Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.686
Filtrar
1.
BMC Plant Biol ; 24(1): 1036, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39482582

RESUMO

BACKGROUND: Bacterial wilt (BW), caused by Ralstonia solanacearum (Ral), results in substantial yield losses in pepper crops. Developing resistant pepper varieties through breeding is the most effective strategy for managing BW. To achieve this, a thorough understanding of the genetic information connected with resistance traits is essential. Despite identifying three major QTLs for bacterial wilt resistance in pepper, Bw1 on chromosome 8, qRRs-10.1 on chromosome 10, and pBWR-1 on chromosome 1, the genetic information of related BW pepper varieties has not been sufficiently studied. Here, we resequenced two pepper inbred lines, C. annuum 'MC4' (resistant) and C. annuum 'Subicho' (susceptible), and analyzed genomic variations through SNPs and Indels to identify candidate genes for BW resistance. RESULTS: An average of 139.5 Gb was generated among the two cultivars, with coverage ranging from 44.94X to 46.13X. A total of 8,815,889 SNPs was obtained between 'MC4' and 'Subicho'. Among them, 31,190 (0.35%) were non-synonymous SNPs (nsSNPs) corresponding to 10,926 genes, and these genes were assigned to 142 Gene Ontology (GO) terms across the two cultivars. We focused on three known BW QTL regions by identifying genes with sequence variants through gene set enrichment analysis and securing those belonging to high significant GO terms. Additionally, we found 310 NLR genes with nsSNP variants between 'MC4' (R) and 'Subicho' (S) within these regions. Also, we performed an Indel analysis on these genes. By integrating all this data, we identified eight candidate BW resistance genes, including two NLR genes with nsSNPs variations in qRRs-10.1 on chromosome 10. CONCLUSION: We identified genomic variations in the form of SNPs and Indels by re-sequencing two pepper cultivars with contrasting traits for bacterial wilt. Specifically, the four genes associated with pBWR-1 and Bw1 that exhibit both nsSNP and Indel variations simultaneously in 'Subicho', along with the two NLR genes linked to qRRs-10.1, which are known for their direct involvement in immune responses, are identified as most likely BW resistance genes. These variants in leading candidate genes associated with BW resistance can be used as important markers for breeding pepper varieties.


Assuntos
Capsicum , Resistência à Doença , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Ralstonia solanacearum , Capsicum/genética , Capsicum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ralstonia solanacearum/fisiologia , Genes de Plantas , Locos de Características Quantitativas , Mutação INDEL
2.
BMC Plant Biol ; 24(1): 987, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39427136

RESUMO

BACKGROUND: Cabbage (Brassica oleracea L. var. capitata) is an important crop within the Brassica oleracea species and is extensively cultivated worldwide. In recent years, outbreaks of downy mildew caused by Hyaloperonospora parasitica have resulted in substantial losses in cabbage production. Despite this, there have been limited studies on genes associated with resistance to downy mildew in cabbage. RESULTS: This study identified sister lines exhibiting significant differences in disease resistance and susceptibility. Using bulked segregant analysis followed by sequencing (BSA-seq) and linkage analysis, the cabbage resistance locus BoDMR2 was accurately mapped to an approximately 300 kb interval on chromosome 7. Among the candidate genes identified, several single nucleotide polymorphisms (SNPs) and a 3-bp insertion were found within the conserved domain of the Bo7g117810 gene, encoding a leucine-rich repeat domain protein, in susceptible genotypes. Additionally, real-time quantitative polymerase chain reaction (RT‒qPCR) analysis revealed that the expression level of Bo7g117810 in resistant specimens was 2.5-fold higher than that in susceptible specimens. An insertion‒deletion (InDel) marker was designed based on the identified insertion in susceptible materials, facilitating the identification and selection of downy mildew-resistant cabbage cultivars. CONCLUSIONS: This study identifies Bo7g117810 as a potential candidate gene associated with adult-stage resistance to downy mildew in cabbage, supported by observed differences in gene sequence and expression levels. Furthermore, the development of an InDel marker I1-3, based on its mutation, provides valuable resources for breeding resistant cabbage cultivars.


Assuntos
Brassica , Mapeamento Cromossômico , Resistência à Doença , Genes de Plantas , Doenças das Plantas , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Brassica/genética , Brassica/microbiologia , Polimorfismo de Nucleotídeo Único , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oomicetos/fisiologia
3.
BMC Plant Biol ; 24(1): 989, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39428472

RESUMO

BACKGROUND: Evidence shows that full mycoheterotrophs and holoparasites often have reduced plastid genomes with rampant gene loss, elevated substitution rates, and deeply altered to conventional evolution in mitochondrial genomes, but mechanisms of cytonuclear evolution is unknown. Endoparasitic Sapria himalayana and mycoheterotrophic Gastrodia and Platanthera guangdongensis represent different heterotrophic types, providing a basis to illustrate cytonuclear evolution. Here, we focused on nuclear-encoded plastid / mitochondrial (N-pt / mt) -targeting protein complexes, including caseinolytic protease (ClpP), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo), oxidative phosphorylation system (OXPHOS), DNA recombination, replication, and repair (DNA-RRR) system, and pentatricopeptide repeat (PPR) proteins, to identify evolutionary drivers for cytonuclear interaction. RESULTS: The severity of gene loss of N-pt PPR and pt-RRR genes was positively associated with increased degree of heterotrophy in full mycoheterotrophs and S. himalayana, while N-mt PPR and mt-RRR genes were retained. Substitution rates of organellar and nuclear genes encoding N-pt/mt subunits in protein complexes were evaluated, cytonuclear coevolution was identified in S. himalayana, whereas disproportionate rates of evolution were observed in the OXPHOS complex in full mycoheterotrophs, only slight accelerations in substitution rates were identified in N-mt genes of full mycoheterotrophs. CONCLUSIONS: Nuclear compensatory evolution was identified in protein complexes encoded by plastid and N-pt genes. Selection shaping codon preferences, functional constraint, mt-RRR gene regulation, and post-transcriptional regulation of PPR genes all facilitate mito-nuclear evolution. Our study enriches our understanding of genomic coevolution scenarios in fully heterotrophic plants.


Assuntos
Evolução Molecular , Processos Heterotróficos , Núcleo Celular/genética , Genes de Plantas , Plastídeos/genética
4.
BMC Res Notes ; 17(1): 292, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370523

RESUMO

OBJECTIVE: This research aims to analyze the presence and distribution of resistance genes in the avium and fruticosa subgenomes of Prunus cerasus through computational methods and bioinformatics tools. RESULTS: Analysis of genome and transcriptome sequencing data revealed a total of 19,570 transcripts with at least one resistance gene domain in Prunus cerasus subgenome avium and 19,142 in Prunus cerasus subgenome fruticosa. Key findings include the identification of 804 "complete" resistance gene transcripts in Prunus cerasus subgenome avium and 817 in Prunus cerasus subgenome fruticosa, with distinct distributions of resistance gene classes observed between the subgenomes. Phylogenetic analysis showed clustering of resistance genes, and unique resistance proteins were identified in each subgenome. Functional annotation comparisons with Arabidopsis thaliana highlighted shared and unique resistance genes, emphasizing the complexity of disease resistance in cherry species. Additionally, a higher diversity of RLKs and RLPs was observed, with 504 transcripts identified and 18 showing similarity to known reference genes.


Assuntos
Resistência à Doença , Filogenia , Prunus avium , Resistência à Doença/genética , Prunus avium/genética , Genes de Plantas , Prunus/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Genoma de Planta , Transcriptoma/genética , Arabidopsis/genética
5.
Theor Appl Genet ; 137(10): 246, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365463

RESUMO

KEY MESSAGE: Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a devastating wheat disease worldwide. Deployment of disease resistance (R) genes in wheat cultivars is the most effective way to control the disease. Previously, the all-stage stripe rust R gene Yr4EL from tetraploid Thinopyrum elongatum was introduced into common wheat as 4E(4D) substitution and T4DS·4EL translocation lines. To further map and utilize Yr4EL, Chinese Spring (CS) mutant pairing homoeologous gene ph1b was used in crossing to induce recombination between chromosome (chr) 4EL and wheat chromosomes. Two small fragment translocation lines T4DS·4DL-4EL and T5AS·5AL-4EL with Yr4EL resistance were selected using molecular markers and confirmed by genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and Wheat 660 K SNP array analyses. We mapped Yr4EL to an about 35 Mb region at the end of chr 4EL, corresponding to 577.76-612.97 Mb based on the diploid Th. elongatum reference genome. In addition, two competitive allele-specific PCR (KASP) markers co-segregating with Yr4EL were developed to facilitate molecular marker-assisted selection in breeding. The T4DS·4DL-4EL lines were crossed and backcrossed with wheat cultivars SM482 and CM42, and the resulting pre-breeding lines showed high stripe rust resistance and potential for wheat breeding with good agronomic traits. These lines represent new germplasm for wheat stripe rust resistance breeding, as well as providing a solid foundation for Yr4EL fine mapping and cloning.


Assuntos
Cromossomos de Plantas , Resistência à Doença , Genes de Plantas , Melhoramento Vegetal , Doenças das Plantas , Poaceae , Translocação Genética , Triticum , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Triticum/genética , Triticum/microbiologia , Poaceae/genética , Poaceae/microbiologia , Cromossomos de Plantas/genética , Tetraploidia , Marcadores Genéticos , Puccinia/patogenicidade , Mapeamento Cromossômico , Hibridização in Situ Fluorescente , Basidiomycota/patogenicidade
6.
BMC Plant Biol ; 24(1): 925, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367325

RESUMO

BACKGROUND: Vegetable soybean is rich in nutrients and has a unique flavor. It is highly preferred by people because of its pharmacological activities, including those that regulate the intestines and lower blood pressure. The pod color of vegetable soybeans is an important quality that indicates their freshness and has a significant impact on their commercialization. RESULTS: In this study, pod color was evaluated in 301 vegetable soybean accessions collected from various regions. Genome-wide association analysis was carried out using the Mixed linear model (MLM), a total of 18 quantitative trait loci including 117 SNPs were detected. Two significant QTLs located on chromosomes 6 (qGPCL4 /qGPCa1/qGPCb2) and 18 (qGPCL10/qGPCb3) were consistently detected across different variables. Based on gene functional annotation, 30 candidate genes were identified in these two candidate intervals. Combined with transcriptome analysis, Glyma.18g241700 has been identified as a candidate gene for regulating pod color in vegetable soybeans. Glyma.18g241700 encodes a chlorophyll photosystem I subunit XI. which localizes to the chloroplast named GmPsaL, qRT-PCR analysis showed that GmPsaL was specifically highly expressed in developing pods. Furthermore, overexpression of GmPsaL in transgenetic Arabidopsis plants produced dark green pods. CONCLUSIONS: These findings may be useful for clarifying the genetic basis of the pod color of vegetable soybeans. The identified candidate genes may be useful for the genetic improvement of the appearance quality of vegetable soybeans.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Locos de Características Quantitativas , Glycine max/genética , Glycine max/fisiologia , Locos de Características Quantitativas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Genes de Plantas , Cor , Verduras/genética , Arabidopsis/genética
7.
PeerJ ; 12: e18278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391824

RESUMO

The chlorophyll content (CC) directly affects photosynthesis, growth, and yield. However, the genetic basis of CC is still unclear in maize (Zea mays L.). Here, we conducted a genome-wide association study using mixed linear model for CC of the fifth leaves at seedling stage (CCFSS) and the ear leaves at filling stage (CCEFS) for 334 maize inbred lines. The heritability estimates for CCFSS and CCEFS, obtained via variance components analysis using the lme4 package in R, were 70.84% and 78.99%, respectively, indicating that the CC of leaves is primarily controlled by genetic factors. A total of 15 CC-related SNPs and 177 candidate genes were identified with a p-value < 4.49 × 10-5, which explained 4.98-7.59% of the phenotypic variation. Lines with more favorable gene variants showed higher CC. Meanwhile, Gene Ontology (GO) analysis implied that these candidate genes were probably related to chlorophyll biosynthesis. In addition, gene-based association analyses revealed that six variants in GRMZM2G037152, GRMZM5G816561, GRMZM2G324462, and GRMZM2G064657 genes were significantly (p-value < 0.01) correlated with CC, of which GRMZM2G064657 (encodes a phosphate transporter protein) and GRMZM5G816561 (encodes a cytochrome P450 protein) were specifically highly expressed in leaves tissues. Interestingly, these candidate genes were previously reported to involve in the regulation of the contents of chlorophyll in plants or Chlamydomonas. These results may contribute to the understanding of genetic basis and molecular mechanisms of maize CC and the selection of maize varieties with improved CC.


Assuntos
Clorofila , Estudo de Associação Genômica Ampla , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Zea mays , Zea mays/genética , Zea mays/metabolismo , Clorofila/metabolismo , Clorofila/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Genes de Plantas/genética , Fenótipo
8.
BMC Plant Biol ; 24(1): 946, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39390400

RESUMO

BACKGROUND: Heterosis is a common phenomenon in plants and has been extensively applied in crop breeding. However, the superior traits in the hybrids can only be maintained in the first generation but segregate in the following generations. Maintaining heterosis in generations has been challenging but highly desirable in crop breeding. Recent study showed that maternally produced diploid seeds could be achieved in rice by knocking out three meiosis related genes, namely REC8, PAIR1, OSD1 to create MiMe in combination with egg cell specific expression of BBM transcription factor, a technology called clonal seeds. Interestingly, there has been very limited reports indicating the feasibility of this approach in other crops. RESULTS: In this study, we aimed to test whether clonal seeds could be created in cotton. We identified the homologs of the three meiosis related genes in cotton and used the multiplex CRISPR/Cas9 gene editing system to simultaneously knock out these three genes in both A and D sub-genomes. More than 50 transgenic cotton plants were generated, and fragment analysis indicated that multiple gene knockouts occurred in the transgenic plants. However, all the transgenic plants were sterile apparently due to the lack of pollen. Pollination of the flowers of the transgenic plants using the wild type pollens could not generate seeds, an indication of defects in the formation of female sexual cells in the transgenic plants. In addition, we generated transgenic cotton plants expressing the cotton BBM gene driven by the Arabidopsis egg cell specific promoter pDD45. Two transgenic plants were obtained, and both showed severely reduced fertility. CONCLUSIONS: Overall, our results indicate that knockout of the clonal seeds related genes in cotton causes sterility and how to manipulate genes to create clonal seeds in cotton requires further research.


Assuntos
Gossypium , Infertilidade das Plantas , Plantas Geneticamente Modificadas , Sementes , Gossypium/genética , Gossypium/fisiologia , Sementes/genética , Plantas Geneticamente Modificadas/genética , Infertilidade das Plantas/genética , Genes de Plantas , Sistemas CRISPR-Cas , Edição de Genes/métodos , Melhoramento Vegetal , Meiose/genética
9.
Nat Commun ; 15(1): 8568, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384757

RESUMO

The organosulfur compound dimethylsulfoniopropionate (DMSP) has key roles in stress protection, global carbon and sulfur cycling, chemotaxis, and is a major source of climate-active gases. Saltmarshes are global hotspots for DMSP cycling due to Spartina cordgrasses that produce exceptionally high concentrations of DMSP. Here, in Spartina anglica, we identify the plant genes that underpin high-level DMSP synthesis: methionine S-methyltransferase (MMT), S-methylmethionine decarboxylase (SDC) and DMSP-amine oxidase (DOX). Homologs of these enzymes are common in plants, but differences in expression and catalytic efficiency explain why S. anglica accumulates such high DMSP concentrations and other plants only accumulate low concentrations. Furthermore, DMSP accumulation in S. anglica is consistent with DMSP having a role in oxidative and osmotic stress protection. Importantly, administration of DMSP by root uptake or over-expression of Spartina DMSP synthesis genes confers plant tolerance to salinity and drought offering a route for future bioengineering for sustainable crop production.


Assuntos
Poaceae , Compostos de Sulfônio , Compostos de Sulfônio/metabolismo , Poaceae/genética , Poaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidade , Secas , Metiltransferases/metabolismo , Metiltransferases/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Genes de Plantas
10.
BMC Plant Biol ; 24(1): 982, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39420254

RESUMO

BACKGROUND: Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors are pivotal regulators in various aspects of plant biology, including growth, development, and responses to environmental stresses. While PLATZ genes have been extensively studied and functionally characterized in various plants, limited information is available for these genes in barley. RESULTS: Here, we discovered a total of 11 PLATZ genes distributed across seven chromosomes in barley. Based on phylogenetic and conserved motif analysis, we classified PLATZ into five subfamilies, comprising 3, 1, 2, 1 and 4 genes, respectively. Analysis of gene structure demonstrated that these 11 HvPLATZ genes typically possessed two to four exons. Most HvPLATZ genes were found to possess at least one ABRE cis-element in their promoter regions, and a few of them also contained LTR, CAT-box, MRE, and DRE cis-elements. Then, we conducted an exploration of the expression patterns of HvPLATZs, which displayed notable differences across various tissues and in response to abiotic stresses. Functional analysis of HvPLATZ6 and HvPLATZ8 in yeast cells showed that they may be involved in drought tolerance. Additionally, we constructed a regulatory network including miRNA-targeted gene predictions and identified two miRNAs targeting two HvPLATZs, such as hvu-miR5053 and hvu-miR6184 targeting HvPLATZ2, hvu-miR6184 targeting HvPLATZ10. CONCLUSION: In summary, these findings provide valuable insights for future functional verification of HvPLATZs and contribute to a deeper understanding of the role of HvPLATZs in response to stress conditions in barley.


Assuntos
Hordeum , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Hordeum/genética , Hordeum/fisiologia , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Cromossomos de Plantas/genética , MicroRNAs/genética
11.
Plant Cell Rep ; 43(11): 261, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400607

RESUMO

KEY MESSAGE: Platanus acerifolia AIL genes PaAIL5a/b and PaAIL6b participate in FT-AP1/FUL-AIL pathways to regulate bud dormancy. In addition, PaAIL6a/b can promote flowering, and PaAIL5b and PaAIL6b affect floral development. Bud dormancy and floral induction are essential processes for perennial plants, they are both regulated by photoperiod, temperature, and hormones, indicating the existence of common regulators for both processes. AINTEGUMENTA-LIKE (AIL) genes regulate reproductive growth of annual plants, including floral induction and flower development, and their homologs in poplar and grape act downstream of the florigen gene FT and the floral meristem identity genes AP1/FUL and function to maintain growth and thus inhibit dormancy induction. However, it is not known whether AIL homologs participate in the reproduction processes in perennials and whether the Platanus acerifolia AIL genes are involved in dormancy. P. acerifolia is a perennial woody plant whose reproductive growth is strongly associated with dormancy. Here, we isolated four AIL homologs from P. acerifolia, PaAIL5a, PaAIL5b, PaAIL6a, and PaAIL6b, and systematically investigated their functions by ectopic-overexpression in tobacco. The findings demonstrate that PaAIL5a/b and PaAIL6b respond to short day, low temperature, and hormone signals and act as the components of the FT-AP1/FUL-AIL pathway to regulate the bud dormancy in P. acerifolia. Notably, PaAIL5a/b and PaAIL6b function downstream of PaFTL-PaFUL1/2/3 to inhibit the dormancy induction and downstream of PaFT-PaFUL2/3 to promote the dormancy release. In addition, PaAIL6a/b were found to accelerate flowering in transgenic tobacco, whereas PaAIL5b and PaAIL6b affected the flower development. Together, our results suggest that PaAIL genes may act downstream of different PaFT/PaFTL and PaFUL proteins to fulfill conservative and diverse roles in floral initiation, floral development, and dormancy regulation in P. acerifolia.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Dormência de Plantas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Dormência de Plantas/genética , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reprodução/genética , Fotoperíodo , Genes de Plantas
12.
Int J Mol Sci ; 25(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39409140

RESUMO

The oil content of maize kernels is essential to determine its nutritional and economic value. A multiparent population (MPP) consisting of five recombinant inbred line (RIL) subpopulations was developed to elucidate the genetic basis of the total oil content (TOC) in maize. The MPP used the subtropical maize inbred lines CML312 and CML384, along with the tropical maize inbred lines CML395, YML46, and YML32 as the female parents, and Ye107 as the male parent. A genome-wide association study (GWAS) was performed using 429 RILs of the multiparent population across three environments, employing 584,847 high-quality single nucleotide polymorphisms (SNPs). Furthermore, linkage analysis was performed in the five subpopulations to identify quantitative trait loci (QTL) linked to TOC in maize. Through QTL mapping and GWAS, 18 QTLs and 60 SNPs that were significantly associated with TOC were identified. Two novel candidate genes, Zm00001d029550 and Zm00001d029551, related to TOC in maize and located on chromosome 1 were reported, which have not been previously reported. These genes are involved in biosynthesis, lipid signal transduction, plant development and metabolism, and stress responses, potentially influencing maize TOC. Haplotype analysis of Zm00001d029550 and Zm00001d029551 revealed that Hap3 could be considered a superior haplotype for increasing TOC in maize. A co-located SNP (SNP-75791466) on chromosome 1, located 5648 bp and 11,951 bp downstream of the candidate genes Zm00001d029550 and Zm00001d029551, respectively, was found to be expressed in various maize tissues. The highest expression was observed in embryos after pollination, indicating that embryos are the main tissue for oil accumulation in maize. This study provides a theoretical basis for understanding the genetic mechanisms underlying maize TOC and developing high-quality, high-oil maize varieties.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Mapeamento Cromossômico , Haplótipos , Endogamia , Óleo de Milho/genética , Óleo de Milho/metabolismo , Genes de Plantas , Melhoramento Vegetal , Introgressão Genética
13.
Physiol Plant ; 176(5): e14588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39440705

RESUMO

Rice is a staple crop providing a significant portion of the global food supply. It is then crucial to develop strategies for breeding high-yield cultivars to meet global food security challenges, including the UN's zero-hunger goal. In this study, QTL mapping was employed to pinpoint key genomic regions linked to traits influencing rice yield, with a focus on panicle structure-a critical determinant of grain number. Over two consecutive years, QTLs were identified using 88 JJ625LG/Namchan Recombinant Inbred Lines (JNRILs), revealing several candidate genes. Notably, Gn1a, a known regulator of grain number, was mapped within qNS1 and qNSSr1-1, while the sd1 gene, linked to plant height, was detected across multiple QTLs. Furthermore, a novel gene, OsNSMq3 (Os03g0843800), encoding a methyltransferase, was identified in various QTLs, with haplotype and sequence homology analysis suggesting its role in enhancing yield by influencing panicle structure development. The increase in primary and secondary branches, driven by these genes, leads to a higher number of spikelets per panicle, thereby boosting yield. These findings underscore the potential of candidate genes from stable QTLs as valuable tools in molecular breeding to develop high-yield rice cultivars, addressing global hunger and aiding food supply in refugee crises.


Assuntos
Mapeamento Cromossômico , Oryza , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Genes de Plantas/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Genome Biol ; 25(1): 250, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350172

RESUMO

BACKGROUND: Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery. RESULTS: Here, we investigate the gene loss event during the evolution of RNS in Leguminosae through phylogenomic and synteny analyses in 48 species including 16 Leguminosae species. We reveal that loss of the Lateral suppressor gene, a member of the GRAS-domain protein family, is associated with the evolution of RNS in Leguminosae. Ectopic expression of the Lateral suppressor (Ls) gene from tomato and its homolog MONOCULM 1 (MOC1) and Os7 from rice in soybean and Medicago truncatula result in almost completely lost nodulation capability. Further investigation shows that Lateral suppressor protein, Ls, MOC1, and Os7 might function through an interaction with NODULATION SIGNALING PATHWAY 2 (NSP2) and CYCLOPS to repress the transcription of NODULE INCEPTION (NIN) to inhibit the nodulation in Leguminosae. Additionally, we find that the cathepsin H (CTSH), a conserved protein, could interact with Lateral suppressor protein, Ls, MOC1, and Os7 and affect the nodulation. CONCLUSIONS: This study sheds light on uncovering the genetic basis of the evolution of RNS in Leguminosae and suggests that gene loss plays an essential role.


Assuntos
Evolução Molecular , Fabaceae , Filogenia , Proteínas de Plantas , Nódulos Radiculares de Plantas , Simbiose , Simbiose/genética , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fabaceae/genética , Fabaceae/microbiologia , Regulação da Expressão Gênica de Plantas , Nodulação/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Genes de Plantas , Glycine max/genética , Glycine max/microbiologia
15.
PLoS One ; 19(10): e0303602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39361664

RESUMO

Maize is one of the main food crops in the world, and cultivating high-yield and high-quality maize varieties is of great significance in addressing food security issues. Leaves are crucial photosynthetic organs in maize, and leaf senescence can result in the degradation of chlorophyll. This, in turn, impacts photosynthetic activity and the accumulation of photosynthetic products. Delaying leaf senescence and increasing carbon assimilation can enhance grain yield and biomass production. The stay green of maize is an important trait closely related to yield, feed quality and resistance. Therefore, this study employed multi-generation joint analysis of major genes and a polygene model to investigate the genetic inheritance of stay green-related traits. Four populations (P1, P2, F1 and F2) were obtained by crossing T01 (stay green) × Xin3 (non-stay green) and T01 (stay green) × Mo17 (non-stay green) under two environments. Six stay green-related traits, including visual stay green (VSG), number of green leaves (GLNM), SPAD value of ear leaf at anthesis (SPADS), SPAD value of ear leaf at maturity (SPADM), absolute green leaf area (GLAD), grain yield per plant (GYP), displayed continuous variations with kurtosis and skewness values of absolute value less than 1 and distribution close to normal. They were characterized by typical inheritance of quantitative traits, with these traits demonstrating the transgressive segregation. The correlation analysis among the traits revealed that five stay green traits have a positive impact on yield. VSG, GLNM and SPADM in the two populations were regulated by the two major genes of additive effects plus additive-dominance polygene model with a major gene heritability varying from 89.03 to 95.95% in the F2 generation. GLAD in TMF2 was controlled by two major genes of equal-additive dominance effects with high heritability (93.47%). However, in TXF2, GLAD was regulated by two major genes of additive-dominance interaction effects plus additive-dominance polygene model. These results provide important genetic information for breeding, which could guide the improvement of stay green-related traits. They also lay a foundation for quantitative trait loci mapping of the stay stay-green traits in maize.


Assuntos
Folhas de Planta , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Fenótipo , Locos de Características Quantitativas , Modelos Genéticos , Clorofila/metabolismo , Genes de Plantas , Fotossíntese/genética , Característica Quantitativa Herdável
16.
BMC Genomics ; 25(1): 915, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354337

RESUMO

BACKGROUND: Transcriptome-based prediction of complex phenotypes is a relatively new statistical method that links genetic variation to phenotypic variation. The selection of large-effect genes based on a priori biological knowledge is beneficial for predicting oligogenic traits; however, such a simple gene selection method is not applicable to polygenic traits because causal genes or large-effect loci are often unknown. Here, we used several gene-level features and tested whether it was possible to select a gene subset that resulted in better predictive ability than using all genes for predicting a polygenic trait. RESULTS: Using the phenotypic values of shoot and root traits and transcript abundances in leaves and roots of 57 rice accessions, we evaluated the predictive abilities of the transcriptome-based prediction models. Leaf transcripts predicted shoot phenotypes, such as plant height, more accurately than root transcripts, whereas root transcripts predicted root phenotypes, such as crown root length, more accurately than leaf transcripts. Furthermore, we used the following three features to train the prediction model: (1) tissue specificity of the transcripts, (2) ontology annotations, and (3) co-expression modules for selecting gene subsets. Although models trained by a gene subset often resulted in lower predictive abilities than the model trained by all genes, some gene subsets showed improved predictive ability. For example, using genes expressed in roots but not in leaves, the predictive ability for crown root diameter was improved by more than 10% (R2 = 0.59 when using all genes; R2 = 0.66, using 1,554 root-specifically expressed genes). Similarly, genes annotated as "gibberellic acid sensitivity" showed higher predictive ability than using all genes for root dry weight. CONCLUSIONS: Our results highlight both the possibility and difficulty of selecting an appropriate gene subset to predict polygenic traits from transcript abundance, given the current biological knowledge and information. Further integration of multiple sources of information, as well as improvements in gene characterization, may enable the selection of an optimal gene set for the prediction of polygenic phenotypes.


Assuntos
Herança Multifatorial , Oryza , Fenótipo , Transcriptoma , Oryza/genética , Raízes de Plantas/genética , Folhas de Planta/genética , Perfilação da Expressão Gênica , Genes de Plantas
17.
Sci Rep ; 14(1): 24491, 2024 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-39424873

RESUMO

Bract coloration is one of the key ornamental traits in Bougainvillea, yet research has predominantly focused on phenotypic color traits and pigment composition, with limited understanding of the molecular mechanisms underlying color formation. This gap hinders the improvement and innovation in bract coloration. To elucidate the regulatory mechanisms of bract coloration in Bougainvillea and to enhance the utilization of its germplasm resources, this study employed the Illumina Novaseq 6000 sequencing platform to conduct transcriptomic sequencing on 21 samples of bracts exhibiting seven distinct phenotypes. Comparative analysis against Nr, Pfam, EggNOG, GO, and KEGG databases annotated 90,279 unigenes. The highest annotation rates were achieved with the Nr (40.13%), GO (30.44%), and EggNOG (25.64%) databases. Among the species annotated, Beta vulgaris (20.08%) and Chenopodium quinoa (14.58%) shared the highest homology with Bougainvillea bract transcriptomes. WGCNA analysis identified 12 positively correlated tissue-specific modules, of which 2 are related to bract color formation. By comparing transcriptome data and genes within these specific modules against the KEGG database, a total of 321 unigenes associated with bract color formation in Bougainvillea were discovered. Among these, 220 unigenes are involved in anthocyanin synthesis, 43 unigenes are involved in betalain synthesis, 23 unigenes are annotated as Chlorophyll a-b binding protein genes, and 35 unigenes participate in carotenoid synthesis. Quantitative real-time PCR (qRT-PCR) validation of 16 differentially expressed genes (DEGs) including PAL2, CHS1, ANS, BZ1, 6GT, CDOPA5GT, ANR, CHS2, and DOPA, revealed significant expression differences among magenta, yellow, white, and cherry-colored bracts, suggesting their potential as candidate genes for bract color development. This study not only enriches the transcriptomic data of Bougainvillea but also identifies genes associated with bract coloration, providing a valuable theoretical basis for future gene cloning, genetic engineering, and breeding efforts in Bougainvillea.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Pigmentação , Transcriptoma , Pigmentação/genética , Perfilação da Expressão Gênica/métodos , Nyctaginaceae/genética , Nyctaginaceae/metabolismo , Anotação de Sequência Molecular , Genes de Plantas , Mineração de Dados , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Theor Appl Genet ; 137(11): 251, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39425772

RESUMO

KEY MESSAGE: A stable QTL, GW3, controlling grain width was identified in two populations. Its causal gene LOC_Os03g04680 was verified by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. Grain width (GW) is one of the key traits affecting grain size and determines grain yield and appearance quality in rice. Mining gene loci and elite alleles controlling GW is necessary. The GW phenotypes of the two populations were investigated in three environments, which showed abundant phenotypic variation. GW3, encoding a P450 subfamily protein, was identified and validated as a causal gene by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. The accessions with large GW values had high gene expression levels. In addition, the GW of the accessions with the GG allele was significantly greater than that of the accessions with the AA allele. The Hap 1 and Hap 3 were identified as elite haplotypes, which can increase GW. The expression levels of OsKO1, OsGA3ox1, OsGA20ox1 and OsGA20ox2 in the young panicle of A7444 were significantly greater than those in the young panicle of the mutants, indicating that GW3 may be involved in the gibberellins (GA) biosynthesis pathway to regulate GW. GA4 content detection and electron scanning analysis revealed that GA4 regulates GW by affecting glume cell size. These results provide new insights for studying the genetic mechanism of rice GW and provide a material basis for breeding high-yield rice varieties.


Assuntos
Sistema Enzimático do Citocromo P-450 , Grão Comestível , Giberelinas , Haplótipos , Oryza , Fenótipo , Proteínas de Plantas , Locos de Características Quantitativas , Oryza/genética , Oryza/crescimento & desenvolvimento , Giberelinas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Regulação da Expressão Gênica de Plantas , Sementes/crescimento & desenvolvimento , Sementes/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Mapeamento Cromossômico , Genes de Plantas
19.
Plant Cell Rep ; 43(11): 254, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373738

RESUMO

KEY MESSAGE: The genomic organization, phylogenetic relationship, expression patterns, and genetic variations of m6A-related genes were systematically investigated in wild emmer wheat and the function of TdFIP37 regulating salt tolerance was preliminarily determined. m6A modification is one of the most abundant and crucial RNA modifications in eukaryotics, playing the indispensable role in growth and development as well as stress response in plants. However, its significance in wild emmer wheat remains elusive. Here, a genome-wide search of m6A-related genes was conducted in wild emmer wheat to obtain 64 candidates, including 21 writers, 17 erasers, and 26 readers. Phylogenetic and collinearity analysis demonstrated that segmental duplication and polyploidization contributed mainly to the expansion of m6A-related genes in wild emmer. A number of cis-acting elements involving in stress and hormonal regulation were found in the promoter regions of them, such as MBS, LTR, and ABRE. Genetic variation of them was also investigated using resequencing data and obvious genetic bottleneck was occurred on them during wild emmer wheat domestication process. Furthermore, the salt-responsive candidates were investigated through RNA-seq data and qRT-PCR validation using the salt-tolerant and -sensitive genotypes and the co-expression analysis showed that they played the hub role in regulating salt stress response. Finally, the loss-function mutant of Tdfip37 displayed the significantly higher salt-sensitive compared to WT and then RNA-seq analysis demonstrated that FIP37 mediated the MAPK pathway, hormone signal transduction, as well as transcription factor to regulate salt tolerance. This study provided the potential m6A genes for functional analysis, which will contribute to better understand the regulatory roles of m6A modification and also improve the salt tolerance from the perspective of epigenetic approach in emmer wheat and other crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Salino , Tolerância ao Sal , Triticum , Triticum/genética , Triticum/fisiologia , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Genoma de Planta/genética , Família Multigênica , Genes de Plantas/genética
20.
Sci Rep ; 14(1): 23361, 2024 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375519

RESUMO

Pedicel length is a crucial agronomic trait of cucumbers. Fruit deformation can occur When the pedicel is too long or too short. Moreover, an appropriate pedicel length is advantageous for mechanized harvesting. Therefore, it is essential to investigate the molecular regulatory mechanisms underlying cucumber pedicel length. In the current study, we obtained a short pedicel mutant through EMS mutagenesis and discovered that the reduced cell number was the primary cause of the shortened pedicel. Upon analyzing the hormone content, we found that the level of trans zeatin in the long-pedicel material was significantly higher than that in the short-pedicel material. Further transcriptome sequencing analysis revealed that differentially expressed genes were enriched in cytokinin synthesis-related pathways. Based on these results, the present study concluded that cucumber pedicel length is regulated by genes related to the cytokinin synthesis pathway and that differences in length result from differences in zeatin content and cell number.


Assuntos
Cucumis sativus , Citocininas , Frutas , Regulação da Expressão Gênica de Plantas , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Citocininas/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Mutação , Transcriptoma , Zeatina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...