Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.673
Filtrar
1.
J Mammary Gland Biol Neoplasia ; 29(1): 16, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177859

RESUMO

Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.


Assuntos
Lactação , Glândulas Mamárias Animais , Glândulas Mamárias Humanas , Feminino , Humanos , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/imunologia , Glândulas Mamárias Humanas/patologia , Animais , Lactação/imunologia , Gravidez , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Células Epiteliais/imunologia , Imunidade Inata
2.
J Mammary Gland Biol Neoplasia ; 29(1): 15, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017946

RESUMO

As both perimenopausal and menopausal periods are recognized critical windows of susceptibility for breast carcinogenesis, development of a physiologically relevant model has been warranted. The traditional ovariectomy model causes instant removal of the entire hormonal repertoire produced by the ovary, which does not accurately approximate human natural menopause with gradual transition. Here, we characterized the mammary glands of 4-vinylcyclohexene diepoxide (VCD)-treated animals at different time points, revealing that the model can provide the mammary glands with both perimenopausal and menopausal states. The perimenopausal gland showed moderate regression in ductal structure with no responsiveness to external hormones, while the menopausal gland showed severe regression with hypersensitivity to hormones. Leveraging the findings on the VCD model, effects of a major endocrine disruptor (polybrominated diphenyl ethers, PBDEs) on the mammary gland were examined during and after menopausal transition, with the two exposure modes; low-dose, chronic (environmental) and high-dose, subacute (experimental). All conditions of PBDE exposure did not augment or compromise the macroscopic ductal reorganization resulting from menopausal transition and/or hormonal treatments. Single-cell RNA sequencing revealed that the experimental PBDE exposure during the post-menopausal period caused specific transcriptomic changes in the non-epithelial compartment such as Errfi1 upregulation in fibroblasts. The environmental PBDE exposure resulted in similar transcriptomic changes to a lesser extent. In summary, the VCD mouse model provides both perimenopausal and menopausal windows of susceptibility for the breast cancer research community. PBDEs, including all tested models, may affect the post-menopausal gland including impacts on the non-epithelial compartments.


Assuntos
Cicloexenos , Glândulas Mamárias Animais , Perimenopausa , Compostos de Vinila , Animais , Feminino , Camundongos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/metabolismo , Perimenopausa/efeitos dos fármacos , Perimenopausa/metabolismo , Menopausa/metabolismo , Menopausa/efeitos dos fármacos , Disruptores Endócrinos/efeitos adversos , Modelos Animais de Doenças , Humanos , Éteres Difenil Halogenados/toxicidade
3.
Int J Pharm ; 662: 124500, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39033944

RESUMO

Hyperplasia of mammary glands (HMG) is considered a precancerous condition with a risk of malignant transformation, highlighting the necessity of proactive treatment in the early stages. Transdermal drug delivery offers significant advantages such as painlessness, absence of first-pass effect, and good patient compliance. However, the unique structure of the breast requires transdermal formulations for treating mammary hyperplasia to exhibit higher levels of safety and comfort. We have formulated an ancient topical formula called 'Muxiang Bing,' comprising traditional Chinese medicines Aucklandiae Radix (AR) and Rehmanniae Radix (RR), for the treatment of HMG. This formula has been transformed into a gel paster in the form of nipple cover for trans-nipple-areola delivery. In our investigations, we observed that the optimal formulation of the Muxiang gel plaster demonstrated enhanced permeation facilitated by AR's effect on RR. Furthermore, pre-treatment with the Muxiang gel plaster improved mammary tissue morphology, hormone levels, oxidative stress, aberrant cell proliferation, and damage in rat models, thus preventing and ameliorating mammary hyperplasia. The Muxiang gel plaster exhibited low skin irritability in rats, and long-term use did not cause harm to their internal organs or blood cells, indicating its safety and efficacy.


Assuntos
Administração Cutânea , Medicamentos de Ervas Chinesas , Géis , Hiperplasia , Mamilos , Ratos Sprague-Dawley , Animais , Feminino , Mamilos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Ratos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Absorção Cutânea , Doenças Mamárias/tratamento farmacológico
4.
PLoS One ; 19(7): e0306398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012900

RESUMO

Myeloid cell leukemia-1 (MCL-1), which belongs to the anti-apoptotic B cell lymphoma-2 family protein, is overexpressed in various cancers and is associated with cell immortality, malignant transformation, chemoresistance, and poor prognosis in humans. However, the significance of MCL-1 in canine mammary gland tumors (MGTs) remains unknown. This study aimed to examine MCL-1 expression in normal canine mammary glands and tumors and to assess its correlation with clinical and histologic variables. In total, 111 samples were examined, including 12 normal mammary gland tissues, 51 benign MGTs, and 48 malignant MGTs. Immunohistochemistry revealed that 53% of benign tumors and 75% of malignant tumors exhibited high MCL-1 expression, whereas only 8% of normal mammary glands exhibited high MCL-1 expression. High MCL-1 expression correlated with tumor malignancy (p < 0.001), large tumor size (> 3 cm) (p = 0.005), high Ki-67 expression (p = 0.046), and metastasis (p = 0.027). Survival curve analysis of dogs with malignant MGTs demonstrated a significant association between high MCL-1 expression and shorter median overall survival (p = 0.027) and progression-free survival (p = 0.014). Our study identified MCL-1 as a prognostic factor and potential therapeutic target in canine MGTs.


Assuntos
Doenças do Cão , Neoplasias Mamárias Animais , Proteína de Sequência 1 de Leucemia de Células Mieloides , Animais , Cães , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Feminino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Prognóstico , Doenças do Cão/metabolismo , Doenças do Cão/patologia , Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia
5.
J Ethnopharmacol ; 333: 118462, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942158

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhapontici Radix ethanol extract (RRE) is derived from the dried root of Rhaponticum uniflorum (L.) DC belonging to the Asteraceae family. RRE exhibits significant anti-inflammatory and antioxidant properties; however, the potential of RRE in mastitis treatment requires further investigation. AIM OF THIS STUDY: This research was performed to examine the protective properties of RRE against mastitis and the mechanisms underlying the effects of RRE. MATERIAL AND METHODS: RRE components were analyzed by HPLC-MS/MS and DPPH methods. Isochlorogenic acid B (ICAB) was obtained commercially. MTT assay was utilized to assess RRE or ICAB cytotoxicity in bovine mammary alveolar (MAC-T) cells. Immunohistochemistry were used to investigate the pathological alterations in mammary tissue. The protein levels of inflammatory cytokines and mediators were analyzed using ELISA, and the expression of MAPK and NF-κB signaling pathways, as well as p65 nuclear translocation, were analyzed through Western blotting and immunofluorescence techniques, respectively. Target proteins of RRE were screened by RNA-seq and tandem mass tag analyses. Protein interaction was revealed and confirmed using co-immunoprecipitation and CRISPR/Cas9-based knockdown and overexpression of target genes. RESULTS: ICAB was revealed as one of the main components in RRE, and it was responsible for 84.33% of RRE radical scavenging activity. Both RRE and ICAB mitigated the infiltration of T lymphocytes in the mammary glands of mice, leading to decreased levels of inflammatory mediators (COX-2 and iNOS) and cytokines (TNF-α, IL-6, and IL-1ß) in lipopolysaccharide (LPS)-induced MAC-T cells. Furthermore, RRE and ICAB suppressed the LPS-induced phosphorylation of NF-κB inhibitor and p65, thereby impeding p65 nuclear translocation in mouse mammary glands and MAC-T cells. In addition, RRE and ICAB attenuated the LPS-triggered activation of c-Jun N-terminal kinase 1/2, p38, and extracellular regulated protein kinase 1/2. Importantly, co-treated with LPS and ICAB in MAC-T cells, an upregulation of G-protein coupled receptor 161 (GPR161) and transmembrane protein 59 (TMEM59) was observed; the interact between TMEM59 and was found, leading to inhibition of NF-κB activity and inflammatory cytokine production. CONCLUSION: ICAB is a prominent antioxidant in RRE. RRE and ICAB reduce mammary inflammation via MAPK and NF-κB pathways and the interaction between TMEM59 and GPR161 mediates the control of ICAB in NF-κB signaling.


Assuntos
Anti-Inflamatórios , Mastite , Extratos Vegetais , Receptores Acoplados a Proteínas G , Animais , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Mastite/tratamento farmacológico , Mastite/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Bovinos , Camundongos Endogâmicos BALB C , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Citocinas/metabolismo , Raízes de Plantas/química , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Linhagem Celular , NF-kappa B/metabolismo
6.
Reprod Toxicol ; 128: 108635, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936095

RESUMO

Tributyltin (TBT) is an endocrine-disrupting chemical (EDC) related to reproductive dysfunctions. However, few studies have investigated the effects of TBT exposure on mammary gland development. Thus, we assessed whether subacute TBT exposure causes irregularities in mammary gland development. We administered TBT (100 and 1,000 ng/kg/day for 30 days) to female rats from postnatal day (PND) 25 to PND 55, and mammary gland development, morphology, inflammation, collagen deposition, and protein expression were evaluated. Abnormal mammary gland development was observed in both TBT groups. Specifically, TBT exposure reduced the number of terminal end buds (TEBs), type 1 (AB1) alveolar buds, and type 2 (AB2) alveolar buds. An increase in the lobule and differentiation (DF) 2 score was found in the mammary glands of TBT rats. TBT exposure increased mammary gland blood vessels, mast cell numbers, and collagen deposition. Additionally, both TBT rats exhibited intraductal hyperplasia and TEB-like structures. An increase in estrogen receptor alpha (ERα), progesterone receptor (PR), and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) - positive cells was observed in the mammary glands of TBT rats. A strong negative correlation was observed between CYP19A1- positive cells and TEB number. In addition, CYP19A1 - positive cells were positively correlated with mammary gland TEB-like structure, ductal hyperplasia, inflammation, and collagen deposition. Thus, these data suggest that TBT exposure impairs mammary gland development through the modulation of CYP19A1 signaling pathways in female rats.


Assuntos
Aromatase , Disruptores Endócrinos , Glândulas Mamárias Animais , Ratos Sprague-Dawley , Compostos de Trialquitina , Animais , Feminino , Compostos de Trialquitina/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Disruptores Endócrinos/toxicidade , Aromatase/metabolismo , Aromatase/genética , Receptor alfa de Estrogênio/metabolismo , Ratos
7.
Vet Comp Oncol ; 22(3): 398-409, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38863270

RESUMO

Inflammation is a frequent finding in feline mammary neoplasms. Recent research suggests that the presence and location of tumour-associated immune cells might play a significant role in the clinical outcome of feline mammary carcinomas. The present study aimed to characterise the overall inflammatory infiltrates in healthy, hyperplastic/dysplastic, benign and malignant lesions of the feline mammary gland, and to evaluate its association with clinicopathological features. Perilesional and intralesional inflammatory foci were evaluated in 307 lesions from 185 queens, and categorised according to its distribution and intensity. The presence, location and density of tertiary lymphoid structures were also assessed. A control group included 24 queens without mammary changes. The presence of intralesional and perilesional inflammatory infiltrate was observed in a majority of the lesions (80.8% and 90.2%, respectively), but differed according to the type of mammary lesion, being more remarkable in malignant neoplasms. Only scarce individual cells were observed in 28.1% of the normal mammary glands. Data analysis revealed statistically significant associations (p < 0.05) between the presence of a more prominent intralesional and perilesional inflammatory reaction and several clinicopathological features associated with worse prognosis, including clinical stage, tumour size, mitotic count, lymphovascular invasion and lymph node metastasis. Furthermore, tertiary lymphoid structures were significantly more frequent in tumours with an infiltrative growth and lymph node metastasis. According to our results, the inflammatory reaction present in different types of feline mammary lesions is associated with the development of more aggressive tumours.


Assuntos
Doenças do Gato , Inflamação , Neoplasias Mamárias Animais , Gatos , Animais , Doenças do Gato/patologia , Neoplasias Mamárias Animais/patologia , Feminino , Inflamação/veterinária , Inflamação/patologia , Glândulas Mamárias Animais/patologia
8.
Int Immunopharmacol ; 137: 112430, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38852519

RESUMO

Mastitis, one of the most significant problems in women, is commonly caused by pathogens, especially Staphylococcus aureus (S.aureus). Schisandrin B (SCB), the main abundant derivatives from Schisandra chinensis, has been proven to have the ability to inhibiting inflammation and bacteria. However, few relevant researches systematically illustrate the role SCB in the treatment of mastitis. The aim of the present study is to demonstrate the mechanism that SCB functions in reducing pathological injury to the mammary gland in treating S.aureus-induced mastitis. H&E staining was used to identify pathological changes and injuries in mastitis. The levels of cytokines associated with inflammation were detected by ELISA. Key signals relevant to ferroptosis and Nrf2 signaling pathway were tested by western blot analysis and iron assay kit. Compared with the control group, inflammation-associated factors, such as IL-1ß, TNF-α, MPO activity, increased significantly in S. aureus-treated mice. However, these changes were inhibited by SCB. Ferroptosis-associated factors Fe2+ and MDA increased significantly, and GSH, GPX4 and ferritin expression decreased markedly in S. aureus-treated mice. SCB treatment could attenuate S.aureus-induced ferroptosis. Furthermore, SCB increase SIRT1 and SLC7A11 expression and down-regulated p53 expression and NF-κB activation. In conclusion, SCB alleviates S.aureus-induced mastitis via up-regulating SIRT1/p53/SLC7A11 signaling pathway, attenuating the activation of inflammation-associated cytokines and ferroptosis in the mammary gland tissues.


Assuntos
Ciclo-Octanos , Ferroptose , Lignanas , Mastite , Compostos Policíclicos , Transdução de Sinais , Sirtuína 1 , Infecções Estafilocócicas , Staphylococcus aureus , Proteína Supressora de Tumor p53 , Animais , Lignanas/farmacologia , Lignanas/uso terapêutico , Ciclo-Octanos/farmacologia , Ciclo-Octanos/uso terapêutico , Ferroptose/efeitos dos fármacos , Mastite/tratamento farmacológico , Mastite/induzido quimicamente , Mastite/imunologia , Mastite/metabolismo , Compostos Policíclicos/farmacologia , Compostos Policíclicos/uso terapêutico , Feminino , Sirtuína 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/imunologia , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Humanos
9.
Breast Cancer Res ; 26(1): 106, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943151

RESUMO

BACKGROUND: The cell cycle of mammary stem cells must be tightly regulated to ensure normal homeostasis of the mammary gland to prevent abnormal proliferation and susceptibility to tumorigenesis. The atypical cell cycle regulator, Spy1 can override cell cycle checkpoints, including those activated by the tumour suppressor p53 which mediates mammary stem cell homeostasis. Spy1 has also been shown to promote expansion of select stem cell populations in other developmental systems. Spy1 protein is elevated during proliferative stages of mammary gland development, is found at higher levels in human breast cancers, and promotes susceptibility to mammary tumourigenesis when combined with loss of p53. We hypothesized that Spy1 cooperates with loss of p53 to increase susceptibility to tumour initiation due to changes in susceptible mammary stem cell populations during development and drives the formation of more aggressive stem like tumours. METHODS: Using a transgenic mouse model driving expression of Spy1 within the mammary gland, mammary development and stemness were assessed. These mice were intercrossed with p53 null mice to study the tumourigenic properties of Spy1 driven p53 null tumours, as well as global changes in signaling via RNA sequencing analysis. RESULTS: We show that elevated levels of Spy1 leads to expansion of mammary stem cells, even in the presence of p53, and an increase in mammary tumour formation. Spy1-driven tumours have an increased cancer stem cell population, decreased checkpoint signaling, and demonstrate an increase in therapy resistance. Loss of Spy1 decreases tumor onset and reduces the cancer stem cell population. CONCLUSIONS: This data demonstrates the potential of Spy1 to expand mammary stem cell populations and contribute to the initiation and progression of aggressive, breast cancers with increased cancer stem cell populations.


Assuntos
Glândulas Mamárias Animais , Camundongos Transgênicos , Proteína Supressora de Tumor p53 , Animais , Feminino , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Carcinogênese/genética , Proliferação de Células , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Células-Tronco/metabolismo , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica
10.
Nat Commun ; 15(1): 5152, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886396

RESUMO

In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.


Assuntos
Neoplasias da Mama , Inibidor de Quinase Dependente de Ciclina p27 , Hiperplasia , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Humanos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Animais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Feminino , Fosforilação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hiperplasia/metabolismo , Camundongos , Regulação Neoplásica da Expressão Gênica , Autorrenovação Celular/genética , Linhagem Celular Tumoral , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/citologia , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética
11.
Nat Commun ; 15(1): 5154, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886378

RESUMO

Cancer incidence escalates exponentially with advancing age; however, the underlying mechanism remains unclear. In this study, we build a chronological molecular clock at single-cell transcription level with a mammary stem cell-enriched population to depict physiological aging dynamics in female mice. We find that the mammary aging process is asynchronous and progressive, initiated by an early senescence program, succeeded by an entropic late senescence program with elevated cancer associated pathways, vulnerable to cancer predisposition. The transition towards senescence program is governed by a stem cell factor Bcl11b, loss of which accelerates mammary ageing with enhanced DMBA-induced tumor formation. We have identified a drug TPCA-1 that can rejuvenate mammary cells and significantly reduce aging-related cancer incidence. Our findings establish a molecular portrait of progressive mammary cell aging and elucidate the transcriptional regulatory network bridging mammary aging and cancer predisposition, which has potential implications for the management of cancer prevalence in the aged.


Assuntos
Envelhecimento , Neoplasias da Mama , Senescência Celular , Feminino , Animais , Camundongos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Humanos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/metabolismo , Células-Tronco/metabolismo
12.
BMC Genom Data ; 25(1): 58, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867147

RESUMO

BACKGROUND: Johne's disease is a chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease is highly contagious and MAP infection in dairy cattle can eventually lead to death. With no available treatment for Johne's disease, genetic selection and improvements in management practices could help reduce its prevalence. In a previous study, the gene coding interleukin-10 receptor subunit alpha (IL10Rα) was associated with Johne's disease in dairy cattle. Our objective was to determine how IL10Rα affects the pathogenesis of MAP by examining the effect of a live MAP challenge on a mammary epithelial cell line (MAC-T) that had IL10Rα knocked out using CRISPR/cas9. The wild type and the IL10Rα knockout MAC-T cell lines were exposed to live MAP bacteria for 72 h. Thereafter, mRNA was extracted from infected and uninfected cells. Differentially expressed genes were compared between the wild type and the IL10Rα knockout cell lines. Gene ontology was performed based on the differentially expressed genes to determine which biological pathways were involved. RESULTS: Immune system processes pathways were targeted to determine the effect of IL10Rα on the response to MAP infection. There was a difference in immune response between the wild type and IL10Rα knockout MAC-T cell lines, and less difference in immune response between infected and not infected IL10Rα knockout MAC-T cells, indicating IL10Rα plays an important role in the progression of MAP infection. Additionally, these comparisons allowed us to identify other genes involved in inflammation-mediated chemokine and cytokine signalling, interleukin signalling and toll-like receptor pathways. CONCLUSIONS: Identifying differentially expressed genes in wild type and ILR10α knockout MAC-T cells infected with live MAP bacteria provided further evidence that IL10Rα contributes to mounting an immune response to MAP infection and allowed us to identify additional potential candidate genes involved in this process. We found there was a complex immune response during MAP infection that is controlled by many genes.


Assuntos
Células Epiteliais , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Mycobacterium avium subsp. paratuberculosis/imunologia , Animais , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Linhagem Celular , Bovinos , Paratuberculose/imunologia , Paratuberculose/microbiologia , Paratuberculose/genética , Feminino , Subunidade alfa de Receptor de Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-10/metabolismo , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia
13.
Free Radic Biol Med ; 222: 16-26, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38821134

RESUMO

Elevated levels of NEFA caused by negative energy balance in transition cows induce cellular dyshomeostasis. Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) can maintain cellular homeostasis and act as a critical regulator of stress responses besides functioning in the ubiquitin-like system. The objective of this study was to elucidate the UFL1 working mechanism on promoting cellular adaptations in bovine mammary epithelial cells (BMECs) in response to NEFA challenge, with an emphasis on the ER and mitochondrial function. The results showed that exogenous NEFA and UFL1 depletion resulted in the disorder of ER and mitochondrial homeostasis and the damage of BMEC integrity, overexpression of UFL1 effectively alleviated the NEFA-induced cellular dyshomeostasis. Mechanistically, our study found that UFL1 had a strong interaction with IRE1α and could modulate the IRE1α/XBP1 pathway of unfolded protein response in NEFA-stimulated BMECs, thereby contributing to the modulation of cellular homeostasis. These findings imply that targeting UFL1 may be a therapeutic alternative to relieve NEB-induced metabolic changes in perinatal dairy cows.


Assuntos
Retículo Endoplasmático , Endorribonucleases , Células Epiteliais , Homeostase , Glândulas Mamárias Animais , Mitocôndrias , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteína 1 de Ligação a X-Box , Animais , Bovinos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/efeitos dos fármacos , Endorribonucleases/metabolismo , Endorribonucleases/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos
14.
Dev Cell ; 59(15): 1988-2004.e11, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781975

RESUMO

The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.


Assuntos
Neoplasias da Mama , Diferenciação Celular , Glândulas Mamárias Animais , Animais , Feminino , Camundongos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/citologia , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Humanos , Carcinogênese/patologia , Carcinogênese/metabolismo , Carcinogênese/genética , Linhagem da Célula , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proliferação de Células , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/citologia , Gravidez , Lactação
15.
J Vet Med Sci ; 86(7): 816-823, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38777776

RESUMO

Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in various normal physiological cellular processes. Moreover, STATs have been recently identified as novel therapeutic targets for various human tumors. STAT3, STAT5a, and STAT6 have been suggested to be involved in tumorigenesis in human breast cancer. Owing to the similarity between feline mammary carcinomas (FMCs) and human breast cancers, these factors may play an important role in FMCs. However, studies on the expression of STATs in animal tumors are limited. Therefore, in this study, we aimed to characterize the expression of total STAT5 (tSTAT5) and phosphorylated STAT5 (pSTAT5) in FMCs, feline mammary adenomas, non-neoplastic proliferative mammary gland lesions, and normal feline mammary glands using immunohistochemistry. High expression of tSTAT5 was observed in the cytoplasm of all the samples assessed in this study. Moreover, high expression of tSTAT5 was observed in the nucleus; however, its levels varied depending on the lesion. The percentage of pSTAT5-nuclear positive cells varied among normal feline mammary glands (40.1 ± 25.1%), and non-neoplastic lesions, including mammary hyperplasia (43.2 ± 28.6%) and fibroadenomatous changes (18.0 ± 13.6%). Moreover, the percentage of pSTAT5-nuclear-positive cells in feline mammary adenomas was 24.5 ± 19.2%, which was significantly reduced in feline mammary carcinomas (2.4 ± 5.6%), regardless of histopathological subtype. This study suggests that decreased STAT5 activity may be involved in the development and malignant progression of feline mammary carcinomas.


Assuntos
Doenças do Gato , Neoplasias Mamárias Animais , Fator de Transcrição STAT5 , Animais , Gatos , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Feminino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Doenças do Gato/metabolismo , Doenças do Gato/patologia , Fosforilação , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica/veterinária , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia
16.
Mol Cell Endocrinol ; 590: 112267, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729597

RESUMO

Mammary gland (MG) lactogenic differentiation involves epigenetic mechanisms. We have previously shown that hypothyroidism (HypoT) alters the MG transcriptome in lactation. However, the role of thyroid hormones (T3 and T4 a. k.a. THs) in epigenetic differentiation of MG is still unknown. We used a model of post-lactating HypoT rats to study in MG: a) Methylation and expression level of Gata3, Elf5, Stat6, Stat5a, Stat5b; b) Expression of Lalba, IL-4Rα and Ncoa1 mRNA; c) Histone H3 acetylation and d) Estrogen and progesterone concentration in serum. HypoT increases the estrogen serum level, decreases the progesterone level, promotes methylation of Stat5a, Stat5b and Stat6, decreasing their mRNA level and of its target genes (Lalba and IL-4Rα) and increases the Ncoa1 mRNA expression and histone H3 acetylation level. Our results proved that HypoT alters the post-lactation MG epigenome and could compromise mammary functional differentiation.


Assuntos
Diferenciação Celular , Epigênese Genética , Histonas , Hipotireoidismo , Glândulas Mamárias Animais , Animais , Feminino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Histonas/metabolismo , Diferenciação Celular/genética , Ratos , Acetilação , Progesterona/sangue , Ratos Wistar , Estrogênios/metabolismo , Metilação de DNA/genética , Lactação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
PLoS One ; 19(5): e0303947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820257

RESUMO

Retrospective evaluation of udder recovery following treatment of the inflamed quarter with acoustic pulse technology (APT) of cows with subclinical mastitis was done on 4 Israeli commercial dairy farms. Here, we evaluated the APT treatment as a tool to manage subclinical mastitis and its economic consequences in commercial farms. Recovery of the infected glands following APT treatment was compared to the customary no-treatment (NT) for cows with subclinical mastitis. Over 2 years, 467 cows with subclinical mastitis were identified. Subclinical mastitis was defined by elevated somatic cell count (SCC; >1 × 106 cells/mL) in the monthly test-day milk sample; 222 cows were treated with APT and 245 cows were not treated and served as control. Differences between treatment groups in culling, milk quality, milk yield and bacterial elimination were analyzed. After treatment, cure from bacteria was calculated only for cows with pre-isolated bacteria. The percentage of sampled cows determined as cured (no bacterial finding) in the NT group was 32.7% (35/107) (30.9% Gram negative; 32.4% Gram positive) and in the APT-treated group, 83.9% (42/55) (89.4% Gram negative; 80.6% Gram positive). Culling rate due to mastitis was significantly lower (>90%) in the APT-treated vs. NT group. Recovery was 66.0% in the APT group compared to 11.5% in the NT group at 90 d post-treatment. Average milk volume per cow in the APT-treated group was 16.1% higher compared to NT cows. Based on the study, savings incurred by using APT to treat only subclinical cows per 100-cow herd can total $15,106/y, or $309 per treated subclinically infected cow.


Assuntos
Indústria de Laticínios , Glândulas Mamárias Animais , Mastite Bovina , Animais , Bovinos , Mastite Bovina/microbiologia , Mastite Bovina/terapia , Mastite Bovina/economia , Feminino , Estudos Retrospectivos , Indústria de Laticínios/economia , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Leite , Fazendas , Israel
18.
Cancer Res Commun ; 4(5): 1380-1397, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38717149

RESUMO

Macrophages represent a heterogeneous myeloid population with diverse functions in normal tissues and tumors. While macrophages expressing the cell surface marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) have been identified in stromal regions of the normal mammary gland and in the peritumoral stroma, their functions within these regions are not well understood. Using a genetic mouse model of LYVE-1+ macrophage depletion, we demonstrate that loss of LYVE-1+ macrophages is associated with altered extracellular matrix remodeling in the normal mammary gland and reduced mammary tumor growth in vivo. In further studies focused on investigating the functions of LYVE-1+ macrophages in the tumor microenvironment, we demonstrate that LYVE-1 expression correlates with an increased ability of macrophages to bind, internalize, and degrade hyaluronan. Consistent with this, we show that depletion of LYVE-1+ macrophages correlates with increased hyaluronan accumulation in both the normal mammary gland and in mammary tumors. Analysis of single-cell RNA sequencing of macrophages isolated from these tumors reveals that depletion of LYVE-1+ macrophages in tumors drives a shift in the majority of the remaining macrophages toward a proinflammatory phenotype, as well as an increase in CD8+ T-cell infiltration. Together, these findings indicate that LYVE-1+ macrophages represent a tumor-promoting anti-inflammatory subset of macrophages that contributes to hyaluronan remodeling in the tumor microenvironment. SIGNIFICANCE: We have identified a macrophage subset in mouse mammary tumors associated with tumor structural components. When this macrophage subset is absent in tumors, we report a delay in tumor growth and an increase in antitumor immune cells. Understanding the functions of distinct macrophage subsets may allow for improved therapeutic strategies for patients with breast cancer.


Assuntos
Matriz Extracelular , Ácido Hialurônico , Macrófagos , Microambiente Tumoral , Animais , Ácido Hialurônico/metabolismo , Feminino , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/genética , Células Estromais/metabolismo , Células Estromais/patologia , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia
19.
J Ethnopharmacol ; 329: 117854, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583733

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mammary gland hyperplasia, a prevalent benign breast condition, often serves as a precursor to various other breast diseases. He-Zi-3 soup (HZ-3), a traditional Mongolian remedy, is utilized for treating this condition. AIM OF THE STUDY: To explore the effect and underlying mechanism of HZ-3, a Mongolian medicinal preparation, on mammary gland hyperplasia. MATERIALS AND METHODS: This study aimed to assess the impact of different doses of HZ-3 in a rat model of mammary hyperplasia. The active components within HZ-3 drug serum were identified and analyzed through network pharmacology and target prediction. To elucidate the underlying mechanism of HZ-3 in addressing mammary hyperplasia, we conducted a series of investigations on estradiol-induced mammary hyperplasia in model rates. Assessments included measurements of papilla width and height, hematoxylin and eosin staining, Masson staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry. RESULTS: Our investigation revealed the identification of 21 compounds, primarily terpenoids, through serum medicinal chemistry screening. Utilizing network pharmacological analysis, we observed predominant regulation through the estrogen pathway, closely associated with key genes including esr1,esr2, ncoa1, krt 19, ctsd, ebag 9, and bcl-2. Assessments encompassing nipple height and width, histological examination, immunohistochemical analysis, and serum hormone levels via enzyme-linked immunosorbent assay demonstrated the inhibitory effect of HZ-3 on mammary hyperplasia in rat models. RT-qPCR and Western blot analyses corroborated these findings, affirming the suppression of mammary hyperplasia by HZ-3 through the activation of estrogen pathway signaling.


Assuntos
Hiperplasia , Glândulas Mamárias Animais , Ratos Sprague-Dawley , Animais , Feminino , Hiperplasia/tratamento farmacológico , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Ratos , Estrogênios/farmacologia , Progestinas/farmacologia , Medicina Tradicional da Mongólia , Estradiol/sangue , Estradiol/farmacologia , Extratos Vegetais/farmacologia
20.
Pestic Biochem Physiol ; 201: 105866, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685242

RESUMO

Pea Albumin 1, subunit b (PA1b) is a 37 amino acid peptide. It was extracted from pea seeds and showed significant insecticidal activity against certain insects, such as the mosquitoes Culex pipiens and Aedes aegyptii, cereal weevils (genus Sitophilus), and certain species of aphids. Considering that pea seeds are regularly consumed by humans and mammals, PA1b is assumed to be a promising bioinsecticide with no allergenicity or toxicity to hosts. To clarify this aspect, PA1b was applied to bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). The results revealed that LPS induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP-1) secretion, while PA1b depressed these cytokines release via inhibiting NF-κB signaling activation. In addition, PA1b protected mammary epithelial cells from impairment caused by LPS, because it reduced cell membrane permeability and subsequently reconstructed mammary epithelial cell viability. Moreover, it inhibited cell apoptosis accompanied with alleviated oxidative stress. Furthermore, PA1b prevented opening of mitochondrial permeability transition pores, in turn up-regulated mitochondrial membrane potential and ATP production. Therefore, PA1b improved mitochondrial function, which contributed to re-construction of mammary epithelial cell viability. In conclusion, PA1b alleviates LPS-induced inflammation of bovine mammary epithelial cells via inhibiting NF-κB signaling activation and protects bovine mammary epithelial cells by improving mitochondrial function. PA1b is a good therapeutic survival factor for mammary epithelial cells.


Assuntos
Células Epiteliais , Inflamação , Lipopolissacarídeos , Animais , Lipopolissacarídeos/farmacologia , Bovinos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inseticidas/toxicidade , Inseticidas/farmacologia , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...