Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.500
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(40): e2405117121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39312657

RESUMO

Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.


Assuntos
Neurônios Colinérgicos , Giro Denteado , Células-Tronco Neurais , Neurogênese , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Giro Denteado/metabolismo , Giro Denteado/citologia , Neurogênese/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Camundongos , Proliferação de Células , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/fisiologia , Células-Tronco Adultas/citologia , Morfogênese , Nicho de Células-Tronco/fisiologia , Masculino
2.
BMC Neurosci ; 25(1): 45, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333878

RESUMO

BACKGROUND: Exposure to chemical toxins, including insecticides, harms bodily organs like the brain. This study examined the neuroprotective of thymoquinone on the cypermethrin's harmful effects on the histoarchitecture of the dentate gyrus and motor deficit in the dentate gyrus. METHODS: Forty adult male rats (180-200 g) were randomly divided into 5 groups (n = 8 per group). Groups I, II, III, IV, and V received oral administration of 0.5 ml of phosphate-buffered saline, cypermethrin (20 mg/kg), thymoquinone (10 mg/kg), cypermethrin (20 mg/kg) + thymoquinone (5 mg/kg), and cypermethrin (20 mg/kg) + thymoquinone (10 mg/kg) for 14 days respectively. The novel object recognition test that assesses intermediate-term memory was done on days 14 and 21 of the experiment. At the end of these treatments, the animals were euthanized and taken for cytoarchitectural (hematoxylin and eosin; Cresyl violet) and immunohistochemical studies (Nuclear factor erythroid 2-related factor 2 (Nrf2), Parvalbumin, and B-cell lymphoma 2 (Bcl2). RESULT: The study shows that thymoquinone at 5 and 10 mg/kg improved Novelty preference and discrimination index. Thymoquinone enhanced Nissl body integrity, increased GABBAergic interneuron expression, nuclear factor erythroid 2-derived factor 2, and enhanced Bcl-2 expression in the dentate gyrus. It also improved the concentration of nuclear factor erythroid 2-derived factor 2, increased the activities of superoxide dismutase and glutathione, and decreased the concentration of malondialdehyde level against cypermethrin-induced neurotoxicity. CONCLUSION: thymoquinone could be a therapeutic agent against cypermethrin poisoning.


Assuntos
Benzoquinonas , Giro Denteado , Neurônios GABAérgicos , Transtornos da Memória , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Piretrinas , Transdução de Sinais , Animais , Piretrinas/toxicidade , Masculino , Estresse Oxidativo/efeitos dos fármacos , Benzoquinonas/farmacologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/patologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , Inseticidas/toxicidade , Fármacos Neuroprotetores/farmacologia , Ratos Wistar
3.
STAR Protoc ; 5(3): 103255, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39146190

RESUMO

Many types of neurons exhibit a daily rhythm of intrinsic excitability. Here, we present a protocol for assessing circadian regulation of dentate granule cell excitability using a mouse model for conditional knockout of the molecular clock protein BMAL1. We describe steps for obtaining healthy oblique horizontal slices that contain the hippocampus and measuring intrinsic excitability and synaptic potentials by combining whole-cell patch-clamp recordings and perforant-path electric stimulation. We then detail procedures for validating single-cell genetic deletion of Bmal1 by immunohistochemistry. For complete details on the use and execution of this protocol, please refer to Gonzalez et al.1.


Assuntos
Ritmo Circadiano , Giro Denteado , Animais , Camundongos , Giro Denteado/citologia , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Ritmo Circadiano/fisiologia , Técnicas de Patch-Clamp/métodos , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/citologia , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Camundongos Knockout , Masculino
4.
Chem Biol Interact ; 401: 111187, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39111523

RESUMO

Developmental exposure to nonylphenol (NP) results in irreversible impairments of the central nervous system (CNS). The neural precursor cell (NPC) pool located in the subgranular zone (SGZ), a substructure of the hippocampal dentate gyrus, is critical for the development of hippocampal circuits and some hippocampal functions such as learning and memory. However, the effects of developmental exposure to NP on this pool remain unclear. Thus, our aim was to clarify the impacts of developmental exposure to NP on this pool and to explore the potential mechanisms. Animal models of developmental exposure to NP were created by treating Wistar rats with NP during pregnancy and lactation. Our data showed that developmental exposure to NP decreased Sox2-and Ki67-positive cells in the SGZ of offspring. Inhibited activation of Shh signaling and decreased levels of its downstream mediators, E2F1 and cyclins, were also observed in pups developmentally exposed to NP. Moreover, we established the in vitro model in the NE-4C cells, a neural precursor cell line, to further investigate the effect of NP exposure on NPCs and the underlying mechanisms. Purmorphamine, a small purine-derived hedgehog agonist, was used to specifically modulate the Shh signaling. Consistent with the in vivo results, exposure to NP reduced cell proliferation by inhibiting the Shh signaling in NE-4C cells, and purmorphamine alleviated this reduction in cell proliferation by restoring this signaling. Altogether, our findings support the idea that developmental exposure to NP leads to inhibition of the NPC proliferation and the NPC pool depletion in the SGZ located in the dentate gyrus. Furthermore, we also provided the evidence that suppressed activation of Shh signaling may contribute to the effects of developmental exposure to NP on the NPC pool.


Assuntos
Proliferação de Células , Giro Denteado , Proteínas Hedgehog , Células-Tronco Neurais , Fenóis , Ratos Wistar , Transdução de Sinais , Animais , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Giro Denteado/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas Hedgehog/metabolismo , Fenóis/farmacologia , Fenóis/toxicidade , Feminino , Gravidez , Ratos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Purinas/farmacologia , Morfolinas/farmacologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Masculino , Fatores de Transcrição SOXB1/metabolismo , Linhagem Celular
5.
Neuropharmacology ; 259: 110118, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153731

RESUMO

The decline of microglia in the dentate gyrus is a new phenomenon that may explain the pathogenesis of depression, and reversing this decline has an antidepressant effect. The development of strategies that restore the function of dentate gyrus microglia in under stressful conditions is becoming a new focus. Lymphocyte-activating gene-3 (LAG3) is an immune checkpoint expressed by immune cells including microglia. One of its functions is to suppress the expansion of immune cells. In a recent study, chronic systemic administration of a LAG3 antibody that readily penetrates the brain was reported to reverse chronic stress-induced hippocampal microglia decline and depression-like behaviors. We showed here that a single intranasal infusion of a LAG3 antibody (In-LAG3 Ab) reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in a dose-dependent manner, which was accompanied by an increase in brain-derived neurotrophic factor (BDNF) in the dentate gyrus. Infusion of an anti-BDNF antibody into the dentate gyrus, construction of knock-in mice with the BDNF Val68Met allele, or treatment with the BDNF receptor antagonist K252a abolished the antidepressant effect of In-LAG3 Ab. Activation of extracellular signal-regulated kinase1/2 (ERK1/2) is required for the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and BDNF decrease in the dentate gyrus. Moreover, both inhibition and depletion of microglia prevented the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and impairment of ERK1/2-BDNF signaling in the dentate gyrus. These results suggest that In-LAG3 Ab exhibits an antidepressant effect through microglia-mediated activation of ERK1/2 and synthesis of BDNF in the dentate gyrus.


Assuntos
Administração Intranasal , Antidepressivos , Antígenos CD , Fator Neurotrófico Derivado do Encéfalo , Depressão , Hipocampo , Proteína do Gene 3 de Ativação de Linfócitos , Sistema de Sinalização das MAP Quinases , Estresse Psicológico , Animais , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Antidepressivos/farmacologia , Antidepressivos/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Depressão/tratamento farmacológico , Antígenos CD/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Anticorpos/farmacologia , Carbazóis/farmacologia , Carbazóis/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Alcaloides Indólicos
6.
Proc Natl Acad Sci U S A ; 121(36): e2410564121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190359

RESUMO

Sepsis-associated encephalopathy (SAE) is a critical neurological complication of sepsis and represents a crucial factor contributing to high mortality and adverse prognosis in septic patients. This study explored the contribution of NAT10-mediated messenger RNA (mRNA) acetylation in cognitive dysfunction associated with SAE, utilizing a cecal ligation and puncture (CLP)-induced SAE mouse model. Our findings demonstrate that CLP significantly upregulates NAT10 expression and mRNA acetylation in the excitatory neurons of the hippocampal dentate gyrus (DG). Notably, neuronal-specific Nat10 knockdown improved cognitive function in septic mice, highlighting its critical role in SAE. Proteomic analysis, RNA immunoprecipitation, and real-time qPCR identified GABABR1 as a key downstream target of NAT10. Nat10 deletion reduced GABABR1 expression, and subsequently weakened inhibitory postsynaptic currents in hippocampal DG neurons. Further analysis revealed that microglia activation and the release of inflammatory mediators lead to the increased NAT10 expression in neurons. Microglia depletion with PLX3397 effectively reduced NAT10 and GABABR1 expression in neurons, and ameliorated cognitive dysfunction induced by SAE. In summary, our findings revealed that after CLP, NAT10 in hippocampal DG neurons promotes GABABR1 expression through mRNA acetylation, leading to cognitive dysfunction.


Assuntos
Disfunção Cognitiva , RNA Mensageiro , Encefalopatia Associada a Sepse , Animais , Masculino , Camundongos , Acetilação , Acetiltransferases/metabolismo , Acetiltransferases/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Giro Denteado/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Sepse/metabolismo , Sepse/complicações , Sepse/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/genética , Receptores de GABA-B
7.
Sci Rep ; 14(1): 18586, 2024 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127716

RESUMO

Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.


Assuntos
Astrócitos , Dano ao DNA , DNA Mitocondrial , Mitocôndrias , Astrócitos/metabolismo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Mitocôndrias/metabolismo , Dependovirus/genética , Cálcio/metabolismo , Encéfalo/metabolismo , Masculino , Sinalização do Cálcio , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Giro Denteado/metabolismo
8.
Nat Commun ; 15(1): 5805, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987240

RESUMO

Fear memory is essential for survival and adaptation, yet excessive fear memories can lead to emotional disabilities and mental disorders. Despite previous researches have indicated that histamine H1 receptor (H1R) exerts critical and intricate effects on fear memory, the role of H1R is still not clarified. Here, we show that deletion of H1R gene in medial septum (MS) but not other cholinergic neurons selectively enhances contextual fear memory without affecting cued memory by differentially activating the dentate gyrus (DG) neurons in mice. H1R in cholinergic neurons mediates the contextual fear retrieval rather than consolidation by decreasing acetylcholine release pattern in DG. Furthermore, selective knockdown of H1R in the MS is sufficient to enhance contextual fear memory by manipulating the retrieval-induced neurons in DG. Our results suggest that H1R in MS cholinergic neurons is critical for contextual fear retrieval, and could be a potential therapeutic target for individuals with fear-related disorders.


Assuntos
Neurônios Colinérgicos , Giro Denteado , Medo , Receptores Histamínicos H1 , Animais , Medo/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H1/genética , Giro Denteado/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Memória/fisiologia , Camundongos Knockout , Acetilcolina/metabolismo , Núcleos Septais/metabolismo , Núcleos Septais/fisiologia , Núcleos Septais/citologia
9.
Neuroscience ; 552: 142-151, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38960088

RESUMO

Hippocampus is a critical component of the central nervous system. SRSF10 is expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in hippocampus development is unknown. In this study, using SRSF10 conditional knock-out mice in neural progenitor cells (NPCs), we found that dysfunction of SRSF10 leads to developmental defects in the dentate gyrus of hippocampus, which manifests as the reduced length and wider suprapyramidal blade and infrapyramidal blade.Furthermore, we proved that loss of SRSF10 in NPCs caused inhibition of the differentiation activity and the abnormal migration of NPCs and granule cells, resulting in reduced granule cells and more ectopic granule cells dispersed in the molecular layer and hilus. Finally, we found that the abnormal migration may be caused by the radial glia scaffold and the reduced DISC1 expression in NPCs. Together, our results indicate that SRSF10 is required for the cell migration and formation of dentate gyrus during the development of hippocampus.


Assuntos
Movimento Celular , Giro Denteado , Camundongos Knockout , Células-Tronco Neurais , Fatores de Processamento de Serina-Arginina , Animais , Camundongos , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Giro Denteado/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética
10.
Neurobiol Dis ; 199: 106591, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969233

RESUMO

Gain-of-function mutations in SCN8A cause developmental and epileptic encephalopathy (DEE), a disorder characterized by early-onset refractory seizures, deficits in motor and intellectual functions, and increased risk of sudden unexpected death in epilepsy. Altered activity of neurons in the corticohippocampal circuit has been reported in mouse models of DEE. We examined the effect of chronic seizures on gene expression in the hippocampus by single-nucleus RNA sequencing in mice expressing the patient mutation SCN8A-p.Asn1768Asp (N1768D). One hundred and eighty four differentially expressed genes were identified in dentate gyrus granule cells, many more than in other cell types. Electrophysiological recording from dentate gyrus granule cells demonstrated an elevated firing rate. Targeted reduction of Scn8a expression in the dentate gyrus by viral delivery of an shRNA resulted in doubling of median survival time from 4 months to 8 months, whereas delivery of shRNA to the CA1 and CA3 regions did not result in lengthened survival. These data indicate that granule cells of the dentate gyrus are a specific locus of pathology in SCN8A-DEE.


Assuntos
Giro Denteado , Canal de Sódio Disparado por Voltagem NAV1.6 , Neurônios , Animais , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Giro Denteado/patologia , Giro Denteado/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Camundongos Transgênicos , Masculino , Mutação
11.
Pharmacol Biochem Behav ; 243: 173839, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39079561

RESUMO

Puberty is a critical period of emotional development and neuroplasticity. However, most studies have focused on early development, with limited research on puberty, particularly the parental presence. In this study, four groups were established, and pubertal maternal presence (PMP) was assessed until postnatal days 21 (PD21), 28 (PD28), 35 (PD35), and 42 (PD42), respectively. The social interaction and anxiety behaviors, as well as the expression of oxytocin (OT) in the paraventricular nucleus (PVN) and supraoptic nucleus (SON), and the number of new generated neurons and the expression of estrogen receptor alpha (ERα) in the dentate gyrus (DG) were assessed. The results suggest that there is a lot of physical contact between the mother and offspring from 21 to 42 days of age, which reduces anxiety in both female and male offspring in adulthood; for example, the PMP increased the amount of time mice spent in the center area in the open field experiment and in the bright area in the light-dark box experiment. PMP increased OT expression in the PVN and SON and the number of newly generated neurons in the DG. However, there was a sexual difference in ERα, with ERα increasing in females but decreasing in males. In conclusion, PMP reduces the anxiety of offspring in adulthood, increases OT in the PVN and SON, and adult neurogenesis; ERα in the DG may be involved in this process.


Assuntos
Ansiedade , Giro Denteado , Receptor alfa de Estrogênio , Neurogênese , Ocitocina , Núcleo Hipotalâmico Paraventricular , Animais , Ansiedade/metabolismo , Camundongos , Masculino , Feminino , Receptor alfa de Estrogênio/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Giro Denteado/metabolismo , Maturidade Sexual , Núcleo Supraóptico/metabolismo , Comportamento Materno/fisiologia , Comportamento Animal , Interação Social
12.
EMBO Rep ; 25(8): 3678-3706, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39080439

RESUMO

Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.


Assuntos
Hipocampo , Proteínas de Membrana , Células-Tronco Neurais , Neurogênese , Fator de Transcrição STAT5 , Animais , Camundongos , Proliferação de Células , Giro Denteado/metabolismo , Giro Denteado/citologia , Hipocampo/metabolismo , Hipocampo/citologia , Homeostase , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Convulsões/metabolismo , Convulsões/genética , Transdução de Sinais , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética
13.
Brain Res ; 1841: 149128, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053685

RESUMO

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment. AIM: Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model. METHODS: We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus. In addition, we analysed dopaminergic cell counts in the substantia nigra pars compacta and area tegmentalis ventralis and norepinephrinergic neurons in the locus coeruleus after one and six weeks of STN-DBS. RESULTS: In 6-hydroxydopamine-lesioned animals, one week of STN-DBS did not alter dopamine levels, while striatal norepinephrine levels were decreased. However, neither one nor six weeks of STN-DBS altered dopaminergic neuron numbers in the midbrain or norepinephrinergic neuron counts in the locus coeruleus. Dopaminergic fibre density in the dorsal and ventral striatum also remained unchanged after six weeks of STN-DBS. In healthy animals, one week of STN-DBS resulted in increased dopamine levels in the olfactory bulb and decreased contents in the dentate gyrus, but had no effects on norepinephrine availability. CONCLUSIONS: STN-DBS modulates striatal norepinephrinergic neurotransmission in a PD rat model. Additional behavioural studies are required to investigate the functional impact of this finding.


Assuntos
Estimulação Encefálica Profunda , Modelos Animais de Doenças , Dopamina , Norepinefrina , Oxidopamina , Núcleo Subtalâmico , Transmissão Sináptica , Animais , Núcleo Subtalâmico/metabolismo , Estimulação Encefálica Profunda/métodos , Masculino , Oxidopamina/toxicidade , Transmissão Sináptica/fisiologia , Dopamina/metabolismo , Norepinefrina/metabolismo , Ratos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Neurônios Dopaminérgicos/metabolismo , Bulbo Olfatório/metabolismo , Ratos Sprague-Dawley , Corpo Estriado/metabolismo , Giro Denteado/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/fisiopatologia
14.
eNeuro ; 11(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39084907

RESUMO

The integration of spatial information in the mammalian dentate gyrus (DG) is critical to navigation. Indeed, DG granule cells (DGCs) rely upon finely balanced inhibitory neurotransmission in order to respond appropriately to specific spatial inputs. This inhibition arises from a heterogeneous population of local GABAergic interneurons (INs) that activate both fast, ionotropic GABAA receptors (GABAAR) and slow, metabotropic GABAB receptors (GABABR), respectively. GABABRs in turn inhibit pre- and postsynaptic neuronal compartments via temporally long-lasting G-protein-dependent mechanisms. The relative contribution of each IN subtype to network level GABABR signal setting remains unknown. However, within the DG, the somatostatin (SSt) expressing IN subtype is considered crucial in coordinating appropriate feedback inhibition on to DGCs. Therefore, we virally delivered channelrhodopsin 2 to the DG in order to obtain control of this specific SSt IN subpopulation in male and female adult mice. Using a combination of optogenetic activation and pharmacology, we show that SSt INs strongly recruit postsynaptic GABABRs to drive greater inhibition in DGCs than GABAARs at physiological membrane potentials. Furthermore, we show that in the adult mouse DG, postsynaptic GABABR signaling is predominantly regulated by neuronal GABA uptake and less so by astrocytic mechanisms. Finally, we confirm that activation of SSt INs can also recruit presynaptic GABABRs, as has been shown in neocortical circuits. Together, these data reveal that GABABR signaling allows SSt INs to control DG activity and may constitute a key mechanism for gating spatial information flow within hippocampal circuits.


Assuntos
Giro Denteado , Interneurônios , Receptores de GABA-B , Somatostatina , Animais , Somatostatina/metabolismo , Interneurônios/metabolismo , Interneurônios/fisiologia , Giro Denteado/metabolismo , Receptores de GABA-B/metabolismo , Masculino , Feminino , Optogenética , Camundongos Endogâmicos C57BL , Camundongos , Camundongos Transgênicos , Ácido gama-Aminobutírico/metabolismo , Sinapses/metabolismo
15.
Sci Adv ; 10(27): eadj4433, 2024 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959322

RESUMO

Memory processes rely on a molecular signaling system that balances the interplay between positive and negative modulators. Recent research has focused on identifying memory-regulating genes and their mechanisms. Phospholipase C beta 1 (PLCß1), highly expressed in the hippocampus, reportedly serves as a convergence point for signal transduction through G protein-coupled receptors. However, the detailed role of PLCß1 in memory function has not been elucidated. Here, we demonstrate that PLCß1 in the dentate gyrus functions as a memory suppressor. We reveal that mice lacking PLCß1 in the dentate gyrus exhibit a heightened fear response and impaired memory extinction, and this excessive fear response is repressed by upregulation of PLCß1 through its overexpression or activation using a newly developed optogenetic system. Last, our results demonstrate that PLCß1 overexpression partially inhibits exaggerated fear response caused by traumatic experience. Together, PLCß1 is crucial in regulating contextual fear memory formation and potentially enhancing the resilience to trauma-related conditions.


Assuntos
Giro Denteado , Medo , Memória , Neurônios , Fosfolipase C beta , Animais , Fosfolipase C beta/metabolismo , Fosfolipase C beta/genética , Medo/fisiologia , Giro Denteado/metabolismo , Giro Denteado/fisiologia , Memória/fisiologia , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos Knockout , Masculino , Optogenética , Camundongos Endogâmicos C57BL
16.
PLoS Biol ; 22(7): e3002706, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950066

RESUMO

Episodic memory is essential to navigate in a changing environment by recalling past events, creating new memories, and updating stored information from experience. Although the mechanisms for acquisition and consolidation have been profoundly studied, much less is known about memory retrieval. Hippocampal spatial representations are key for retrieval of contextually guided episodic memories. Indeed, hippocampal place cells exhibit stable location-specific activity which is thought to support contextual memory, but can also undergo remapping in response to environmental changes. It is unclear if remapping is directly related to the expression of different episodic memories. Here, using an incidental memory recognition task in rats, we showed that retrieval of a contextually guided memory is reflected by the levels of CA3 remapping, demonstrating a clear link between external cues, hippocampal remapping, and episodic memory retrieval that guides behavior. Furthermore, we describe NMDARs as key players in regulating the balance between retrieval and memory differentiation processes by controlling the reactivation of specific memory traces. While an increase in CA3 NMDAR activity boosts memory retrieval, dentate gyrus NMDAR activity enhances memory differentiation. Our results contribute to understanding how the hippocampal circuit sustains a flexible balance between memory formation and retrieval depending on the environmental cues and the internal representations of the individual. They also provide new insights into the molecular mechanisms underlying the contributions of hippocampal subregions to generate this balance.


Assuntos
Região CA3 Hipocampal , Hipocampo , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Ratos , Região CA3 Hipocampal/fisiologia , Hipocampo/fisiologia , Hipocampo/metabolismo , Rememoração Mental/fisiologia , Memória Episódica , Giro Denteado/fisiologia , Giro Denteado/metabolismo , Ratos Long-Evans , Sinais (Psicologia) , Memória/fisiologia
17.
Nat Commun ; 15(1): 5674, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971831

RESUMO

Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.


Assuntos
Giro Denteado , Epigênese Genética , Hipocampo , Histona-Lisina N-Metiltransferase , Células-Tronco Neurais , Neurogênese , Animais , Feminino , Masculino , Camundongos , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/citologia , Giro Denteado/citologia , Giro Denteado/metabolismo , Hipocampo/metabolismo , Hipocampo/citologia , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética
18.
Behav Brain Res ; 472: 115157, 2024 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047873

RESUMO

Exposure to light has been demonstrated to stimulate brain regions associated with cognition; however, investigations into its cognitive-enhancing effects have primarily focused on wild-type rodents. This study seeks to elucidate how bright light exposure mitigates cognitive deficits associated with schizophrenia by examining its impact on hippocampal neurogenesis and its potential to alleviate sub-chronic MK-801-induced cognitive impairments in mice. Following three weeks of juvenile bright light exposure (5-8 weeks old), significant increases in proliferating neurons (BrdU+) and immature neurons (DCX+ cells) were observed in the dentate gyrus (DG) and lateral ventricle of MK-801-treated mice. Long-term bright light treatment further promoted the differentiation of BrdU+ cells into immature neurons (BrdU+ DCX+ cells), mature neurons (BrdU+ NeuN+ cells), or astrocytes (BrdU+ GFAP+ cells) in the hippocampal DG. This augmented neurogenesis correlated with the attenuation of sub-chronic MK- 801-induced cognitive deficits, as evidenced by enhancements in Y-maze, novel object recognition (NOR), novel location recognition (NLR), and Morris water maze (MWM) test performances. These findings suggest a promising noninvasive clinical approach for alleviating cognitive impairments associated with neuropsychiatric disorders.


Assuntos
Disfunção Cognitiva , Modelos Animais de Doenças , Proteína Duplacortina , Neurogênese , Esquizofrenia , Animais , Neurogênese/fisiologia , Esquizofrenia/terapia , Esquizofrenia/fisiopatologia , Esquizofrenia/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Camundongos , Masculino , Hipocampo/metabolismo , Maleato de Dizocilpina/farmacologia , Comportamento Animal/fisiologia , Giro Denteado/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Endogâmicos C57BL , Luz
19.
Mol Cell Proteomics ; 23(8): 100811, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996918

RESUMO

Highly specialized cells are fundamental for the proper functioning of complex organs. Variations in cell-type-specific gene expression and protein composition have been linked to a variety of diseases. Investigation of the distinctive molecular makeup of these cells within tissues is therefore critical in biomedical research. Although several technologies have emerged as valuable tools to address this cellular heterogeneity, most workflows lack sufficient in situ resolution and are associated with high costs and extremely long analysis times. Here, we present a combination of experimental and computational approaches that allows a more comprehensive investigation of molecular heterogeneity within tissues than by either shotgun LC-MS/MS or MALDI imaging alone. We applied our pipeline to the mouse brain, which contains a wide variety of cell types that not only perform unique functions but also exhibit varying sensitivities to insults. We explored the distinct neuronal populations within the hippocampus, a brain region crucial for learning and memory that is involved in various neurological disorders. As an example, we identified the groups of proteins distinguishing the neuronal populations of the dentate gyrus (DG) and the cornu ammonis (CA) in the same brain section. Most of the annotated proteins matched the regional enrichment of their transcripts, thereby validating the method. As the method is highly reproducible, the identification of individual masses through the combination of MALDI-IMS and LC-MS/MS methods can be used for the much faster and more precise interpretation of MALDI-IMS measurements only. This greatly speeds up spatial proteomic analyses and allows the detection of local protein variations within the same population of cells. The method's general applicability has the potential to be used to investigate different biological conditions and tissues and a much higher throughput than other techniques making it a promising approach for clinical routine applications.


Assuntos
Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Animais , Proteômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Camundongos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Encéfalo/metabolismo , Giro Denteado/metabolismo , Espectrometria de Massa com Cromatografia Líquida
20.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38853554

RESUMO

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Assuntos
Adiponectina , Giro Denteado , Síndrome do Cromossomo X Frágil , Plasticidade Neuronal , Animais , Masculino , Camundongos , Adiponectina/metabolismo , Adiponectina/farmacologia , Giro Denteado/metabolismo , Giro Denteado/efeitos dos fármacos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...