RESUMO
Panax japonicus C. A. Meyer is renowned for its significant therapeutic effects and is commonly used worldwide. Its active ingredients, triterpenoid saponins, show variation in content among different tissues. The tissue-specific distribution of saponins is potentially related to the expression of vital genes in the biosynthesis pathway. In this study, the contents of five saponins (ginsenoside Ro, chikusetsusaponin IV, chikusetsusaponin IVa, ginsenoside Rg1, and ginsenoside Rb1) in three different tissues were determined by HPLC. Transcriptome sequencing analysis identified differentially expressed genes (DEGs) involved in triterpenoid saponin biosynthesis, highlighting significant correlations between saponin contents and the expression levels of 10 cytochrome p450 monooxygenase (CYP) and 3 UDP-glycosyltransferase (UGT) genes. Cloning, sequencing, and prokaryotic expression of UGT genes confirmed the molecular weights of UGT proteins. Gene sequence alignment and phylogenetic analysis provided preliminary insights into UGT gene functions. Meanwhile, the function of one UGT gene was characterized in the yeast. These findings advance our understanding of the triterpenoid saponin biosynthesis in P. japonicus and support future research in traditional Chinese medicine (TCM) and synthetic biology.
Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ginsenosídeos , Panax , Filogenia , Rizoma , Panax/genética , Panax/metabolismo , Ginsenosídeos/biossíntese , Ginsenosídeos/metabolismo , Ginsenosídeos/química , Ginsenosídeos/genética , Rizoma/genética , Rizoma/metabolismo , Transcriptoma , Saponinas/biossíntese , Saponinas/genética , Saponinas/metabolismo , Saponinas/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Vias Biossintéticas/genéticaRESUMO
Lipopolysaccharide (LPS) triggers a severe systemic inflammatory reaction in mammals, with the dimerization of TLR4/MD-2 upon LPS stimulation serving as the pivotal mechanism in the transmission of inflammatory signals. Ginsenoside Rh2 (G-Rh2), one of the active constituents of red ginseng, exerts potent anti-inflammatory activity. However, whether G-Rh2 can block the TLR4 dimerization to exert anti-inflammatory effects remains unclear. Here, we first investigated the non-cytotoxic concentration of G-Rh2 on RAW 264.7 cells, and detected the releases of pro-inflammatory cytokines in LPS-treated RAW 264.7 cells, and then uncovered the mechanisms involved in the anti-inflammatory activity of G-Rh2 through flow cytometry, fluorescent membrane localization, Western blotting, co-immunoprecipitation (Co-IP), molecular docking and surface plasmon resonance (SPR) analysis in LPS-stimulated macrophages. Our results show that G-Rh2 stimulation markedly inhibited the secretion of LPS-induced interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Additionally, G-Rh2 blocked the binding of LPS with the membrane of RAW 264.7 cells through direct interaction with TLR4 and MD-2 proteins, leading to the disruption of the dimerization of TLR4 and MD-2, followed by suppression of the TLR4/NF-κB signaling pathway. Our results suggest that G-Rh2 acts as a new inhibitor of TLR4 dimerization and may serve as a promising therapeutic agent against inflammation.
Assuntos
Ginsenosídeos , Lipopolissacarídeos , Antígeno 96 de Linfócito , Receptor 4 Toll-Like , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Antígeno 96 de Linfócito/metabolismo , Antígeno 96 de Linfócito/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND AND AIMS: Ginsenosides, the main component of Panax ginseng, have long been recognized for their therapeutic benefits and are thought to have neuroprotective, antidiabetic, anti-depressant, antioxidant, anti-cancer, and anti-stress properties. However, due to their low water solubility, low biomembrane permeability, gastrointestinal dysfunction, and total metabolism in the body, ginsenosides have a poor absorption profile that has hindered the therapeutic potential of these organic molecules. METHODS: Initially, we broadly illuminated the several techniques of extraction of Ginsenosides using Panax quinquefolius and Panax ginseng. Subsequently, we focused on different delivery methods to improve the stability, permeability, and solubility of natural chemicals, which raises the bioavailability of ginsenoside. Lastly, we explained significance of a variety of nano and microscale delivery systems, including liposomes, ethosomes, transfersomes, metal/metal oxide systems, micro/nanoemulsions, polymeric micro/nanoparticles (NPs), liposomes, transfersomes, and micelles to increase the bioavailability of ginsenosides. RESULTS: The utilization of micro/nanoscale delivery methods, such as liposome-based delivery, polymer micro/nanoparticle distribution, and micro/nanoemulsion, to increase the bioavailability of ginsenosides has recently advanced, and we have emphasized these advances in this study. Furthermore, the disadvantages of ginsenosides were also discussed, including the challenges associated with putting these delivery systems into practice in clinical settings and suggestions for further research. CONCLUSION: In summary, ginsenosides-based administration has several benefits that make it a potentially useful substance for a range of therapeutic purposes.
Assuntos
Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Ginsenosídeos , Panax , Ginsenosídeos/química , Ginsenosídeos/administração & dosagem , Ginsenosídeos/farmacocinética , Panax/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanopartículas/química , Lipossomos , Solubilidade , Animais , Composição de MedicamentosRESUMO
(1) Objective: To optimize the preparation process of hyaluronic acid-modified ginsenoside Rb1 self-assembled nanoparticles (HA@GRb1@CS NPs), characterize and evaluate them in vitro, and investigate the mechanism of action of HA@GRb1@CS NPs in treating cardiovascular diseases (CVDs) associated with inflammation and oxidative stress. (2) Methods: The optimal preparation process was screened through Plackett-Burman and Box-Behnken designs. Physical characterization of HA@GRb1@CS NPs was conducted using transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. Stability experiments, in vitro drug release studies, and lyophilisate selection were performed to evaluate the in vitro performance of HA@GRb1@CS NPs. The anti-inflammatory and antioxidant capabilities of HA@GRb1@CS NPs were assessed using H9c2 and RAW264.7 cells. Additionally, bioinformatics tools were employed to explore the mechanism of action of HA@GRb1@CS NPs in the treatment of CVDs associated with inflammation and oxidative stress. (3) Results: The optimal preparation process for HA@GRb1@CS NPs was achieved with a CS concentration of 2 mg/mL, a TPP concentration of 2.3 mg/mL, and a CS to TPP mass concentration ratio of 1.5:1, resulting in a particle size of 126.4 nm, a zeta potential of 36.8 mV, and a PDI of 0.243. Characterization studies confirmed successful encapsulation of the drug within the carrier, indicating successful preparation of HA@GRb1@CS NPs. In vitro evaluations demonstrated that HA@GRb1@CS NPs exhibited sustained-release effects, leading to reduced MDA (Malondialdehyde) content and increased SOD (Superoxide Dismutase) content in oxidatively damaged H9c2 cells. Furthermore, it showed enhanced DPPH (2,2-Diphenyl-1-picrylhydrazyl) and ABTS+ [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] free radical scavenging rates and inhibited the release of inflammatory factors NO (Nitric Oxide) and IL-6 (Interleukin-6) from RAW264.7 cells. (4) Conclusions: The HA@GRb1@CS NPs prepared in this study exhibit favorable properties with stable quality and significant anti-inflammatory and antioxidant capabilities. The mechanisms underlying their therapeutic effects on CVDs may involve targeting STAT3, JUN, EGFR, CASP3, and other pathways regulating cell apoptosis, autophagy, anti-lipid, and arterial sclerosis signaling pathways.
Assuntos
Antioxidantes , Doenças Cardiovasculares , Ginsenosídeos , Ácido Hialurônico , Nanopartículas , Ácido Hialurônico/química , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Animais , Nanopartículas/química , Camundongos , Doenças Cardiovasculares/tratamento farmacológico , Células RAW 264.7 , Antioxidantes/farmacologia , Antioxidantes/química , Biologia Computacional/métodos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Liberação Controlada de Fármacos , Linhagem Celular , Ratos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/químicaRESUMO
Notoginsenosides are important bioactive compounds from Panax notoginseng (Burk.) F. H. Chen, most of which have xylose in their sugar chains. However, the xylosyltransferases involved in the generation of notoginsenosides remain poorly understood, posing a bottleneck for further study of the biosynthesis of notoginsenosides. In this work, a new xylosyltransferase gene, PnUGT57 (named UGT94BW1), was identified from P. notoginseng, which has a distinct sequence and could catalyze the 2'-O glycosylation of ginsenosides Rh1 and Rg1 to produce notoginsenosides R2 and R1, respectively. We first characterized the optimal conditions for the PnUGT57 activity and its enzymatic kinetic parameters, and then, molecular docking and site-directed mutagenesis were performed to elucidate the catalytic mechanism of PnUGT57. Combined with the results of site-directed mutagenesis, Glu26, Ser266, Glu267, Trp347, Ser348, and Glu352 in PnUGT57 were identified as the key residues involved in 2'-O glycosylation of C-6 O-Glc, and PnUGT57R175A and PnUGT57G237A could significantly improve the catalytic activity of PnUGT57. These findings not only provide a new xylosyltransferase gene for augmenting the plant xylosyltransferase database but also identify the pivotal sites and catalytic mechanism of the enzyme, which would provide reference for the modification and application of xylosyltransferases in the future.
Assuntos
Ginsenosídeos , Panax notoginseng , Pentosiltransferases , UDP Xilose-Proteína Xilosiltransferase , Ginsenosídeos/metabolismo , Ginsenosídeos/biossíntese , Ginsenosídeos/química , Glicosilação , Pentosiltransferases/metabolismo , Pentosiltransferases/genética , Estrutura Molecular , Mutagênese Sítio-Dirigida , Simulação de Acoplamento MolecularRESUMO
BACKGROUND: Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE: At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS: PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION: This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.
Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Panax/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , AnimaisRESUMO
GFRS is the conversion product of Panax ginseng Meyer berry after citric acid heat treatment, which is rich in rare ginsenosides. However, the anti-melanin role of GFRS in the regulation of skin pigmentation and its material basis remains unclear. To compare the anti-melanin activity before and after citric acid heat treatment, we determined the effects of GFS and GFRS on tyrosinase activity and melanin lever under α-MSH stimulation and found the potential anti-melanin effect of GFRS. Further, Western blot and immunofluorescence methods were used to reveal the mechanism by which GFRS detects anti-melanin activity by promoting autophagy flux levels. In zebrafish models, GFRS inhibited endogenous melanin and tyrosinase better than arbutin and promoted the accumulation of autophagy levels in vivo. To determine the material basis of the anti-melanin effect of GFRS, HPLC was used to isolate and prepare 12 ginsenosides from GFRS, and their activity evaluation and structure-activity relationship analysis were performed. The results showed that the inhibitory effect of GFRS on melanin was Rg3 > Rg5 > Rk1 > Rd. Molecular docking showed that their docking fraction with mushroom tyrosinase was significantly better than that of arbutin, but the presence of C-20 glycosylation decreased the anti-melanin activity of Rd. To maximize the content of Rg3, Rg5, and Rk1, we optimized the process by using citric acid heat treatment of ginsenoside Rd and found that citric acid heat treatment at 100°C almost completely transformed Rd and obtained a high content of active ingredients. In summary, our data demonstrated that GFRS exerted anti-melanin effects by inducing autophagy. It was further revealed that Rg3, Rg5, and Rk1, as effective active components, could be enriched by the improved process of converting ginsenoside Rd by citric acid heat treatment.
Assuntos
Autofagia , Ácido Cítrico , Ginsenosídeos , Temperatura Alta , Melaninas , Panax , Peixe-Zebra , Panax/química , Melaninas/metabolismo , Melaninas/antagonistas & inibidores , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Animais , Relação Estrutura-Atividade , Autofagia/efeitos dos fármacos , Ácido Cítrico/química , Ácido Cítrico/farmacologia , Estrutura Molecular , Frutas/química , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidoresRESUMO
As one of rare high-value ocotillol (OCT)-type ginsenosides, pseudoginsenoside Rt5 has been identified with significant pharmacological activities. UDP-glycosyltransferases (UGTs) play pivotal roles in catalyzing the transfer of a glycosyl moiety from a donor to an acceptor. In this study, the novel UGT, PjUGT10, was screened from the transcriptome database of Panax japonicus and identified with the enzymatic activity of transferring a glucosyl group on OCT to produce Rt5. The catalytic efficiency of PjUGT10 was further enhanced by employing site-directed mutation. Notably, the variant M7 exhibited a remarkable 6.16 × 103-fold increase in kcat/Km towards 20S,24R-ocotillol and a significant 2.02 × 103-fold increase to UDP-glucose, respectively. Moreover, molecular dynamics simulations illustrated a reduced distance between 20S,24R-ocotillol and the catalytic residue His15 or UDP-glucose, favoring conformation interactions between the enzyme and substrates. Subsequently, Rt5 was synthesized in an engineered Escherichia coli strain M7 coupled with a UDP-glucose synthetic system. This study not only shed light on the protein engineering that can enhance the catalytic activity of PjUGT10, but also established a whole-cell approach for the production of Rt5.
Assuntos
Ginsenosídeos , Glicosiltransferases , Panax , Engenharia de Proteínas , Panax/enzimologia , Panax/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Engenharia de Proteínas/métodos , Ginsenosídeos/biossíntese , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Simulação de Dinâmica Molecular , Especificidade por Substrato , Escherichia coli/genéticaRESUMO
Medicinal plant-derived vesicle-like nanoparticles can carry chemical components and exert intercellular activity due to the encapsulation of nanostructures. American ginseng is well known as a traditional herb and is commonly used in clinical decoctions. However, the nano-characteristics and chemical composition of American-ginseng-derived vesicle-like nanoparticles (AGVNs) in decoctions are unclear. In this study, the gradient centrifugation method was used to extract and isolate AGVNs. A metabolomic method based on high-resolution mass spectrometry was established to analyze small molecules loaded in AGVNs. Zebrafish and RAW264.7 cells were employed to investigate the anti-inflammatory effects of AGVNs. The results showed that the particle size of AGVNs was generally 243.6 nm, and the zeta potential was -14.5 mV. AGVNs were found to contain 26 ginsenosides (14 protopanaxadiols, 11 protopanaxatriols, and 1 oleanolic acid). Ginsenoside Rb1 and malonyl-ginsenoside Rb1 tended to be enriched in AGVNs. Moreover, AGVNs were found to exert anti-inflammatory effects by reducing macrophage migration in zebrafish and regulating inflammatory factor (NO, TNF-α, IL-6, IL-10) secretion in RAW 264.7 cells. The characterization and analysis of AGVNs provide references and data that support the development of nanoscale anti-inflammatory substances from medicinal plants.
Assuntos
Anti-Inflamatórios , Nanopartículas , Panax , Peixe-Zebra , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Células RAW 264.7 , Nanopartículas/química , Panax/química , Tamanho da Partícula , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/químicaRESUMO
Identifying the catalytic regioselectivity of enzymes remains a challenge. Compared to experimental trial-and-error approaches, computational methods like molecular dynamics simulations provide valuable insights into enzyme characteristics. However, the massive data generated by these simulations hinder the extraction of knowledge about enzyme catalytic mechanisms without adequate modeling techniques. Here, we propose a computational framework utilizing graph-based active learning from molecular dynamics to identify the regioselectivity of ginsenoside hydrolases (GHs), which selectively catalyze C6 or C20 positions to obtain rare deglycosylated bioactive compounds from Panax plants. Experimental results reveal that the dynamic-aware graph model can excellently distinguish GH regioselectivity with accuracy as high as 96-98% even when different enzyme-substrate systems exhibit similar dynamic behaviors. The active learning strategy equips our model to work robustly while reducing the reliance on dynamic data, indicating its capacity to mine sufficient knowledge from short multi-replica simulations. Moreover, the model's interpretability identified crucial residues and features associated with regioselectivity. Our findings contribute to the understanding of GH catalytic mechanisms and provide direct assistance for rational design to improve regioselectivity. We presented a general computational framework for modeling enzyme catalytic specificity from simulation data, paving the way for further integration of experimental and computational approaches in enzyme optimization and design.
Assuntos
Ginsenosídeos , Simulação de Dinâmica Molecular , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Especificidade por Substrato , Hidrolases/química , Hidrolases/metabolismo , Panax/química , Panax/enzimologiaRESUMO
Ginsenoside Rh2 (Rh2) is a ginseng saponin comprising a triterpene core and one unit of glucose and has attracted much attention due to its diverse biological activities. In the present study, we used small-angle X-ray diffraction, solid-state NMR, fluorescence microscopy, and MD simulations to investigate the molecular interaction of Rh2 with membrane lipids in the liquid-disordered (Ld) phase mainly composed of palmitoyloleoylphosphatidylcholine compared with those in liquid-ordered (Lo) phase mainly composed of sphingomyelin and cholesterol. The electron density profiles determined by X-ray diffraction patterns indicated that Rh2 tends to be present in the shallow interior of the bilayer in the Ld phase, while Rh2 accumulation was significantly smaller in the Lo phase. Order parameters at intermediate depths in the bilayer leaflet obtained from 2H NMR spectra and MD simulations indicated that Rh2 reduces the order of the acyl chains of lipids in the Ld phase. The dihydroxy group and glucose moiety at both ends of the hydrophobic triterpene core of Rh2 cause tilting of the molecular axis relative to the membrane normal, which may enhance membrane permeability by loosening the packing of lipid acyl chains. These features of Rh2 are distinct from steroidal saponins such as digitonin and dioscin, which exert strong membrane-disrupting activity.
Assuntos
Lipídeos de Membrana , Ginsenosídeos/química , Lipídeos de Membrana/química , Elétrons , Espectroscopia de Ressonância Magnética , Difração de Raios X , Microscopia de Fluorescência , Bicamadas Lipídicas/química , Lipossomos/químicaRESUMO
Triple negative breast cancer (TNBC) has the characteristics of low immune cell infiltration, high expression of tumor programmed death ligand 1 (PD-L1), and abundant cancer stem cells. Systemic toxicity of traditional chemotherapy drugs due to poor drug selectivity, and chemotherapy failure due to tumor drug resistance and other problems, so it is particularly important to find new cancer treatment strategies for TNBC with limited treatment options. Both the anti-tumor natural drugs curcumin and ginsenoside Rg3 can exert anti-tumor effects by inducing immunogenic cell death (ICD) of tumor cells, reducing PD-L1 expression, and reducing cancer stem cells. However, they have the disadvantages of poor water solubility, low bioavailability, and weak anti-tumor effect of single agents. We used vinyl ether bonds to link curcumin (Cur) with N-O type zwitterionic polymers and at the same time encapsulated ginsenoside Rg3 to obtain hyperbranched zwitterionic drug-loaded micelles OPDEA-PGED-5HA@Cur@Rg3 (PPH@CR) with pH response. In vitro cell experiments and in vivo animal experiments have proved that PPH@CR could not only promote the maturation of dendritic cells (DCs) and increase the CD4+ T cells and CD8+ T cells by inducing ICD in tumor cells but also reduce the expression of PD-L1 in tumor tissues, and reduce cancer stem cells and showed better anti-tumor effects and good biological safety compared with free double drugs, which is a promising cancer treatment strategy.
Assuntos
Antineoplásicos , Antígeno B7-H1 , Curcumina , Ginsenosídeos , Animais , Curcumina/farmacologia , Curcumina/química , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Feminino , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Micelas , Camundongos Endogâmicos BALB C , Polímeros/química , Polímeros/farmacologia , Células Dendríticas/efeitos dos fármacos , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Portadores de Fármacos/química , Óxidos/química , Óxidos/farmacologiaRESUMO
The measurement of data repeatability in small-molecule metabolites acquired within and among different liquid chromatography-mass spectrometry (LC-MS) platforms is crucial for data sharing or data transfer in natural products research. This work was designed to investigate and evaluate the separation and detection performance of three commercial high-resolution LC-MS platforms (e.g., Agilent 6550 QTOF, Waters Vion IM-QTOF, and Thermo Scientific Orbitrap Exploris 120) using 68 ginsenoside references and the extract of Panax ginseng leaf. The retention time (tR), measured on these three platforms (under the same chromatography condition), showed good stability in different concentration tests, and within/among different instruments for both intra-day and inter-day precision examinations. Correlation in tR of ginsenosides was also highly determined on these three platforms. In spite of the different mass analyzers involved, these three platforms gave the accurate mass determination ability, especially enhanced resolution gained because of the ion mobility (IM) separation facilitated by IM-quadrupole time-of-flight. The current study has systematically evaluated the separation and MS detection performance enabled by three high-resolution LC-MS platforms taking ginsenosides as the template, and the reported findings can benefit the researchers for the selection of analytical platforms and the purpose of data sharing or data transfer.
Assuntos
Ginsenosídeos , Espectrometria de Massas , Panax , Folhas de Planta , Ginsenosídeos/análise , Ginsenosídeos/isolamento & purificação , Ginsenosídeos/química , Panax/química , Folhas de Planta/química , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodosRESUMO
The aim of this paper is to study the malonyl ginsenosides in the fresh roots of Panax ginseng. D101 macroporous adsorption resin, ODS, and preparative HPLC were employed to separate the chemical components from the 70% ethanol extract of the fresh roots of P. ginseng, and the structures of the separated compounds were identified based on the data of high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Two malonyl ginsenosides were isolated from the fresh roots of P. ginseng and identified as 3-O-\[6-O-malonyl-ß-D-glucopyranosyl-(1â2)-ß-D-glucopyranosyl\]-20-O-\[ ß-D-xylopyranosyl-(1â4)-α-L-arabinopyranosyl-(1â6)-ß-D-glucopyranosyl\]-dammar-24-ene-3ß,12ß,20S-triol(1) and 3-O-\[6-O-malonyl-ß-D-glucopyranosyl-(1â2)-ß-D-glucopyranosyl\]-20-O-\[ ß-D-xylopyranosyl-(1â2)-α-L-arabinofuranosyl-(1â6)-ß-D-glucopyranosyl\]-dammar-24-ene-3ß,12ß,20S-triol(2), respectively. Compounds 1 and 2 are new compounds isolated from fresh roots of P. ginseng for the first time and named as malonyl ginsenoside-Ra_1 and malonyl ginsenoside-Ra_2, respectively.
Assuntos
Ginsenosídeos , Panax , Raízes de Plantas , Panax/química , Ginsenosídeos/química , Ginsenosídeos/isolamento & purificação , Raízes de Plantas/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificaçãoRESUMO
To convert ginsenosides Rb1, Rb2, Rb3, and Rc into Rd by a single enzyme, a putative ß-glycosidase (Pxbgl) from the xylan-degrading bacterium Petroclostridium xylanilyticum was identified and used. The kcat/Km value of Pxbgl for Rb3 was 18.18 ± 0.07 mM-1/s, which was significantly higher than those of Pxbgl for other ginsenosides. Pxbgl converted almost all Rb3 to Rd with a productivity of 5884 µM/h, which was 346-fold higher than that of only ß-xylosidase from Thermoascus aurantiacus. The productivity of Rd from the Panax ginseng root and Panax notoginseng leaf was 146 and 995 µM/h, respectively. Mutants N293 K and I447L from site-directed mutagenesis based on bioinformatics analysis showed an increase in specific activity of 29 and 7% toward Rb3, respectively. This is the first report of a ß-glycosidase that can simultaneously remove four different glycosyls at the C-20 position of natural PPD-type ginsenosides and produce Rd as the sole product from P. notoginseng leaf extracts with the highest productivity.
Assuntos
Proteínas de Bactérias , Ginsenosídeos , Panax , Ginsenosídeos/metabolismo , Ginsenosídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Panax/química , Panax/genética , Panax/metabolismo , Especificidade por Substrato , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Cinética , beta-Glucosidase/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Panax notoginseng/química , Panax notoginseng/genética , Panax notoginseng/enzimologia , Panax notoginseng/metabolismoRESUMO
Sepsis-induced acute lung injury (SALI) poses a significant threat with high incidence and mortality rates. Ginsenoside Rg1 (GRg1), derived from Ginseng in traditional Chinese medicine, has been found to reduce inflammation and protect lung epithelial cells against tissue damage. However, the specific roles and mechanisms by which GRg1 mitigates SALI have yet to be fully elucidated. In this context, we employed a relevant SALI mouse model, alongside network pharmacology, molecular docking, and molecular dynamics simulation to pinpoint GRg1's action targets, complemented by in vitro assays to explore the underlying mechanisms. Our research shows that GRg1 alleviates CLP-induced SALI, decreasing lung tissue damage and levels of serum proinflammatory factor IL-6, TNF-α, and IL-1ß, also enhancing the survival rate of CLP mice. A total of 116 common targets between GRg1 and ALI, with specific core targets including AKT1, VEGFA, SRC, IGF1, ESR1, STAT3, and ALB. Further in vitro experiments assessed GRg1's intervention effects on MLE-12 cells exposed to LPS, with qRT-PCR analysis and molecular dynamics simulations confirming AKT1 as the key target with the favorable binding activity for GRg1. Western blot results indicated that GRg1 increased the Bcl-2/Bax protein expression ratio to reduce apoptosis and decreased the high expression of cleaved caspase-3 in LPS-induced MLE-12 cells. More results showed significant increases in the phosphorylation of PI3K and AKT1. Flow cytometric analysis using PI and Annexin-V assays further verified that GRg1 decreased the apoptosis rate in LPS-stimulated MLE-12 cells (from 14.85 to 6.54%, p < 0.05). The employment of the AKT1 inhibitor LY294002 confirmed these trends, indicating that AKT1's inhibition negates GRg1's protective effects on LPS-stimulated MLE-12 cells. In conclusion, our research highlights GRg1's potential as an effective adjunct therapy for SALI, primarily by inhibiting apoptosis in alveolar epithelial cells and reducing pro-inflammatory cytokine secretion, thus significantly enhancing the survival rates of CLP mice. These beneficial effects are mediated through targeting AKT1 and activating the PI3K-AKT pathway.
Assuntos
Lesão Pulmonar Aguda , Ginsenosídeos , Simulação de Dinâmica Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sepse , Transdução de Sinais , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Ginsenosídeos/uso terapêutico , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Linhagem Celular , LipopolissacarídeosRESUMO
Chemotherapy is one of the main treatments for oral squamous cell carcinoma (OSCC), especially as a combined modality approach with and after surgery or radiotherapy. Limited therapeutic efficiency and serious side effects greatly restrict the clinical performance of chemotherapeutic drugs. The development of smart nanomedicines has provided new research directions, to some extent. However, the involvement of complex carrier compositions inevitably brings biosafety concerns and greatly limits the "bench-to-bed" translation of most nanomedicines reported. In this study, a carrier-free self-assembled prodrug was fabricated by two triterpenes (glycyrrhetinic acid, GA and ginsenoside Rh2, Rh2) isolated from medicinal plants, licorice, and ginseng, for the targeted and highly effective treatment of OSCC. Reactive oxygen species (ROS) self-supplied molecule TK-GA2 was synthesized with ROS-responsive thioketal linker and prodrug was prepared by a rapid-solvent-exchange method with TK-GA2 and Rh2. After administration, oral tumor cells transported large amounts of prodrugs with glucose ligands competitively. Endogenous ROS in oral tumor cells then promoted the release of GA and Rh2. GA further evoked the generation of a large number of ROS to help self-boosted drug release and increase oxidative stress, synergistically causing tumor cell apoptosis with Rh2. Overall, this carrier-free triterpene-based prodrug might provide a preeminent opinion on the design of effective chemotherapeutics with low systemic toxicity against OSCC.
Assuntos
Carcinoma de Células Escamosas , Liberação Controlada de Fármacos , Neoplasias Bucais , Pró-Fármacos , Espécies Reativas de Oxigênio , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Animais , Triterpenos/química , Triterpenos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacologia , Camundongos , Apoptose/efeitos dos fármacosRESUMO
American ginseng (AG) has been reported to have anti-inflammatory effects in many diseases, but the key molecules and mechanisms are unclear. This study aims to evaluate the anti-inflammatory mechanism of AG and identify the key molecules by in vivo and in vitro models. Zebrafish was employed to assess the anti-inflammatory properties of AG and the compounds. Metabolomics was utilized to identify potential anti-inflammatory molecules in AG, while molecular dynamics simulations were conducted to forecast the interaction capabilities of these compounds with inflammatory targets. Additionally, macrophage cell was employed to investigate the anti-inflammatory mechanisms of the key molecules in AG by enzyme-linked immunosorbent assay and western blotting. Seven potential anti-inflammatory molecules were discovered in AG, with ginsenoside Rg1, ginsenoside Rs3 (G-Rs3), and oleanolic acid exhibiting the strongest affinity for signal transducer and activator of transcription 3. These compounds demonstrated inhibitory effects on macrophage migration in zebrafish models and the ability to regulate ROS levels in both zebrafish and macrophages. The cell experiments found that ginsenoside Rg1, ginsenoside Rs3, and oleanolic acid could promote macrophage M2/M1 polarization ratio and inhibit phosphorylation overexpression of signal transducer and activator of transcription 3. This study revealed the key anti-inflammatory molecules and mechanisms of AG, and provided new evidence of anti-inflammatory for the scientific use of AG.
Assuntos
Anti-Inflamatórios , Ginsenosídeos , Macrófagos , Panax , Fator de Transcrição STAT3 , Peixe-Zebra , Animais , Panax/química , Anti-Inflamatórios/farmacologia , Fator de Transcrição STAT3/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Simulação de Dinâmica MolecularRESUMO
ETHNIC PHARMACOLOGICAL RELEVANCE: Panax ginseng is a traditional Chinese herbal medicine used to treat cardiovascular diseases (CVDs), and it is still widely used to improve the clinical symptoms of various CVDs. However, there is currently a lack of summary and analysis on the mechanism of Panax ginseng exerts its cardiovascular protective effects. This article provides a review of in vivo and in vitro pharmacological studies on Panax ginseng and its active ingredients in reducing CVDs damage. AIM OF THIS REVIEW: This review summarized the latest literature on Panax ginseng and its active ingredients in CVDs research, aiming to have a comprehensive and in-depth understanding of the cardiovascular protection mechanism of Panax ginseng, and to provide new ideas for the treatment of CVDs, as well as to optimize the clinical application of Panax ginseng. METHODS: Enrichment of pathways and biological terms using the traditional Chinese medicine molecular mechanism bioinformatics analysis tool (BATMAN-TCM). The literature search is based on electronic databases such as PubMed, ScienceDirect, Scopus, CNKI, with a search period of 2002-2023. The search terms include Panax ginseng, Panax ginseng ingredients, ginsenosides, ginseng polysaccharides, ginseng glycoproteins, ginseng volatile oil, CVDs, heart, and cardiac. RESULTS: 132 articles were ultimately included in the review. The ingredients in Panax ginseng that manifested cardiovascular protective effects are mainly ginsenosides (especially ginsenoside Rb1). Ginsenosides protected against CVDs such as ischemic reperfusion injury, atherosclerosis and heart failure mainly through improving energy metabolism, inhibiting hyper-autophagy, antioxidant, anti-inflammatory and promoting secretion of exosomes. CONCLUSION: Panax ginseng and its active ingredients have a particularly prominent effect on improving myocardial energy metabolism remodeling in protecting against CVDs. The AMPK and PPAR signaling pathways are the key targets through which Panax ginseng produces multiple mechanisms of cardiovascular protection. Extracellular vesicles and nanoparticles as carriers are potential delivery ways for optimizing the bioavailability of Panax ginseng and its active ingredients.