Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.011
Filtrar
1.
Oncoimmunology ; 13(1): 2386789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39135890

RESUMO

Immunologic treatment options are uncommon in low-grade gliomas, although such therapies might be beneficial for inoperable and aggressive cases. Knowledge of the immune and stromal cells in low-grade gliomas is highly relevant for such approaches but still needs to be improved. Published gene-expression data from 400 low-grade gliomas and 193 high-grade gliomas were gathered to quantify 10 microenvironment cell populations with a deconvolution method designed explicitly for brain tumors. First, we investigated general differences in the microenvironment of low- and high-grade gliomas. Lower-grade and high-grade tumors cluster together, respectively, and show a general similarity within and distinct differences between these groups, the main difference being a higher infiltration of fibroblasts and T cells in high-grade gliomas. Among the analyzed entities, gangliogliomas and pleomorphic xanthoastrocytomas presented the highest overall immune cell infiltration. Further analyses of the low-grade gliomas presented three distinct microenvironmental signatures of immune cell infiltration, which can be divided into T-cell/dendritic/natural killer cell-, neutrophilic/B lineage/natural killer cell-, and monocytic/vascular/stromal-cell-dominated immune clusters. These clusters correlated with tumor location, age, and histological diagnosis but not with sex or progression-free survival. A survival analysis showed that the prognosis can be predicted from gene expression, clinical data, and a combination of both with a support vector machine and revealed the negative prognostic relevance of vascular markers. Overall, our work shows that low- and high-grade gliomas can be characterized and differentiated by their immune cell infiltration. Low-grade gliomas cluster into three distinct immunologic tumor microenvironments, which may be of further interest for upcoming immunotherapeutic research.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Glioma/genética , Glioma/imunologia , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Criança , Feminino , Masculino , Gradação de Tumores , Perfilação da Expressão Gênica , Transcriptoma , Pré-Escolar , Adolescente , Células Estromais/patologia , Células Estromais/metabolismo , Células Estromais/imunologia
2.
J Immunother Cancer ; 12(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142719

RESUMO

BACKGROUND: Oxylipin metabolism plays an essential role in glioma progression and immune modulation in the tumor microenvironment. Lipid metabolic reprogramming has been linked to macrophage remodeling, while the understanding of oxylipins and their catalyzed enzymes lipoxygenases in the regulation of glioma-associated microglia/macrophages (GAMs) remains largely unexplored. METHODS: To explore the pathophysiological relevance of oxylipin in human glioma, we performed Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) analysis in human glioma and non-tumor brain tissues. To comprehensively investigate the role of arachidonate lipoxygenase 5 (ALOX5) in glioma, we performed in vivo bioluminescent imaging, immunofluorescence staining and flow cytometry analysis on tumors from orthotopic glioma-bearing mice. We developed an ALOX5-targeted nanobody, and tested its anti-glioma efficacy of combination therapy with α-programmed cell death protein-1 (PD-1). RESULTS: In this study, we found that ALOX5 and its oxylipin 5-hydroxyeicosatetraenoic acid (5-HETE) are upregulated in glioma, accumulating programmed death-ligand 1 (PD-L1)+ M2-GAMs and orchestrating an immunosuppressive tumor microenvironment. Mechanistically, 5-HETE derived from ALOX5-overexpressing glioma cells, promotes GAMs migration, PD-L1 expression, and M2 polarization by facilitating nuclear translocation of nuclear factor erythroid 2-related factor 2. Additionally, a nanobody targeting ALOX5 is developed that markedly suppresses 5-HETE efflux from glioma cells, attenuates M2 polarization of GAMs, and consequently ameliorates glioma progression. Furthermore, the combination therapy of the ALOX5-targeted nanobody plus α-PD-1 exhibits superior anti-glioma efficacy. CONCLUSIONS: Our findings reveal a pivotal role of the ALOX5/5-HETE axis in regulating GAMs and highlight the ALOX5-targeted nanobody as a potential therapeutic agent, which could potentiate immune checkpoint therapy for glioma.


Assuntos
Araquidonato 5-Lipoxigenase , Antígeno B7-H1 , Glioma , Ácidos Hidroxieicosatetraenoicos , Microglia , Glioma/metabolismo , Glioma/patologia , Glioma/imunologia , Humanos , Araquidonato 5-Lipoxigenase/metabolismo , Camundongos , Animais , Antígeno B7-H1/metabolismo , Microglia/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Progressão da Doença , Macrófagos/metabolismo , Macrófagos/imunologia , Microambiente Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Masculino , Linhagem Celular Tumoral , Feminino
3.
Sci Rep ; 14(1): 17875, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090168

RESUMO

TNFAIP8 family molecules have been recognized for their involvement in the progression of tumors across a range of cancer types. Emerging experimental data suggests a role for certain TNFAIP8 family molecules in the development of glioma. Nonetheless, the comprehensive understanding of the genomic alterations, prognostic significance, and immunological profiles of TNFAIP8 family molecules in glioma remains incomplete. In the study, using the comprehensive bioinformatics tools, we explored the unique functions of 4 TNFAIP8 members including TNFAIP8, TNFAIP8L1, TNFAIP8L2 and TNFAIP8L3 in glioma. The expressions of TNFAIP8, TNFAIP8L1, TNFAIP8L2, and TNFAIP8L3 were notably upregulated in glioma tissues compared to normal tissues. Furthermore, survival analysis indicated that elevated expression levels of TNFAIP8, TNFAIP8L1 and TNFAIP8L2 were correlated with unfavorable outcomes in terms of overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) among glioma patients. Genetic modifications, such as mutations and copy number alterations, within the TNFAIP8 family exhibited a significant association with extended OS, DSS and PFS in individuals diagnosed with glioma. The findings suggest a noteworthy correlation between TNFAIP8 family members and the age and 1p/19q codeletion status of glioma patients. We also found that there were significant relationships between TNFAIP8 family expression and tumor immunity in glioma. Furthermore, functional annotation of TNFAIP8 family members and their co-expressed genes in gliomas was carried out using GO and KEGG pathway analysis. The GO analysis revealed that the primary biological processes influenced by the TNFAIP8 family co-expressed genes included cell chemotaxis, temperature homeostasis, and endocytic vesicle formation. Additionally, the KEGG analysis demonstrated that TNFAIP8 family co-expressed genes are involved in regulating various pathways such as inflammatory mediator regulation of TRP channels, pathways in cancer, prolactin signaling pathway, and Fc gamma R-mediated phagocytosis. Overall, the findings suggest that TNFAIP8 family members may play a significant role in the development of glioma and have the potential to serve as prognostic indicators and therapeutic targets for individuals with glioma.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Glioma , Humanos , Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Biologia Computacional/métodos , Glioma/genética , Glioma/imunologia , Glioma/mortalidade , Glioma/patologia , Mutação , Prognóstico
4.
J Immunother Cancer ; 12(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39111833

RESUMO

BACKGROUND: High-grade gliomas including glioblastoma (GBM) and diffuse midline gliomas (DMG) represent the most lethal and aggressive brain cancers where current treatment modalities offer limited efficacy. Chimeric antigen receptor (CAR) T cell therapies have emerged as a promising strategy, boasting tumor-specific targeting and the unique ability to penetrate the blood-brain barrier. However, the effective clinical application hinges on the optimal choice of antigen, with a limited number, currently under investigation. METHODS: We employed cell surface proteomic analysis of primary human high-grade glioma samples from both adult and pediatric patients. This led to the identification of Ephrin type-A receptor 3 (EphA3) as a prevalently expressed target. We engineered a second-generation EphA3-targeted CAR T cell and assessed function using in vitro and in vivo models of GBM and DMG. RESULTS: EphA3-targeted CAR T cells demonstrated robust antigen-specific killing of human GBM and DMG cell lines in vitro. In an orthotopic xenograft NSG mouse model, EphA3-targeted CAR T cells not only effectively eradicated tumors but also established a functional T cell population protective on rechallenge. Remarkably, mice rechallenged with a second contralateral orthotopic tumor implantation achieved complete tumor clearance and maintained a sustained complete response 6 months following initial treatment. CONCLUSION: Building on the proven safety profile of EphA3 antibodies in clinical settings, our study provides compelling preclinical evidence supporting the efficacy of EphA3-targeted CAR T cells against high-grade gliomas. These findings underscore the potential for transitioning this innovative therapy into clinical trials, aiming to revolutionize the treatment landscape for patients afflicted with these formidable brain cancers.


Assuntos
Glioma , Receptor EphA3 , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Glioma/terapia , Glioma/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Feminino , Memória Imunológica
5.
BMC Med Genomics ; 17(1): 218, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169376

RESUMO

BACKGROUND: Treatment of gliomas, the most prevalent primary malignant neoplasm of the central nervous system, is challenging. Arachidonate 5-lipoxygenase activating protein (ALOX5AP) is crucial for converting arachidonic acid into leukotrienes and is associated with poor prognosis in multiple cancers. Nevertheless, its relationship with the prognosis and the immune microenvironment of gliomas remains incompletely understood. METHODS: The differential expression of ALOX5AP was evaluated based on public Databases. Kaplan-Meier, multivariate Cox proportional hazards regression analysis, time-dependent receiver operating characteristic, and nomogram were used to estimate the prognostic value of ALOX5AP. The relationship between ALOX5AP and immune infiltration was calculated using ESTIMATE and CIBERSORT algorithms. Relationships between ALOX5AP and human leukocyte antigen molecules, immune checkpoints, tumor mutation burden, TIDE score, and immunophenoscore were calculated to evaluate glioma immunotherapy response. Single gene GSEA and co-expression network-based GO and KEGG enrichment analysis were performed to explore the potential function of ALOX5AP. ALOX5AP expression was verified using multiplex immunofluorescence staining and its prognostic effects were confirmed using a glioma tissue microarray. RESULT: ALOX5AP was highly expressed in gliomas, and the expression level was related to World Health Organization (WHO) grade, age, sex, IDH mutation status, 1p19q co-deletion status, MGMTp methylation status, and poor prognosis. Single-cell RNA sequencing showed that ALOX5AP was expressed in macrophages, monocytes, and T cells but not in tumor cells. ALOX5AP expression positively correlated with M2 macrophage infiltration and poor immunotherapy response. Immunofluorescence staining demonstrated that ALOX5AP was upregulated in WHO higher-grade gliomas, localizing to M2 macrophages. Glioma tissue microarray confirmed the adverse effect of ALOX5AP in the prognosis of glioma. CONCLUSION: ALOX5AP is highly expressed in M2 macrophages and may act as a potential biomarker for predicting prognosis and immunotherapy response in patients with glioma.


Assuntos
Proteínas Ativadoras de 5-Lipoxigenase , Biologia Computacional , Glioma , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Glioma/genética , Glioma/imunologia , Glioma/patologia , Proteínas Ativadoras de 5-Lipoxigenase/genética , Prognóstico , Masculino , Feminino , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
6.
Commun Biol ; 7(1): 1025, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164573

RESUMO

CD58 has been implicated in immune suppression and is associated with stemness in various types of cancer. Nonetheless, efficient biomarkers for assessing cancer patient response to immunotherapy are lacking. The present work focused on assessing the immune predictive significance of CD58 for patients with glioma. The expression of CD58 correlates with the clinicopathologic characteristics of patients with glioma, suggesting CD58high cells to signify glioma with tumorigenic potential. The CD58high cells displayed accelerated tumor formation compared to CD58low cells in vivo. Taken together, CD58 could potentially serve as a marker for glioma. CD58high glioma induces macrophage polarization through CXCL5 secretion, where M2 macrophages regulate PD-L1 expression within CD58high glioma via IL-6 production in vitro. Moreover, it was found that combination treatment with CD58 significantly increased the volume of tumors in the xenograft specimens. Evaluating CD58 expression represents a promising approach for identifying patients who can benefit from immunotherapy.


Assuntos
Antígenos CD58 , Glioma , Macrófagos , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Glioma/imunologia , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Antígenos CD58/metabolismo , Antígenos CD58/genética , Feminino , Linhagem Celular Tumoral , Masculino , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
7.
Sci Rep ; 14(1): 15613, 2024 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971907

RESUMO

Glioblastoma is the most common and aggressive primary malignant brain tumor with poor prognosis. Novel immunotherapeutic approaches are currently under investigation. Even though magnetic resonance imaging (MRI) is the most important imaging tool for treatment monitoring, response assessment is often hampered by therapy-related tissue changes. As tumor and therapy-associated tissue reactions differ structurally, we hypothesize that biomechanics could be a pertinent imaging proxy for differentiation. Longitudinal MRI and magnetic resonance elastography (MRE) were performed to monitor response to immunotherapy with a toll-like receptor 7/8 agonist in orthotopic syngeneic experimental glioma. Imaging results were correlated to histology and light sheet microscopy data. Here, we identify MRE as a promising non-invasive imaging method for immunotherapy-monitoring by quantifying changes in response-related tumor mechanics. Specifically, we show that a relative softening of treated compared to untreated tumors is linked to the inflammatory processes following therapy-induced re-education of tumor-associated myeloid cells. Mechanistically, combined effects of myeloid influx and inflammation including extracellular matrix degradation following immunotherapy form the basis of treated tumors being softer than untreated glioma. This is a very early indicator of therapy response outperforming established imaging metrics such as tumor volume. The overall anti-tumor inflammatory processes likely have similar effects on human brain tissue biomechanics, making MRE a promising tool for gauging response to immunotherapy in glioma patients early, thereby strongly impacting patient pathway.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Glioma , Imunoterapia , Imageamento por Ressonância Magnética , Animais , Camundongos , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/imunologia , Glioma/patologia , Imunoterapia/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Técnicas de Imagem por Elasticidade/métodos , Linhagem Celular Tumoral , Fenômenos Biomecânicos , Humanos , Camundongos Endogâmicos C57BL , Biomarcadores Tumorais/metabolismo
8.
Sci Rep ; 14(1): 17443, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075190

RESUMO

Gliomas are the most common malignant tumors of the central nervous system, accounting for approximately 80% of all malignant brain tumors. Accumulating evidence suggest that pyroptosis plays an essential role in the progression of cancer. Unfortunately, the effect of the pyroptosis-related factor caspase-4 (CASP4) on immunotherapy and drug therapy for tumors has not been comprehensively investigated. In this study, we systematically screened six hub genes by pooling differential pyroptosis-related genes in The Cancer Genome Atlas (TCGA) glioma data and the degree of centrality of index-related genes in the protein-protein interaction network. We performed functional and pathway enrichment analyses of the six hub genes to explore their biological functions and potential molecular mechanisms. We then investigated the importance of CASP4 using Kaplan-Meier survival analysis of glioma patients. TCGA and the Chinese Glioma Genome Atlas (CGGA) databases showed that reduced CASP4 expression leads to the potent clinical deterioration of glioma patients. Computational analysis of the effect of CASP4 on the infiltration level and recruitment of glioma immune cells revealed that CASP4 expression was closely associated with a series of tumor-suppressive immune checkpoint molecules, chemokines, and chemokine receptors. We also found that aberrant CASP4 expression correlated with chemotherapeutic drug sensitivity. Finally, analysis at the cellular and tissue levels indicated an increase in CASP4 expression in glioma, and that CASP4 inhibition significantly inhibited the proliferation of glioma cells. Thus, CASP4 is implicated as a new prognostic biomarker for gliomas with the potential to further guide immunotherapy and chemotherapy strategies for glioma patients.


Assuntos
Neoplasias Encefálicas , Caspases Iniciadoras , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma , Humanos , Glioma/genética , Glioma/patologia , Glioma/imunologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Caspases Iniciadoras/metabolismo , Caspases Iniciadoras/genética , Piroptose/genética , Mapas de Interação de Proteínas , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estimativa de Kaplan-Meier , Linhagem Celular Tumoral
9.
Nat Commun ; 15(1): 5790, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987542

RESUMO

With the success of immunotherapy in cancer, understanding the tumor immune microenvironment (TIME) has become increasingly important; however in pediatric brain tumors this remains poorly characterized. Accordingly, we developed a clinical immune-oncology gene expression assay and used it to profile a diverse range of 1382 samples with detailed clinical and molecular annotation. In low-grade gliomas we identify distinct patterns of immune activation with prognostic significance in BRAF V600E-mutant tumors. In high-grade gliomas, we observe immune activation and T-cell infiltrates in tumors that have historically been considered immune cold, as well as genomic correlates of inflammation levels. In mismatch repair deficient high-grade gliomas, we find that high tumor inflammation signature is a significant predictor of response to immune checkpoint inhibition, and demonstrate the potential for multimodal biomarkers to improve treatment stratification. Importantly, while overall patterns of immune activation are observed for histologically and genetically defined tumor types, there is significant variability within each entity, indicating that the TIME must be evaluated as an independent feature from diagnosis. In sum, in addition to the histology and molecular profile, this work underscores the importance of reporting on the TIME as an essential axis of cancer diagnosis in the era of personalized medicine.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Glioma/imunologia , Glioma/genética , Glioma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Feminino , Masculino , Adolescente , Regulação Neoplásica da Expressão Gênica , Prognóstico , Proteínas Proto-Oncogênicas B-raf/genética , Pré-Escolar , Perfilação da Expressão Gênica , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Mutação , Linfócitos T/imunologia , Medicina de Precisão/métodos , Linfócitos do Interstício Tumoral/imunologia , Relevância Clínica
10.
Hum Genomics ; 18(1): 74, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956740

RESUMO

BACKGROUND: Evidence has revealed a connection between cuproptosis and the inhibition of tumor angiogenesis. While the efficacy of a model based on cuproptosis-related genes (CRGs) in predicting the prognosis of peripheral organ tumors has been demonstrated, the impact of CRGs on the prognosis and the immunological landscape of gliomas remains unexplored. METHODS: We screened CRGs to construct a novel scoring tool and developed a prognostic model for gliomas within the various cohorts. Afterward, a comprehensive exploration of the relationship between the CRG risk signature and the immunological landscape of gliomas was undertaken from multiple perspectives. RESULTS: Five genes (NLRP3, ATP7B, SLC31A1, FDX1, and GCSH) were identified to build a CRG scoring system. The nomogram, based on CRG risk and other signatures, demonstrated a superior predictive performance (AUC of 0.89, 0.92, and 0.93 at 1, 2, and 3 years, respectively) in the training cohort. Furthermore, the CRG score was closely associated with various aspects of the immune landscape in gliomas, including immune cell infiltration, tumor mutations, tumor immune dysfunction and exclusion, immune checkpoints, cytotoxic T lymphocyte and immune exhaustion-related markers, as well as cancer signaling pathway biomarkers and cytokines. CONCLUSION: The CRG risk signature may serve as a robust biomarker for predicting the prognosis and the potential viability of immunotherapy responses. Moreover, the key candidate CRGs might be promising targets to explore the underlying biological background and novel therapeutic interventions in gliomas.


Assuntos
Biomarcadores Tumorais , Glioma , Microambiente Tumoral , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/genética , Nomogramas , Feminino , Masculino , Perfilação da Expressão Gênica , Pessoa de Meia-Idade
11.
Commun Biol ; 7(1): 824, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971948

RESUMO

The expression dysregulation of microRNAs (miRNA) has been widely reported during cancer development, however, the underling mechanism remains largely unanswered. In the present work, we performed a systematic integrative study for genome-wide DNA methylation, copy number variation and miRNA expression data to identify mechanisms underlying miRNA dysregulation in lower grade glioma. We identify 719 miRNAs whose expression was associated with alterations of copy number variation or promoter methylation. Integrative multi-omics analysis revealed four subtypes with differing prognoses. These glioma subtypes exhibited distinct immune-related characteristics as well as clinical and genetic features. By construction of a miRNA regulatory network, we identified candidate miRNAs associated with immune evasion and response to immunotherapy. Finally, eight prognosis related miRNAs were validated to promote cell migration, invasion and proliferation through in vitro experiments. Our study reveals the crosstalk among DNA methylation, copy number variation and miRNA expression for immune regulation in glioma, and could have important implications for patient stratification and development of biomarkers for immunotherapy approaches.


Assuntos
Neoplasias Encefálicas , Variações do Número de Cópias de DNA , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glioma , MicroRNAs , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Epigenômica , Genômica , Redes Reguladoras de Genes , Linhagem Celular Tumoral , Evasão da Resposta Imune/genética , Epigênese Genética , Feminino , Masculino , Prognóstico , Gradação de Tumores
12.
CNS Neurosci Ther ; 30(7): e14816, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948951

RESUMO

AIM: This study aimed to explore the mechanisms of transient receptor potential (TRP) channels on the immune microenvironment and develop a TRP-related signature for predicting prognosis, immunotherapy response, and drug sensitivity in gliomas. METHODS: Based on the unsupervised clustering algorithm, we identified novel TRP channel clusters and investigated their biological function, immune microenvironment, and genomic heterogeneity. In vitro and in vivo experiments revealed the association between TRPV2 and macrophages. Subsequently, based on 96 machine learning algorithms and six independent glioma cohorts, we constructed a machine learning-based TRP channel signature (MLTS). The performance of the MLTS in predicting prognosis, immunotherapy response, and drug sensitivity was evaluated. RESULTS: Patients with high expression levels of TRP channel genes had worse prognoses, higher tumor mutation burden, and more activated immunosuppressive microenvironment. Meanwhile, TRPV2 was identified as the most essential regulator in TRP channels. TRPV2 activation could promote macrophages migration toward malignant cells and alleviate glioma prognosis. Furthermore, MLTS could work independently of common clinical features and present stable and superior prediction performance. CONCLUSION: This study investigated the comprehensive effect of TRP channel genes in gliomas and provided a promising tool for designing effective, precise treatment strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Aprendizado de Máquina , Canais de Potencial de Receptor Transitório , Microambiente Tumoral , Glioma/genética , Glioma/imunologia , Microambiente Tumoral/fisiologia , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Animais , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Camundongos , Masculino , Feminino
13.
J Neurooncol ; 169(3): 647-658, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39046599

RESUMO

PURPOSE: Spontaneously occurring glioma in pet dogs is increasingly recognized as a valuable translational model for human glioblastoma. Canine high-grade glioma and human glioblastomas share many molecular similarities, including the accumulation of immunosuppressive regulatory T cells (Tregs) that inhibit anti-tumor immune responses. Identifying in dog mechanisms responsible for Treg recruitment may afford to target the cellular population driving immunosuppression, the results providing a rationale for translational clinical studies in human patients. Our group has previously identified C-C motif chemokine 2 (CCL2) as a glioma-derived T-reg chemoattractant acting on chemokine receptor 4 (CCR4) in a murine orthotopic glioma model. Recently, we demonstrated a robust increase of CCL2 in the brain tissue of canine patients bearing high-grade glioma. METHODS: We performed a series of in vitro experiments using canine Tregs and patient-derived canine glioma cell lines (GSC 1110, GSC 0514, J3T-Bg, G06A) to interrogate the CCL2-CCR4 signaling axis in the canine. RESULTS: We established a flow cytometry gating strategy for identifying and isolating FOXP3+ Tregs in dogs. The canine CD4 + CD25high T-cell population was highly enriched in FOXP3 and CCR4 expression, indicating they are bona fide Tregs. Canine Treg migration was enhanced by CCL2 or by glioma cell line-derived supernatant. Blockade of the CCL2-CCR4 axis significantly reduced migration of canine Tregs. CCL2 mRNA was expressed in all glioma cell lines, and expression increased when exposed to Tregs but not CD4 + helper T-cells. CONCLUSION: Our study validates CCL2-CCR4 as a bi-directional Treg-glioma immunosuppressive and tumor-promoting axis in canine high-grade glioma.


Assuntos
Neoplasias Encefálicas , Quimiocina CCL2 , Glioma , Receptores CCR4 , Linfócitos T Reguladores , Cães , Animais , Receptores CCR4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Glioma/metabolismo , Glioma/imunologia , Glioma/patologia , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Humanos
14.
PeerJ ; 12: e17631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006026

RESUMO

Background: Human olfactory receptors (ORs) account for approximately 60% of all human G protein-coupled receptors. The functions of ORs extend beyond olfactory perception and have garnered significant attention in tumor biology. However, a comprehensive pan-cancer analysis of ORs in human cancers is lacking. Methods: Using data from public databases, such as HPA, TCGA, GEO, GTEx, TIMER2, TISDB, UALCAN, GEPIA2, and GSCA, this study investigated the role of olfactory receptor family 7 subfamily A member 5 (OR7A5) in various cancers. Functional analysis of OR7A5 in LGG and GBM was performed using the CGGA database. Molecular and cellular experiments were performed to validate the expression and biological function of OR7A5 in gliomas. Results: The results revealed heightened OR7A5 expression in certain tumors, correlating with the expression levels of immune checkpoints and immune infiltration. In patients with gliomas, the expression levels of OR7A5 were closely associated with adverse prognosis, 1p/19p co-deletion status, and wild-type IDH status. Finally, in vitro experiments confirmed the inhibitory effect of OR7A5 knockdown on the proliferative capacity of glioma cells and on the expression levels of proteins related to lipid metabolism. Conclusion: This study establishes OR7A5 as a novel biomarker, potentially offering a novel therapeutic target for gliomas.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioma , Receptores Odorantes , Humanos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Glioma/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Prognóstico , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
15.
Cancer Res Commun ; 4(7): 1834-1849, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856710

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor and remains incurable. Previous work has shown that systemic administration of Decitabine (DAC) induces sufficient expression of cancer-testis antigens (CTA) in GBM for targeting by adoptive T-cell therapy in vivo. However, the mechanisms by which DAC enhances immunogenicity in GBM remain to be elucidated. Using New York esophageal squamous cell carcinoma 1 (NY-ESO-1) as a representative inducible CTA, we demonstrate in patient tissue, immortalized glioma cells, and primary patient-derived gliomaspheres that basal CTA expression is restricted by promoter hypermethylation in gliomas. DAC treatment of glioma cells specifically inhibits DNA methylation silencing to render NY-ESO-1 and other CTA into inducible tumor antigens at single-cell resolution. Functionally, NY-ESO-1 T-cell receptor-engineered effector cell targeting of DAC-induced antigen in primary glioma cells promotes specific and polyfunctional T-cell cytokine profiles. In addition to induction of CTA, DAC concomitantly reactivates tumor-intrinsic human endogenous retroviruses, interferon response signatures, and MHC-I. Overall, we demonstrate that DAC induces targetable tumor antigen and enhances T-cell functionality against GBM, ultimately contributing to the improvement of targeted immune therapies in glioma. SIGNIFICANCE: This study dissects the tumor-intrinsic epigenetic and transcriptional mechanisms underlying enhanced T-cell functionality targeting decitabine-induced cancer-testis antigens in glioma. Our findings demonstrate concomitant induction of tumor antigens, reactivation of human endogenous retroviruses, and stimulation of interferon signaling as a mechanistic rationale to epigenetically prime human gliomas to immunotherapeutic targeting.


Assuntos
Antígenos de Neoplasias , Neoplasias Encefálicas , Decitabina , Retrovirus Endógenos , Epigênese Genética , Glioma , Humanos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Decitabina/farmacologia , Decitabina/uso terapêutico , Glioma/imunologia , Glioma/genética , Retrovirus Endógenos/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Linhagem Celular Tumoral , Análise de Célula Única , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , Glioblastoma/imunologia , Glioblastoma/genética , Glioblastoma/patologia
16.
Int Immunopharmacol ; 137: 112438, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38875999

RESUMO

Glioma is the most common malignant tumor of the adult central nervous system. In this study, we aimed to identify a novel model for predicting glioma prognosis and a potential therapeutic target. Here, lncRNAs related to prognosis and ferroptosis were analyzed and screened through R software and online websites. A nomogram model was established and evaluated with calibration curve, receiver operating characteristic curve and decision curve analysis. Further, an enrichment analysis and immune infiltration analysis were performed. In addition, the expression level and biological function of ITGA6-AS1 were verified in vitro. We obtained a ferroptosis-related 7-lncRNA signature, and constructed a nomogram prognostic model with good predictability for 1-, 3- and 5-year overall survival of glioma patients. The enrichment analysis indicated potential involvement of certain pathways and suggested a correlation between the high-risk group and infiltration of M2 macrophages and MDSCs. Furthermore, the expression level of ITGA6-AS1 in the U118, U87, and LN229 cells was upregulated compared to the H1800 cell. Interestingly, knockdown of ITGA6-AS1 may inhibit U118 cells' proliferation, migration and invasion in vitro. while overexpression of ITGA6-AS1 in LN229 cells plays a promoting role. This study implies that the 7-lncRNA signature may contribute to the stratification of glioma prognosis, and the immune suppressive microenvironment may be associated with macrophage-ferroptosis crosstalk. Furthermore, ITGA6-AS1 may be a potential therapeutic target for patients with glioma.


Assuntos
Neoplasias Encefálicas , Movimento Celular , Proliferação de Células , Ferroptose , Regulação Neoplásica da Expressão Gênica , Glioma , Integrina alfa6 , RNA Longo não Codificante , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Glioma/mortalidade , Glioma/imunologia , Ferroptose/genética , Movimento Celular/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Integrina alfa6/metabolismo , Integrina alfa6/genética , Invasividade Neoplásica/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Nomogramas
17.
Methods Mol Biol ; 2809: 245-261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38907902

RESUMO

Mutation-containing immunogenic peptides from tumor cells, also named as neoantigens, have various amino acid descriptors and physical-chemical properties characterized intrinsic features, which are useful in prioritizing the immunogenicity potentials of neoantigens and predicting patients' survival. Here, we describe a glioma neoantigen intrinsic feature database, GNIFdb, that hosts computationally predicted HLA-I restricted neoantigens of gliomas, their intrinsic features, and the tools for calculating intrinsic features and predicting overall survival of gliomas. We illustrate the application of GNIFdb in searching for possible neoantigen candidates from ATF6 that plays important roles in tumor growth and resistance to radiotherapy in glioblastoma. We also demonstrate the application of intrinsic feature associated tools in GNIFdb to predict the overall survival of primary IDH wild-type glioblastoma.


Assuntos
Antígenos de Neoplasias , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Neoplasias/imunologia , Simulação por Computador , Glioma/imunologia , Glioma/genética , Glioma/patologia , Biologia Computacional/métodos , Glioblastoma/imunologia , Glioblastoma/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Mutação
18.
Front Immunol ; 15: 1361351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846954

RESUMO

Background: Gliomas constitute a category of malignant tumors originating from brain tissue, representing the majority of intracranial malignancies. Previous research has demonstrated the pivotal role of CLEC7A in the progression of various cancers, yet its specific implications within gliomas remain elusive. The primary objective of this study was to investigate the prognostic significance and immune therapeutic potential of CLEC7A in gliomas through the integration of bioinformatics and clinical pathological analyses. Methods: This investigation involved examining and validating the relationship between CLEC7A and glioma using samples from Hospital, along with data from TCGA, GEO, GTEx, and CGGA datasets. Subsequently, we explored its prognostic value, biological functions, expression location, and impact on immune cells within gliomas. Finally, we investigated its potential impact on the chemotaxis and polarization of macrophages. Results: The expression of CLEC7A is upregulated in gliomas, and its levels escalate with the malignancy of tumors, establishing it as an independent prognostic factor. Functional enrichment analysis revealed a significant correlation between CLEC7A and immune function. Subsequent examination of immune cell differential expression demonstrated a robust association between CLEC7A and M2 macrophages. This conclusion was further substantiated through single-cell analysis, immunofluorescence, and correlation studies. Finally, the knockout of CLEC7A in M2 macrophages resulted in a noteworthy reduction in macrophage chemotaxis and polarization factors. Conclusion: CLEC7A expression is intricately linked to the pathology and molecular characteristics of gliomas, establishing its role as an independent prognostic factor for gliomas and influencing macrophage function. It could be a promising target for immunotherapy in gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Lectinas Tipo C , Macrófagos , Microambiente Tumoral , Humanos , Glioma/imunologia , Glioma/genética , Glioma/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Prognóstico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
19.
J Cell Mol Med ; 28(11): e18463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847472

RESUMO

Accumulating evidence suggests that a wide variety of cell deaths are deeply involved in cancer immunity. However, their roles in glioma have not been explored. We employed a logistic regression model with the shrinkage regularization operator (LASSO) Cox combined with seven machine learning algorithms to analyse the patterns of cell death (including cuproptosis, ferroptosis, pyroptosis, apoptosis and necrosis) in The Cancer Genome Atlas (TCGA) cohort. The performance of the nomogram was assessed through the use of receiver operating characteristic (ROC) curves and calibration curves. Cell-type identification was estimated by using the cell-type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) and single sample gene set enrichment analysis methods. Hub genes associated with the prognostic model were screened through machine learning techniques. The expression pattern and clinical significance of MYD88 were investigated via immunohistochemistry (IHC). The cell death score represents an independent prognostic factor for poor outcomes in glioma patients and has a distinctly superior accuracy to that of 10 published signatures. The nomogram performed well in predicting outcomes according to time-dependent ROC and calibration plots. In addition, a high-risk score was significantly related to high expression of immune checkpoint molecules and dense infiltration of protumor cells, these findings were associated with a cell death-based prognostic model. Upregulated MYD88 expression was associated with malignant phenotypes and undesirable prognoses according to the IHC. Furthermore, high MYD88 expression was associated with poor clinical outcomes and was positively related to CD163, PD-L1 and vimentin expression in the in-horse cohort. The cell death score provides a precise stratification and immune status for glioma. MYD88 was found to be an outstanding representative that might play an important role in glioma.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Glioma , Aprendizado de Máquina , Nomogramas , Humanos , Glioma/genética , Glioma/imunologia , Glioma/patologia , Prognóstico , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Morte Celular/genética , Masculino , Feminino , Curva ROC , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Transcriptoma , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
20.
Front Immunol ; 15: 1397486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863709

RESUMO

Introduction: Gliomas represent the most prevalent and aggressive tumors within the central nervous system. Despite the current standard treatments, the median survival time for glioblastoma patients remains dismal, hovering around 14 months. While attempts have been made to inhibit the PD-1/PD-L1 and CTLA-4/CD80-CD86 axes through immunotherapy, the outcomes have yet to demonstrate significant efficacy. The immune checkpoint Butyrophilin 3A1 (BTN3A1) can either be involved in advantageous or detrimental function depending on the cancer type. Methods: In our study, we utilized a Moroccan cohort to delve into the role of BTN3A1 in gliomas. A transcriptomic analysis was conducted on 34 patients, which was then corroborated through a protein analysis in 27 patients and validated using the TCGA database (n = 667). Results: Our results revealed an elevated expression of BTN3A1 in glioblastoma (grade 4), as evidenced in both the TCGA database and our cohort of Moroccan glioma patients. Within the TCGA cohort, BTN3A1 expression was notably higher in patients with wild-type IDH. We observed a positive correlation between BTN3A1 expression and immune infiltration of B cells, CD8+ T cells, naive CD4+ T cells, and M2 macrophages. Patients exhibiting increased BTN3A1 expression also presented elevated levels of TGF-ß, IL-10, and TIM-3 compared to those with reduced BTN3A1 expression. Notably, patients with high BTN3A1 expression were associated with a poorer prognosis than their counterparts with lower expression. Conclussion: Our findings suggest that BTN3A1 might promote the establishment of an immunosuppressive microenvironment. Consequently, targeting BTN3A1 could offer novel therapeutic avenues for the management of advanced gliomas.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Butirofilinas , Glioma , Humanos , Masculino , Feminino , Prognóstico , Butirofilinas/genética , Butirofilinas/metabolismo , Glioma/imunologia , Glioma/genética , Glioma/mortalidade , Pessoa de Meia-Idade , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Biomarcadores Tumorais/genética , Adulto , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Idoso , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...