in a limited number of studies. In this review, we first describe some of the early theoretical and conceptual models for understanding the mechanisms for the existence of dominance. Second, we discuss several approaches used to estimate dominance coefficients and summarize estimates of dominance coefficients. We note trends that have been observed across species, types of mutations, and functional categories of genes. By comparing estimates of dominance coefficients for different types of genes, we test several hypotheses for the existence of dominance. Lastly, we discuss how dominance influences the dynamics of beneficial and deleterious mutations in populations and how the degree of dominance of deleterious mutations influences the impact of inbreeding on fitness.


Assuntos
Genética Populacional , Modelos Genéticos , Mutação , Aptidão Genética , Genes Dominantes , Seleção Genética , Animais , Humanos , Genótipo
3.
PLoS One ; 19(8): e0308066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39116162

RESUMO

The European Roller (Coracias garrulus), a long-distance migratory bird, faced a considerable decline in breeding pairs throughout Europe at the end of the 20th century. Due to conservation efforts and the installation of nesting boxes, the population of the European Roller in Serbia has made a remarkable recovery. Here, we used the variability of nucleotide sequences of the mitochondrial DNA (mtDNA) control region and 10 microsatellite loci to assess the genetic diversity and structuring, phylogeographic patterns and demographic history of this species using 224 individuals from Serbia. Our results showed moderate level of genetic diversity (HO = 0.392) and a slightly elevated level of inbreeding and homozygosity (FIS = 0.393). Genetic structuring based on microsatellite data indicated three genetic clusters, but without a clear spatial pattern. High haplotype diversity (Hd = 0.987) of the mtDNA control region sequences was detected, and neutrality tests indicated a recent demographic expansion. The phylogeographic analysis, which also included previously published sequences of the mtDNA control region, supported the subdivision into two distinct European and Asian haplogroups (ΦST = 0.712). However, the results of our study showed that a larger number of haplotypes sampled in Serbia are clustered in the Asian haplogroup as compared to previous studies, indicating a historically continuous distribution of this species and possibly a wider distribution of the subspecies Coracias garrulus semenovwi. Our results suggest that the European Roller population in Serbia is genetically stable, with no evidence of recent bottlenecks, and emphasize the importance of artificial nest boxes for promoting and maintaining population dynamics of European Rollers.


Assuntos
DNA Mitocondrial , Variação Genética , Haplótipos , Repetições de Microssatélites , Filogeografia , Sérvia , DNA Mitocondrial/genética , Animais , Repetições de Microssatélites/genética , Aves/genética , Aves/classificação , Genética Populacional , Filogenia
4.
Commun Biol ; 7(1): 957, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117774

RESUMO

The time that elapsed between the initial introduction and the proliferation of an invasive species is referred to as the lag phase. The identification of the lag phase is critical for generating plans for pest management and for the prevention of biosecurity failure. However, lag phases have been identified mostly through retrospective searches of historical records. The agricultural pest fall armyworm (FAW; Spodoptera frugiperda) is native to the New World. FAW invasion was first reported from West Africa in 2016, then it spread quickly through Africa, Asia, and Oceania. Here, using population genomics approaches, we demonstrate that the FAW invasion involved an undocumented lag phase. Invasive FAW populations have negative signs of genomic Tajima's D, and invasive population-specific genetic variations have particularly decreased Tajima's D, supporting a substantial amount of time for the generation of new mutations in introduced FAW populations. Model-based diffusion approximations support the existence of a period with a cessation of gene flow between native and invasive FAW populations. Taken together, these results provide strong support for the presence of a lag phase during the FAW invasion. These results show the usefulness of using population genomics analyses to identify lag phases in biological invasions.


Assuntos
Espécies Introduzidas , Spodoptera , Animais , Spodoptera/genética , Variação Genética , Fluxo Gênico , Genética Populacional , Metagenômica , Genômica/métodos
5.
BMC Genomics ; 25(1): 772, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118059

RESUMO

BACKGROUND: The Icelandic horse and Exmoor pony are ancient, native breeds, adapted to harsh environmental conditions and they have both undergone severe historic bottlenecks. However, in modern days, the selection pressures on these breeds differ substantially. The aim of this study was to assess genetic diversity in both breeds through expected (HE) and observed heterozygosity (HO) and effective population size (Ne). Furthermore, we aimed to identify runs of homozygosity (ROH) to estimate and compare genomic inbreeding and signatures of selection in the breeds. RESULTS: HO was estimated at 0.34 and 0.33 in the Icelandic horse and Exmoor pony, respectively, aligning closely with HE of 0.34 for both breeds. Based on genomic data, the Ne for the last generation was calculated to be 125 individuals for Icelandic horses and 42 for Exmoor ponies. Genomic inbreeding coefficient (FROH) ranged from 0.08 to 0.20 for the Icelandic horse and 0.12 to 0.27 for the Exmoor pony, with the majority of inbreeding attributed to short ROHs in both breeds. Several ROH islands associated with performance were identified in the Icelandic horse, featuring target genes such as DMRT3, DOCK8, EDNRB, SLAIN1, and NEURL1. Shared ROH islands between both breeds were linked to metabolic processes (FOXO1), body size, and the immune system (CYRIB), while private ROH islands in Exmoor ponies were associated with coat colours (ASIP, TBX3, OCA2), immune system (LYG1, LYG2), and fertility (TEX14, SPO11, ADAM20). CONCLUSIONS: Evaluations of genetic diversity and inbreeding reveal insights into the evolutionary trajectories of both breeds, highlighting the consequences of population bottlenecks. While the genetic diversity in the Icelandic horse is acceptable, a critically low genetic diversity was estimated for the Exmoor pony, which requires further validation. Identified signatures of selection highlight the differences in the use of the two breeds as well as their adaptive trait similarities. The results provide insight into genomic regions under selection pressure in a gaited performance horse breed and various adaptive traits in small-sized native horse breeds. This understanding contributes to preserving genetic diversity and population health in these equine populations.


Assuntos
Variação Genética , Homozigoto , Endogamia , Seleção Genética , Cavalos/genética , Animais , Islândia , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Heterozigoto , Cruzamento , Genética Populacional
6.
Sci Rep ; 14(1): 18032, 2024 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098938

RESUMO

Bael is a fruit crop that is extensively distributed throughout South-East Asia and is underutilized in medicine. The potential applications of bael's therapeutic and nutritional qualities in diverse ethnic communities are enormous. This study focuses on evaluating the morpho-pomological and molecular characteristics, utilizing SSR markers, of 80 wild bael genotypes alongside the NB-5 and NB-9 cultivars, derived from the North Western plains of India. Based on the evaluated morpho-pomological features, substantial variations were found between all genotypes. The fruit's inner diameter and pulp weight varied from 4.41 to 11.54 cm and 34.63 to 786.41 g, respectively. Numerous variations in the genotypes were observed in the shell weight/fruit, fruit skull thickness and fruit yield/plant. The bael fruit mucilage's total soluble solids (TSS) and total sugar content varied from 40.10 to 49.60 obrix and 8.11 to 21.17%, respectively. Using ward cluster analysis, the genotypes were divided into two primary clusters. Among the bael genotypes, the population structure analysis identified three subpopulations. SSR markers are used to measure genetic variety; of the 27 polymorphic markers, 17 show allelic diversity between genotypes. Molecular genetic diversity analysis, on the other hand, highlighted the genotypes genetic distinctiveness by classifying them into three major clusters. These findings offer valuable insights into the rich diversity and intricate interactions among the bael genotypes under investigation, paving the way for more strategic future breeding and selection efforts to elevate the quality of this remarkable fruit.


Assuntos
Aegle , Frutas , Variação Genética , Genótipo , Repetições de Microssatélites , Índia , Repetições de Microssatélites/genética , Aegle/genética , Frutas/genética , Marcadores Genéticos , Genética Populacional , Filogenia
7.
Sci Rep ; 14(1): 18040, 2024 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098950

RESUMO

Critically endangered Hooded Vultures (Necrosyrtes monachus Temminck, 1823), like many vulture species globally, are experiencing rapid population declines due to anthropogenic factors such as poisonings, human persecution, trading for belief-based use, and habitat loss/degradation. The Hooded Vulture is widespread across sub-Saharan Africa. Although it is considered one of the most abundant vultures in West Africa, this vulture species is less common in East and southern Africa, with the population at the southern-most edge of the distribution (in South Africa and Eswatini) estimated at only 100-200 mature individuals. The distribution of Hooded Vultures has contracted dramatically in southern Africa, with breeding populations largely confined to protected areas such as the Greater Kruger National Park. This study aimed to investigate the genetic diversity of the southern African range-edge population and assess if the recent contraction in the distribution has resulted in the population experiencing a genetic bottleneck. Sixteen microsatellite loci were amplified for samples collected along the Olifants River in the Greater Kruger National Park (n = 30). The genetic diversity in the South African population was compared to samples (n = 30) collected in Ghana, where Hooded Vultures are more abundant. Contrary to expectations, the South African peripheral Hooded Vulture population showed higher levels of heterozygosity (HO = 0.495) than the Ghanaian population (HO = 0.315). Neither population showed signs of recent bottleneck events when tested using demographic modelling and Approximate Bayesian computation (ABC). However, both populations showed high levels of inbreeding and relatedness. Our results suggest that despite being a small peripheral population, the South African Hooded Vulture population showed a similar level of genetic diversity as individuals sampled from a core population within the species distribution (in Ghana). This study supports the need for Hooded Vulture conservation efforts in the southern African region and highlights the evolutionary importance of range-edge populations.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Falconiformes , Variação Genética , Repetições de Microssatélites , Animais , Falconiformes/genética , Repetições de Microssatélites/genética , África do Sul , Ecossistema , Genética Populacional
8.
BMC Genomics ; 25(1): 754, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095706

RESUMO

BACKGROUND: Silkie is a traditional Chinese chicken breed characterized by its unique combination of specialized morphological traits. While previous studies have focused on the genetic basis of these traits, the overall genomic characteristics of the Silkie breed remain largely unexplored. In this study, we employed whole genome resequencing data to examine the genetic diversity, selective signals and demographic history of the Silkie breed through comparative analyses with seven other Chinese indigenous breeds (IDGBs), a commercial breed, and the wild ancestor Red Jungle Fowl. RESULTS: In total, 20.8 million high-quality single nucleotide polymorphisms and 86 large structural variations were obtained. We discovered that Silkie exhibits a relatively high level of inbreeding and is genetically distinct from other IDGBs. Furthermore, our analysis indicated that Silkie has experienced a stronger historical population bottleneck and has a smaller effective population size compared with other IDGBs. We identified 45 putatively selected genes that are enriched in the melanogenesis pathway, which probably is related to the feather color. Among these genes, LMBR1 and PDSS2 have been previously associated with the extra toe and the hookless feathers, respectively. Six of the selected genes (KITLG, GSK3B, SOBP, CTBP1, ELMO2, SNRPN) are known to be associated with neurodevelopment and mental diseases in human, and are possibly related to the distinct behavior of Silkie. We further identified structural variants in Silkie and found previously reported variants linked to hyperpigmentation (END3), muff and beard (HOXB8), and Rose-comb phenotype (MNR2). Additionally, we found a 0.61 Mb inversion overlapping with the GMDS gene, which was previously linked to neurodevelopmental defects in zebrafish and humans. This may also be related to the behavior distinctiveness of Silkie. CONCLUSIONS: Our study revealed that Silkie is genetically distinct and relatively highly inbred compared to other IDGB chicken populations, possibly attributed to more prolong population bottlenecks and selective breeding practice. These results enhance our understanding of how domestication and selective breeding have shaped the genome of Silkie. These findings contribute to the broader field of domestication and avian genomics, and have implications for the future conservation and breeding efforts.


Assuntos
Galinhas , Variação Genética , Polimorfismo de Nucleotídeo Único , Animais , Galinhas/genética , Seleção Genética , Sequenciamento Completo do Genoma , Cruzamento , Genética Populacional , Genômica/métodos
9.
Nat Commun ; 15(1): 6665, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138152

RESUMO

Population-scale genome modification can alter the composition or fate of wild populations. Synthetic gene drives provide one set of tools, but their use is complicated by scientific, regulatory, and social issues associated with transgene persistence and flow. Here we propose an alternative approach. An Allele Sail consists of a genome editor (the Wind) that introduces DNA sequence edits, and is inherited in a Mendelian fashion. Meanwhile, the edits (the Sail) experience an arithmetic, Super-Mendelian increase in frequency. We model this system and identify contexts in which a single, low frequency release of an editor brings edits to a very high frequency. We also identify conditions in which manipulation of sex determination can bring about population suppression. In regulatory frameworks that distinguish between transgenics (GMO) and their edited non-transgenic progeny (non-GMO) Allele Sails may prove useful since the spread and persistence of the GM component can be limited.


Assuntos
Alelos , Animais , DNA/genética , Modelos Genéticos , Sequência de Bases , Genética Populacional , Transgenes , Masculino , Feminino , Genes Sintéticos
10.
Sci Rep ; 14(1): 18592, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127859

RESUMO

Pecan (Carya illinoinensis) is an economically important nut crop known for its genetic diversity and adaptability to various climates. Understanding the growth variability, phenological traits, and population structure of pecan populations is crucial for breeding programs and conservation. In this study, plant growth and phenological traits were evaluated over three consecutive seasons (2015-2017) for 550 genotypes from 26 provenances. Significant variations in plant height, stem diameter, and budbreak were observed among provenances, with Southern provenances exhibiting faster growth and earlier budbreak compared to Northern provenances. Population structure analysis using SNP markers revealed eight distinct subpopulations, reflecting genetic differentiation among provenances. Notably, Southern Mexico collections formed two separate clusters, while Western collections, such as 'Allen 3', 'Allen 4', and 'Riverside', were distinguished from others. 'Burkett' and 'Apache' were grouped together due to their shared maternal parentage. Principal component analysis and phylogenetic tree analysis further supported subpopulation differentiation. Genetic differentiation among the 26 populations was evident, with six clusters highly in agreement with the subpopulations identified by STRUCTURE and fastSTRUCTURE. Principal components analysis (PCA) revealed distinct groups, corresponding to subpopulations identified by genetic analysis. Discriminant analysis of PCA (DAPC) based on provenance origin further supported the genetic structure, with clear separation of provenances into distinct clusters. These findings provide valuable insights into the genetic diversity and growth patterns of pecan populations. Understanding the genetic basis of phenological traits and population structure is essential for selecting superior cultivars adapted to diverse environments. The identified subpopulations can guide breeding efforts to develop resilient rootstocks and contribute to the sustainable management of pecan genetic resources. Overall, this study enhances our understanding of pecan genetic diversity and informs conservation and breeding strategies for the long-term viability of pecan cultivation.


Assuntos
Carya , Variação Genética , Fenótipo , Carya/genética , Carya/crescimento & desenvolvimento , Filogenia , Genótipo , México , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Genética Populacional
11.
PLoS One ; 19(8): e0308724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39137187

RESUMO

Feralization is the process of domesticated animals returning to the wild and it is considered the counterpart of domestication. Molecular genetic changes are well documented in domesticated organisms but understudied in feral populations. In this study, the genetic differentiation between domestic and feral cats was inferred by analysing whole-genome sequencing data of two geographically distant feral cat island populations, Dirk Hartog Island (Australia) and Kaho'olawe (Hawaii) as well as domestic cats and European wildcats. The study investigated population structure, genetic differentiation, genetic diversity, highly differentiated genes, and recombination rates. Genetic structure analyses linked both feral cat populations to North American domestic and European cat populations. Recombination rates in feral cats were lower than in domestic cats but higher than in wildcats. For Australian and Hawaiian feral cats, 105 and 94 highly differentiated genes compared to domestic cats respectively, were identified. Annotated genes had similar functions, with almost 30% of the divergent genes related to nervous system development in both feral groups. Twenty mutually highly differentiated genes were found in both feral populations. Evolution of highly differentiated genes was likely driven by specific demographic histories, the relaxation of the selective pressures associated with domestication, and adaptation to novel environments to a minor extent. Random drift was the prevailing force driving highly divergent regions, with relaxed selection in feral populations also playing a significant role in differentiation from domestic cats. The study demonstrates that feralization is an independent process that brings feral cats on a unique evolutionary trajectory.


Assuntos
Animais Selvagens , Variação Genética , Genoma , Animais , Gatos/genética , Animais Selvagens/genética , Austrália , Ilhas , Evolução Molecular , Havaí , Genética Populacional , Sequenciamento Completo do Genoma , Domesticação
12.
Sci Rep ; 14(1): 17870, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090215

RESUMO

The study of species groups in which the presence of interspecific hybridization or introgression phenomena is known or suspected involves analysing shared bi-parentally inherited molecular markers. Current methods are based on different categories of markers among which the classical microsatellites or the more recent genome wide approaches for the analyses of thousands of SNPs or hundreds of microhaplotypes through high throughput sequencing. Our approach utilizes intron-targeted amplicon sequencing to characterise multi-locus intron polymorphisms (MIPs) and assess genetic diversity. These highly variable intron regions, combined with inter-specific transferable loci, serve as powerful multiple-SNP markers potentially suitable for various applications, from species and hybrid identification to population comparisons, without prior species knowledge. We developed the first panel of MIPs highly transferable across fish genomes, effectively distinguishing between species, even those closely related, and populations with different structures. MIPs offer versatile, hypervariable nuclear markers and promise to be especially useful when multiple nuclear loci must be genotyped across different species, such as for the monitoring of interspecific hybridization. Moreover, the relatively long sequences obtained ease the development of single-locus PCR-based diagnostic markers. This method, here demonstrated in teleost fishes, can be readily applied to other taxa, unlocking a new source of genetic variation.


Assuntos
Peixes , Íntrons , Animais , Íntrons/genética , Peixes/genética , Peixes/classificação , Polimorfismo de Nucleotídeo Único , Genética Populacional , Especificidade da Espécie , Metagenômica/métodos , Genômica/métodos
13.
Proc Natl Acad Sci U S A ; 121(34): e2411487121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136984

RESUMO

When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.


Assuntos
Dinâmica Populacional , Modelos Genéticos , Deriva Genética , Genética Populacional/métodos , Variação Genética , Frequência do Gene , Humanos , Evolução Biológica
14.
Asian Pac J Cancer Prev ; 25(7): 2229-2235, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068553

RESUMO

The Hardy-Weinberg Equilibrium (HWE) is a fundamental principle employed in the analysis of genetic data, encompassing studies of meta-analysis and genomic sequencing. It has been demonstrated that HWE possesses the property of transitivity, wherein a multi-allelic polymorphism in equilibrium will persist in its equilibrium state even when alleles are deleted or combined. Nonetheless, the practice of filtering loci that do not adhere to HWE has been observed to impact the inference of population genetics within RADseq datasets. In response to this concern, the Robust Unified Test for HWE (RUTH) has been devised to consider population structure and genotype uncertainty, thereby offering a more precise evaluation of the quality of genotype data. Furthermore, deviations from HWE, such as extreme heterozygote excess, can be effectively utilized to identify genotyping errors or to pinpoint the presence of rare recessive disease-causing variants. In summary, it is evident that HWE holds immense significance in the field of genetic analysis, and its application in meta-analysis studies and genomic sequencing can yield invaluable insights into the intricacies of population structure and the genetics of diseases.


Assuntos
Metanálise como Assunto , Humanos , Genótipo , Genética Populacional/métodos , Genômica/métodos
15.
Mol Biol Rep ; 51(1): 878, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083078

RESUMO

BACKGROUND: Saccharosydne procerus serves as a significant alternative host for parasitoids of the important rice pest, rice planthoppers. Rearing S. procerus on the water bamboo plants near rice field can provide a parasitic site for parasitic wasps during the idle period of rice fields, thereby stabilizing the number of parasitoids and suppressing the number of rice planthoppers in the field. However, limited understanding of genetic diversity of S. procerus restricts its application. Therefore, this study aims to analyze the genetic diversity of S. procerus in Hunan region. METHODS: In this study, 16 geographical populations of the S. procerus from the Hunan region were used. After screening, ISSR primers were employed for polymorphism detection. POPGENE32 software was used for genetic diversity analysis, and UPGMA clustering was applied for statistical analysis of different geographical populations to generate an evolutionary tree. RESULTS: Eleven ISSR primers were screened, resulting in the detection of 194 amplification locus, of which 126 were polymorphic. The average percentage of polymorphic locus was 64.95%. The mean Nei's gene diversity (H) was 0.2475, the mean Shannon's Information index (I) was 0.3708, and the Genetic diversity index among populations (Gst) was 0.3800. Cluster analysis identified three groups, with most populations concentrated in the second group, indicating no clear genetic structure. This suggests that the 16 populations of S. procerus exhibit high levels of genetic diversity.


Assuntos
Variação Genética , Filogenia , China , Variação Genética/genética , Animais , Polimorfismo Genético , Repetições de Microssatélites/genética , Hemípteros/genética , Oryza/genética , Oryza/parasitologia , Genética Populacional/métodos
16.
Sci Rep ; 14(1): 15755, 2024 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977809

RESUMO

Guava (Psidium guajava L.) is a semi-domesticated fruit tree of moderate importance in the Neotropics, utilized for millennia due to its nutritional and medicinal benefits, but its origin of domestication remains unknown. In this study, we examine genetic diversity and population structure in 215 plants from 11 countries in Mesoamerica, the Andes, and Amazonia using 25 nuclear microsatellite loci to propose an origin of domestication. Genetic analyses reveal one gene pool in Mesoamerica (Mexico) and four in South America (Brazilian Amazonia, Peruvian Amazonia and Andes, and Colombia), indicating greater differentiation among localities, possibly due to isolation between guava populations, particularly in the Amazonian and Andean regions. Moreover, Mesoamerican populations show high genetic diversity, with moderate genetic structure due to gene flow from northern South American populations. Dispersal scenarios suggest that Brazilian Amazonia is the probable origin of guava domestication, spreading from there to the Peruvian Andes, northern South America, Central America, and Mexico. These findings present the first evidence of guava domestication in the Americas, contributing to a deeper understanding of its evolutionary history.


Assuntos
Domesticação , Variação Genética , Repetições de Microssatélites , Psidium , Psidium/genética , Repetições de Microssatélites/genética , América do Sul , Fluxo Gênico , Genética Populacional , Brasil
17.
Proc Natl Acad Sci U S A ; 121(28): e2307107121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959040

RESUMO

Despite evolutionary biology's obsession with natural selection, few studies have evaluated multigenerational series of patterns of selection on a genome-wide scale in natural populations. Here, we report on a 10-y population-genomic survey of the microcrustacean Daphnia pulex. The genome sequences of [Formula: see text]800 isolates provide insights into patterns of selection that cannot be obtained from long-term molecular-evolution studies, including the following: the pervasiveness of near quasi-neutrality across the genome (mean net selection coefficients near zero, but with significant temporal variance about the mean, and little evidence of positive covariance of selection across time intervals); the preponderance of weak positive selection operating on minor alleles; and a genome-wide distribution of numerous small linkage islands of observable selection influencing levels of nucleotide diversity. These results suggest that interannual fluctuating selection is a major determinant of standing levels of variation in natural populations, challenge the conventional paradigm for interpreting patterns of nucleotide diversity and divergence, and motivate the need for the further development of theoretical expressions for the interpretation of population-genomic data.


Assuntos
Daphnia , Genoma , Seleção Genética , Animais , Daphnia/genética , Genoma/genética , Evolução Molecular , Variação Genética , Genética Populacional/métodos
18.
PLoS Genet ; 20(7): e1011036, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968323

RESUMO

Replicated clines across environmental gradients can be strong evidence of adaptation. House mice (Mus musculus domesticus) were introduced to the Americas by European colonizers and are now widely distributed from Tierra del Fuego to Alaska. Multiple aspects of climate, such as temperature, vary predictably across latitude in the Americas. Past studies of North American populations across latitudinal gradients provided evidence of environmental adaptation in traits related to body size, metabolism, and behavior and identified candidate genes using selection scans. Here, we investigate genomic signals of environmental adaptation on a second continent, South America, and ask whether there is evidence of parallel adaptation across multiple latitudinal transects in the Americas. We first identified loci across the genome showing signatures of selection related to climatic variation in mice sampled across a latitudinal transect in South America, accounting for neutral population structure. Consistent with previous results, most candidate SNPs were in putatively regulatory regions. Genes that contained the most extreme outliers relate to traits such as body weight or size, metabolism, immunity, fat, eye function, and the cardiovascular system. We then compared these results with the results of analyses of published data from two transects in North America. While most candidate genes were unique to individual transects, we found significant overlap among candidate genes identified independently in the three transects. These genes are diverse, with functions relating to metabolism, immunity, cardiac function, and circadian rhythm, among others. We also found parallel shifts in allele frequency in candidate genes across latitudinal gradients. Finally, combining data from all three transects, we identified several genes associated with variation in body weight. Overall, our results provide strong evidence of shared responses to selection and identify genes that likely underlie recent environmental adaptation in house mice across North and South America.


Assuntos
Adaptação Fisiológica , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Camundongos , Adaptação Fisiológica/genética , América do Sul , Genômica/métodos , Genoma , América , Peso Corporal/genética , Genética Populacional
19.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958167

RESUMO

Admixture between populations and species is common in nature. Since the influx of new genetic material might be either facilitated or hindered by selection, variation in mixture proportions along the genome is expected in organisms undergoing recombination. Various graph-based models have been developed to better understand these evolutionary dynamics of population splits and mixtures. However, current models assume a single mixture rate for the entire genome and do not explicitly account for linkage. Here, we introduce TreeSwirl, a novel method for inferring branch lengths and locus-specific mixture proportions by using genome-wide allele frequency data, assuming that the admixture graph is known or has been inferred. TreeSwirl builds upon TreeMix that uses Gaussian processes to estimate the presence of gene flow between diverged populations. However, in contrast to TreeMix, our model infers locus-specific mixture proportions employing a hidden Markov model that accounts for linkage. Through simulated data, we demonstrate that TreeSwirl can accurately estimate locus-specific mixture proportions and handle complex demographic scenarios. It also outperforms related D- and f-statistics in terms of accuracy and sensitivity to detect introgressed loci.


Assuntos
Frequência do Gene , Modelos Genéticos , Genética Populacional/métodos , Cadeias de Markov , Fluxo Gênico , Genoma , Simulação por Computador , Ligação Genética
20.
Theor Appl Genet ; 137(7): 174, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954043

RESUMO

KEY MESSAGE: Genotyping-by-sequencing of 723 worldwide cucumber genetic resources revealed that cucumbers were dispersed eastward via at least three distinct routes, one to Southeast Asia and two from different directions to East Asia. The cucumber (Cucumis sativus) is an economically important vegetable crop cultivated and consumed worldwide. Despite its popularity, the manner in which cucumbers were dispersed from their origin in South Asia to the rest of the world, particularly to the east, remains a mystery due to the lack of written records. In this study, we performed genotyping-by-sequencing (GBS) on 723 worldwide cucumber accessions, mainly deposited in the Japanese National Agriculture and Food Research Organization (NARO) Genebank, to characterize their genetic diversity, relationships, and population structure. Analyses based on over 60,000 genome-wide single-nucleotide polymorphisms identified by GBS revealed clear genetic differentiation between Southeast and East Asian populations, suggesting that they reached their respective region independently, not progressively. A deeper investigation of the East Asian population identified two subpopulations with different fruit characteristics, supporting the traditional classification of East Asian cucumbers into two types thought to have been introduced by independent routes. Finally, we developed a core collection of 100 accessions representing at least 93.2% of the genetic diversity present in the entire collection. The genetic relationships and population structure, their associations with geographic distribution and phenotypic traits, and the core collection presented in this study are valuable resources for elucidating the dispersal history and promoting the efficient use and management of genetic resources for research and breeding in cucumber.


Assuntos
Cucumis sativus , Polimorfismo de Nucleotídeo Único , Cucumis sativus/genética , Genética Populacional , Genótipo , Variação Genética , Ásia Oriental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...