Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.505
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001005

RESUMO

Salinity stress is a common challenge in plant growth, impacting seed quality, germination, and general plant health. Sodium chloride (NaCl) ions disrupt membranes, causing ion leakage and reducing seed viability. Gibberellic acid (GA3) treatments have been found to promote germination and mitigate salinity stress on germination and plant growth. 'Bauer' and 'Muir' lettuce (Lactuca sativa) seeds were soaked in distilled water (control), 100 mM NaCl, 100 mM NaCl + 50 mg/L GA3, and 100 mM NaCl + 150 mg/L GA3 in Petri dishes and kept in a dark growth chamber at 25 °C for 24 h. After germination, seedlings were monitored using embedded cameras, capturing red, green, and blue (RGB) images from seeding to final harvest. Despite consistent germination rates, 'Bauer' seeds treated with NaCl showed reduced germination. Surprisingly, the 'Muir' cultivar's final dry weight differed across treatments, with the NaCl and high GA3 concentration combination yielding the poorest results (p < 0.05). This study highlights the efficacy of GA3 applications in improving germination rates. However, at elevated concentrations, it induced excessive hypocotyl elongation and pale seedlings, posing challenges for two-dimensional imaging. Nonetheless, a sigmoidal regression model using projected canopy size accurately predicted dry weight across growth stages and cultivars, emphasizing its reliability despite treatment variations (R2 = 0.96, RMSE = 0.11, p < 0.001).


Assuntos
Germinação , Giberelinas , Lactuca , Plântula , Sementes , Giberelinas/farmacologia , Lactuca/crescimento & desenvolvimento , Lactuca/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Germinação/fisiologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia
2.
BMC Genomics ; 25(1): 682, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982341

RESUMO

BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Herbicidas , Reguladores de Crescimento de Plantas , Setaria (Planta) , Ácido 2,4-Diclorofenoxiacético/farmacologia , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Herbicidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Giberelinas/farmacologia , Giberelinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Ésteres
3.
Int J Biol Macromol ; 273(Pt 1): 132954, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852726

RESUMO

This study explores the potential of liposome encapsulated silica immobilized cytochrome P450 monooxygenase (LSICY) for bioremediation of mercury (Hg2+). Current limitations in Hg2+ reduction, including sensitivity to factors like pH and cost, necessitate alternative methods. We propose LSICY as a solution, leveraging the enzymatic activities of cytochrome P450 monooxygenase (CYPM) for Hg2+ reduction through hydroxylation and oxygenation. Our investigation employs LSICY to assess its efficacy in mitigating Hg2+ toxicity in Oryza sativa (rice) plants. Gas chromatography confirmed gibberellic acid (GA) presence in the Hg2+ reducing bacteria Priestia megaterium RP1 (PMRP1), highlighting a potential link between CYP450 activity and plant health. This study demonstrates the promise of LSICY as a sustainable and effective approach for Hg2+ bioremediation, promoting a safer soil environment.


Assuntos
Biodegradação Ambiental , Sistema Enzimático do Citocromo P-450 , Giberelinas , Lipossomos , Mercúrio , Oryza , Sistema Enzimático do Citocromo P-450/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia
4.
Bioresour Technol ; 406: 131017, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908761

RESUMO

Biodiesel production from microalgae presents an innovative solution for renewable energy. This study investigates biodiesel production using Tetradesmus obliquus ON506010.1 by optimizing substrates, selenium and gibberellic acid. Using 15 µg/L selenium, lipid content and biomass productivity reached 35.45 %±0.92 and 0.178 g/L/day ± 0.051. With 50 µM gibberellic acid, biomass productivity and lipid content peaked at 0.785 ± 0.101 g/L/day and 38.95 %±0.35, surpassing the control. Fatty acid composition, biodiesel properties, and mRNA expression of lipid synthesis enzymes (acetyl CoA carboxylase (ACC) and fatty acid desaturase (FAD)) correlated. Combining 10 µg/L selenium with 75 µM gibberellic acid with response surface methodology (RSM) increased lipid content (42.80 % ±0.11) and biomass productivity (0.964 g/L/day ± 0.128). ACC and FAD upregulation validated this enhancement, with a 4.4-fold increase in FAD expression. Fatty acid composition and most biodiesel properties met international standards demonstrating Tetradesmus obliquus ON506010.1's potential for sustainable biodiesel production with better cold flow property and oxidative stability.


Assuntos
Biocombustíveis , Biomassa , Giberelinas , Selênio , Giberelinas/farmacologia , Selênio/farmacologia , Lipídeos/química , Ácidos Graxos , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos
5.
Sci Rep ; 14(1): 14801, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926600

RESUMO

Several factors, such as pruning and phytohormones, have demonstrated an influence on both the quantity and quality in the bell pepper. A factorial experiment using a completely randomized design was conducted on the Lumos yellow bell in a greenhouse. Treatments were the fruit pruning (0, 10, and 30%) and foliar application of phytohormones auxin (AUX) and gibberellic acid (GA3) at concentrations of 10 µM AUX, 10 µM GA3, 10 µM AUX + 10 µM GA3+, and 20 µM AUX + 10 µM GA3 along with controls. The plants were sprayed with phytohormones in four growth stages (1: flowering stage when 50% of the flowers were on the plant, 2: fruiting stage when 50% of the fruits were the size of peas, 3: fruit growth stage when 50% of the fruits had reached 50% of their growth, and 4: ripening stage when 50% of the fruits were at color break). The results of the present investigation showed that pruning rate of 30% yielded the highest flesh thickness and vitamin C content, decreased seed count and hastened fruit ripening. The use of GA3 along with AUX has been observed to augment diverse fruit quality characteristics. According to the results, the application of 10% pruning in combination with 20 µM AUX and 10 µM GA3 demonstrated the most significant levels of carotenoids, chlorophyll, and fruit length. The experimental group subjected to the combined treatment of 30% pruning and 10 µM AUX + 10 µM GA3 showed the most noteworthy levels of vitamin C, fruit weight, and fruit thickness. The groups that received the 10 µM GA3 and 20 µM AUX + 10 µM GA3 treatments exhibited the most favorable fruit flavor. According to the research results, the implementation of hormonal treatments 10 µM AUX and 10 µM AUX + 10 µM GA3 in combination with a 30% pruning strategy resulted in the most advantageous yield of bell peppers.


Assuntos
Capsicum , Frutas , Giberelinas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia
6.
Plant Cell Rep ; 43(7): 170, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869848

RESUMO

KEY MESSAGE: The silencing of GhGASA14 and the identification of superior allelic variation in its coding region indicate that GhGASA14 may positively regulate flowering and the response to GA3. Gibberellic acid-stimulated Arabidopsis (GASA), a member of the gibberellin-regulated short amino acid family, has been extensively investigated in several plant species and found to be critical for plant growth and development. However, research on this topic in cotton has been limited. In this study, we identified 38 GhGASAs that were dispersed across 18 chromosomes in upland cotton, and all of these genes had a GASA core domain. Transcriptome expression patterns and qRT-PCR results revealed that GhGASA9 and GhGASA14 exhibited upregulated expression not only in the floral organs but also in the leaves of early-maturing cultivars. The two genes were functionally characterized by virus-induced gene silencing (VIGS), and the budding and flowering times after silencing the target genes were later than those of the control (TRV:00). Compared with that in the water-treated group (MOCK), the flowering period of the different fruiting branches in the GA3-treated group was more concentrated. Interestingly, allelic variation was detected in the coding sequence of GhGASA14 between early-maturing and late-maturing accessions, and the frequency of this favorable allele was greater in high-latitude cotton cultivars than in low-latitude ones. Additionally, a significant linear relationship was observed between the expression level of GhGASA14 and flowering time among the 12 upland cotton accessions. Taken together, these results indicated that GhGASA14 may positively regulate flowering time and respond to GA3. These findings could lead to the use of valuable genetic resources for breeding early-maturing cotton cultivars in the future.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/fisiologia , Gossypium/efeitos dos fármacos , Flores/genética , Flores/efeitos dos fármacos , Flores/fisiologia , Flores/crescimento & desenvolvimento , Giberelinas/farmacologia , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Inativação Gênica
7.
Plant Physiol Biochem ; 211: 108655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744086

RESUMO

The challenge of desert farming with a high salt level has become an ecological task due to salt stress negatively affecting plant growth and reproduction. The current study deals with the cultivation of sorghum under salt stress conditions to counteract the effect of chitosan and gibberellic acid (GA3). Here, the effects of chitosan, GA3 and nano-composite (GA3@chitosan) on biochemical contents, growth and seed yield of sorghum under salinity stress conditions were studied. The results showed that spraying with GA3@chitosan increased sorghum grain yield by 2.07, 1.81 and 1.64 fold higher than salinity stressed plants, chitosan treatment and GA3 treatment, respectively. Additionally, compared to the control of the same variety, the GA3@chitosan spraying treatment improved the concentration of microelements in the grains of the Shandweel-1 and Dorado by 24.51% and 18.39%, respectively for each variety. Furthermore, spraying GA3@chitosan on sorghum varieties increased the accumulation of the macroelements N, P, and K by 34.03%, 47.61%, and 8.67% higher than salt-stressed plants, respectively. On the other hand, the proline and glycinebetaine content in sorghum leaves sprayed with nano-composite were drop by 51.04% and 11.98% less than stressed plants, respectively. The results showed that, in Ras Sudr, the Shandweel-1 variety produced more grain per feddan than the Dorado variety. These findings suggest that GA3@chitosan improves the chemical and biochemical components leading to a decrease in the negative effect of salt stress on the plant which reflects in the high-yield production of cultivated sorghum plants in salt conditions.


Assuntos
Quitosana , Giberelinas , Estresse Salino , Sorghum , Sorghum/efeitos dos fármacos , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(19): e2316371121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38701118

RESUMO

Strigolactones are a class of phytohormones with various functions in plant development, stress responses, and in the interaction with (micro)organisms in the rhizosphere. While their effects on vegetative development are well studied, little is known about their role in reproduction. We investigated the effects of genetic and chemical modification of strigolactone levels on the timing and intensity of flowering in tomato (Solanum lycopersicum L.) and the molecular mechanisms underlying such effects. Results showed that strigolactone levels in the shoot, whether endogenous or exogenous, correlate inversely with the time of anthesis and directly with the number of flowers and the transcript levels of the florigen-encoding gene SINGLE FLOWER TRUSS (SFT) in the leaves. Transcript quantifications coupled with metabolite analyses demonstrated that strigolactones promote flowering in tomato by inducing the activation of the microRNA319-LANCEOLATE module in leaves. This, in turn, decreases gibberellin content and increases the transcription of SFT. Several other floral markers and morpho-anatomical features of developmental progression are induced in the apical meristems upon treatment with strigolactones, affecting floral transition and, more markedly, flower development. Thus, strigolactones promote meristem maturation and flower development via the induction of SFT both before and after floral transition, and their effects are blocked in plants expressing a miR319-resistant version of LANCEOLATE. Our study positions strigolactones in the context of the flowering regulation network in a model crop species.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Lactonas , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Lactonas/metabolismo , Lactonas/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Flores/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Giberelinas/metabolismo , Giberelinas/farmacologia
9.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724910

RESUMO

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Assuntos
Acetatos , Antioxidantes , Brassica napus , Ciclopentanos , Giberelinas , Oxilipinas , Reguladores de Crescimento de Plantas , Solo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Brassica napus/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Brassica napus/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Acetatos/farmacologia , Solo/química , Clorofila/metabolismo , Estresse Salino/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Nutrientes/metabolismo
10.
Eur J Pharmacol ; 976: 176665, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38797312

RESUMO

OBJECTIVE: Sepsis is frequently complicated by neuroinflammation. Gibberellic acid (GA3) is recognized for its anti-inflammatory properties. In this study, our objective was to investigate whether GA3 could alleviate Nuclear factor-kappa B (NF-κB) -dependent inflammatory stress in sepsis-induced neuroinflammation. METHODS: C57BL/6 J mice were administered 10 mg/kg lipopolysaccharide (LPS) to induce sepsis. BV2 cells were pre-incubated with GA3 and subjected lipopolysaccharide stimulation to replicate the inflammatory microglia during sepsis. Subsequently, we assessed the release of IL-6, TNF-α, and IL-1ß, along with the expression of Zbtb16, NF-κB, and IκB. To investigate whether any observed anti-inflammatory effects of GA3 were mediated through a Zbtb16-dependent mechanism, Zbtb16 was silenced using siRNA. RESULTS: GA3 improved the survival of sepsis mice and alleviated post-sepsis cognitive impairment. Additionally, GA3 attenuated microglial M1 activation (pro-inflammatory phenotype), inflammation, and neuronal damage in the brain. Moreover, GA3 inhibited the release of TNF-α, IL-6, and IL-1ß in microglia stimulated with LPS. The NF-κB signaling pathway emerged as one of the key molecular pathways associated with the impact of GA3 on LPS-stimulated microglia. Lastly, GA3 upregulated Zbtb16 expression in microglia that had been downregulated by LPS. The inhibitory effects of GA3 on microglial M1 activation were partially reversed through siRNA knockdown of Zbtb16. CONCLUSIONS: Pre-incubation of microglia with GA3 led to the upregulation of the NF-κB regulator, Zbtb16. This process counteracted LPS-induced microglial M1 activation, resulting in an anti-inflammatory effect upon subsequent LPS stimulation.


Assuntos
Giberelinas , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia , NF-kappa B , Sepse , Animais , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Camundongos , NF-kappa B/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Giberelinas/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
11.
Genetica ; 152(2-3): 83-100, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38743131

RESUMO

Xylanase inhibitor proteins (XIP) are widely distributed in the plant kingdom, and also exist in rice. However, a systematic bioinformatics analysis of this gene family in rice (OsXIP) has not been conducted to date. In this study, we identified 32 members of the OsXIP gene family and analyzed their physicochemical properties, chromosomal localization, gene structure, protein structure, expression profiles, and interaction networks. Our results indicated that OsXIP genes exhibit an uneven distribution across eight rice chromosomes. These genes generally feature a low number of introns or are intronless, all family members, except for OsXIP20, contain two highly conserved motifs, namely Motif 8 and Motif 9. In addition, it is worth noting that the promoter regions of OsXIP gene family members feature a widespread presence of abscisic acid response elements (ABRE) and gibberellin response elements (GARE-motif and TATC-box). Quantitative Real-time PCR (qRT-PCR) analysis unveiled that the expression of OsXIP genes exhibited higher levels in leaves and roots, with considerable variation in the expression of each gene in these tissues both prior to and following treatments with abscisic acid (ABA) and gibberellin (GA3). Protein interaction studies and microRNA (miRNA) target prediction showed that OsXIP engages with key elements within the hormone-responsive and drought signaling pathways. The qRT-PCR suggested osa-miR2927 as a potential key regulator in the rice responding to drought stress, functioning as tissue-specific and temporally regulation. This study provides a theoretical foundation for further analysis of the functions within the OsXIP gene family.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , MicroRNAs/genética , Filogenia , Giberelinas/metabolismo , Giberelinas/farmacologia , Cromossomos de Plantas/genética
12.
Sci Rep ; 14(1): 7896, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570571

RESUMO

Ornamental foliage plants that have a dense appearance are highly valued. One way to achieve this is by using plant growth regulators as a tool for plant growth management. In a greenhouse with a mist irrigation system, a study was conducted on dwarf schefflera, an ornamental foliage plant, which was exposed to foliar application of gibberellic acid and benzyladenine hormones. The hormones were sprayed on dwarf schefflera leaves at 0, 100, and 200 mg/l concentrations, at 15-day intervals in three stages. The experiment was conducted as a factorial based on a completely randomized design, with four replicates. The combination of gibberellic acid and benzyladenine at 200 mg/l concentration had a significant effect on leaf number, leaf area, and plant height. The treatment also resulted in the highest content of photosynthetic pigments. Furthermore, the highest soluble carbohydrate to reducing sugars ratio was observed in treatments of 100 and 200 mg/l benzyladenine, and 200 mg/l gibberellic acid + benzyladenine. Stepwise regression analysis showed that root volume was the first variable to enter the model, explaining 44% of variations. The next variable was root fresh weight, and the two-variable model explained 63% of variations in leaf number. The greatest positive effect on leaf number was related to root fresh weight (0.43), which had a positive correlation with leaf number (0.47). The results showed that 200 mg/l concentration of gibberellic acid and benzyladenine significantly improved morphological growth, chlorophyll and carotenoid synthesis, and reducing sugar and soluble carbohydrate contents in dwarf schefflera.


Assuntos
Benzilaminas , Giberelinas , Giberelinas/farmacologia , Benzilaminas/farmacologia , Plantas , Carboidratos/análise , Hormônios/farmacologia , Folhas de Planta/química
13.
Physiol Plant ; 176(2): e14271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566130

RESUMO

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Assuntos
Giberelinas , Pyrus , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Pyrus/metabolismo , Ácido Ascórbico/metabolismo , Dormência de Plantas/genética , Sementes , Água/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Ann Bot ; 134(2): 233-246, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38682952

RESUMO

BACKGROUND AND AIMS: Chinese pistachio (Pistacia chinensis), an important horticultural plant species, holds great ornamental value with beautiful leaves and fruits. Seedling propagation of this tree species is restricted by its erratic seed germination; however, the germination mechanism is ambiguous. The aim of this study was to determine the germination mechanism from a novel perspective based on the multi-omics data. METHODS: The multi-omics technique combined with hormone content measurement was applied to seed germination of Chinese pistachio. KEY RESULTS: Due to its great accumulation during seed germination, catechin stood out from the identified metabolites in a broadly targeted metabolomic analysis. Exogenous catechin at 10 mg L-1 significantly improved the germination of Chinese pistachio seeds. An interesting result of hormone analysis was that the improving effect of catechin could be attributed to an increase in gibberellic acid 3 (GA3) content rather than a decrease in abscisic acid (ABA) content before germination. Treatments with paclobutrazol (PAC, a GA biosynthesis inhibitor) and PAC + catechin also showed that the promoting effect of catechin on seed germination depends on GA biosynthesis. Transcriptome analysis and qRT‒PCR further revealed that catechin induced the expression of PcGA20ox5 to activate GA biosynthesis. Several transcription factors were induced by catechin and GA treatments, such as TCP, bZIP and C3H, which may play an important regulatory role in GA biosynthesis in a catechin-mediated way. CONCLUSIONS: Catechin promotes seed germination via GA biosynthesis in Chinese pistachios. This study proposes a novel mechanism by which catechin promotes seed germination via the GA pathway, which provides new insight into a comprehensive understanding of seed dormancy and germination.


Assuntos
Catequina , Germinação , Giberelinas , Pistacia , Sementes , Germinação/efeitos dos fármacos , Giberelinas/metabolismo , Giberelinas/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Pistacia/efeitos dos fármacos , Pistacia/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácido Abscísico/metabolismo
15.
J Integr Plant Biol ; 66(4): 731-748, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482956

RESUMO

Soil salinity has a major impact on rice seed germination, severely limiting rice production. Herein, a rice germination defective mutant under salt stress (gdss) was identified by using chemical mutagenesis. The GDSS gene was detected via MutMap and shown to encode potassium transporter OsHAK9. Phenotypic analysis of complementation and mutant lines demonstrated that OsHAK9 was an essential regulator responsible for seed germination under salt stress. OsHAK9 is highly expressed in germinating seed embryos. Ion contents and non-invasive micro-test technology results showed that OsHAK9 restricted K+ efflux in salt-exposed germinating seeds for the balance of K+/Na+. Disruption of OsHAK9 significantly reduced gibberellin 4 (GA4) levels, and the germination defective phenotype of oshak9a was partly rescued by exogenous GA3 treatment under salt stress. RNA sequencing (RNA-seq) and real-time quantitative polymerase chain reaction analysis demonstrated that the disruption of OsHAK9 improved the GA-deactivated gene OsGA2ox7 expression in germinating seeds under salt stress, and the expression of OsGA2ox7 was significantly inhibited by salt stress. Null mutants of OsGA2ox7 created using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 approach displayed a dramatically increased seed germination ability under salt stress. Overall, our results highlight that OsHAK9 regulates seed germination performance under salt stress involving preventing GA degradation by mediating OsGA2ox7, which provides a novel clue about the relationship between GA and OsHAKs in rice.


Assuntos
Giberelinas , Oryza , Giberelinas/farmacologia , Giberelinas/metabolismo , Germinação/fisiologia , Potássio/metabolismo , Oryza/metabolismo , Sementes/metabolismo , Estresse Salino , Proteínas de Membrana Transportadoras/metabolismo , Regulação da Expressão Gênica de Plantas
16.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542341

RESUMO

The diversity in the petal morphology of chrysanthemums makes this species an excellent model for investigating the regulation mechanisms of petal size. However, our understanding of the molecular regulation of petal growth in chrysanthemums remains limited. The GASA (gibberellic acid [GA]-stimulated Arabidopsis) protein plays a significant role in various aspects of plant growth and development. Previous studies have indicated that GEG (a gerbera homolog of the gibberellin-stimulated transcript 1 [GAST1] from tomato) is involved in regulating ray petal growth by inhibiting cell expansion in gerberas. In this study, we successfully cloned the GASA family gene from chrysanthemums, naming it CmGEG, which shares 81.4% homology with GEG. Our spatiotemporal expression analysis revealed that CmGEG is expressed in all tissues, with the highest expression levels observed in the ray florets, particularly during the later stages of development. Through transformation experiments, we demonstrated that CmGEG inhibits petal elongation in chrysanthemums. Further observations indicated that CmGEG restricts cell elongation in the top, middle, and basal regions of the petals. To investigate the relationship between CmGEG and GA in petal growth, we conducted a hormone treatment assay using detached chrysanthemum petals. Our results showed that GA promotes petal elongation while downregulating CmGEG expression. In conclusion, the constrained growth of chrysanthemum petals may be attributed to the inhibition of cell elongation by CmGEG, a process regulated by GA.


Assuntos
Proteínas de Arabidopsis , Asteraceae , Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Asteraceae/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Funct Integr Genomics ; 24(2): 59, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498207

RESUMO

Rice is an essential but highly stress-susceptible crop, whose root system plays an important role in plant development and stress adaptation. The rice root system architecture is controlled by gene regulatory networks involving different phytohormones including auxin, jasmonate, and gibberellin. Gibberellin is generally known as a molecular clock that interacts with different pathways to regulate root meristem development. The exogenous treatment of rice plantlets with Gibberellin reduced the number of crown roots, whilst the exogenous jasmonic acid treatment enhanced them by involving a Germin-like protein OsGER4. Due to those opposite effects, this study aims to investigate the effect of Gibberellin on crown root development in the rice mutant of the plasmodesmal Germin-like protein OsGER4. Under exogenous gibberellin treatment, the number of crown roots significantly increased in osger4 mutant lines and decreased in the OsGER4 overexpressed lines. GUS staining showed that OsGER4 was strongly expressed in rice root systems, particularly crown and lateral roots under GA3 application. Specifically, OsGER4 was strongly expressed from the exodermis, epidermis, sclerenchyma to the endodermis layers of the crown root, along the vascular bundle and throughout LR primordia. The plasmodesmal protein OsGER4 is suggested to be involved in crown root development by maintaining hormone homeostasis, including Gibberillin.


Assuntos
Giberelinas , Glicoproteínas , Oryza , Giberelinas/farmacologia , Giberelinas/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo
18.
Funct Plant Biol ; 512024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467137

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-associated proteins are a class of transmembrane proteins involved in intracellular trafficking pathways. However, the functions of many SNARE domain-containing proteins remain unclear. We have previously identified a SNARE-associated gene in alfalfa (Medicago sativa ) KILLING ME SLOWLY1 (MsKMS1 ), which is involved in various abiotic stresses. In this study, we investigated the function of MsKMS1 in the seed germination of transgenic tobacco (Nicotiana tabacum ). Phylogenetic analysis showed that MsKMS1 was homologous to the SNARE-associated or MAPR component-related proteins of other plants. Germination assays revealed that MsKMS1 negatively regulated seed germination under normal, D-mannitol and abscisic acid-induced stress conditions, yet MsKMS1 -overexpression could confer enhanced heat tolerance in transgenic tobacco. The suppressive effect on germination in MsKMS1 -overexpression lines was associated with higher abscisic acid and salicylic acid contents in seeds. This was accompanied by the upregulation of abscisic acid biosynthetic genes (ZEP and NCED ) and the downregulation of gibberellin biosynthetic genes (GA20ox2 and GA20ox3 ). Taken together, these results suggested that MsKMS1 negatively regulated seed germination by increasing abscisic acid and salicylic acid contents through the expression of genes related to abscisic acid and gibberellin biosynthesis. In addition, MsKMS1 could improve heat tolerance during the germination of transgenic tobacco seeds.


Assuntos
Ácido Abscísico , Germinação , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Germinação/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia
19.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554534

RESUMO

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Assuntos
Frutas , Giberelinas , Reguladores de Crescimento de Plantas , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315889

RESUMO

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Assuntos
Etilenos , Proteínas F-Box , Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacologia , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efeitos dos fármacos , Rosa/metabolismo , Flores/genética , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Senescência Vegetal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...