Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.443
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 178-186, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836664

RESUMO

This study aimed to explore the regulatory effects and associated mechanisms of adiponectin on apoptosis and proliferation in the LN18 glioma cell line through the AMPK and Akt signaling pathways. Additionally, we sought to elucidate the impact of adiponectin on the chemosensitivity of the LN18 glioma cell line to temozolomide (TMZ). The proliferation rate of glioma cells treated with adiponectin was assessed using the cholecystokinin (CCK8) assay. The Western blot analysis was employed to assess the expression of p-Akt, p-AMPK, p-mTOR, cleaved caspase3, Bax, Cyclin D1, and Cyclin B1 following adiponectin treatment. Cell apoptosis was quantified using AnnexinV/PI flow cytometry, while changes in the cell cycle were detected using PI staining flow cytometry. The findings revealed that adiponectin upregulates p-AMPK expression and downregulates p-mTOR expression in the PTEN wild-type glioma cell line LN18, with no discernible effect on p-Akt expression. Moreover, adiponectin inhibits the proliferation rate of the PTEN wild-type glioma cell line LN18, enhances the expression of cleaved caspase3 and Bax, and significantly elevates the apoptosis rate, as evidenced by AnnexinV/PI flow cytometry. Adiponectin was observed to suppress the expression of Cyclin D1 and Cyclin B1, increase the number of cells in the G1 phase, and promote autophagy. Additionally, adiponectin augments the expression of Beclin1 and the ratio of LC3II/I in the PTEN wild-type glioma cell line LN18, while decreasing p62 expression. In conclusion, this study posits that adiponectin holds therapeutic promise for glioma treatment. Furthermore, adiponectin enhances the inhibitory effect of TMZ on the proliferation rate of LN18 cells when treated with 0.1 mM and 1 mM TMZ. These results collectively suggest that adiponectin impedes proliferation, encourages apoptosis and autophagy in the LN18 glioma cell line, and heightens its sensitivity to the chemotherapeutic drug TMZ.


Assuntos
Adiponectina , Apoptose , Autofagia , Proliferação de Células , Glioma , Temozolomida , Adiponectina/metabolismo , Adiponectina/farmacologia , Adiponectina/genética , Apoptose/efeitos dos fármacos , Humanos , Glioma/patologia , Glioma/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Temozolomida/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo
2.
Nat Commun ; 15(1): 4698, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844770

RESUMO

Given the marginal penetration of most drugs across the blood-brain barrier, the efficacy of various agents remains limited for glioblastoma (GBM). Here we employ low-intensity pulsed ultrasound (LIPU) and intravenously administered microbubbles (MB) to open the blood-brain barrier and increase the concentration of liposomal doxorubicin and PD-1 blocking antibodies (aPD-1). We report results on a cohort of 4 GBM patients and preclinical models treated with this approach. LIPU/MB increases the concentration of doxorubicin by 2-fold and 3.9-fold in the human and murine brains two days after sonication, respectively. Similarly, LIPU/MB-mediated blood-brain barrier disruption leads to a 6-fold and a 2-fold increase in aPD-1 concentrations in murine brains and peritumoral brain regions from GBM patients treated with pembrolizumab, respectively. Doxorubicin and aPD-1 delivered with LIPU/MB upregulate major histocompatibility complex (MHC) class I and II in tumor cells. Increased brain concentrations of doxorubicin achieved by LIPU/MB elicit IFN-γ and MHC class I expression in microglia and macrophages. Doxorubicin and aPD-1 delivered with LIPU/MB results in the long-term survival of most glioma-bearing mice, which rely on myeloid cells and lymphocytes for their efficacy. Overall, this translational study supports the utility of LIPU/MB to potentiate the antitumoral activities of doxorubicin and aPD-1 for GBM.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina , Microbolhas , Receptor de Morte Celular Programada 1 , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Doxorrubicina/análogos & derivados , Animais , Humanos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/patologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Feminino , Sistemas de Liberação de Medicamentos , Ondas Ultrassônicas , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Glioblastoma/patologia , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Polietilenoglicóis
3.
Am Soc Clin Oncol Educ Book ; 44(3): e431450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723228

RESUMO

Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Gradação de Tumores , Humanos , Glioma/genética , Glioma/terapia , Glioma/tratamento farmacológico , Glioma/patologia , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Gerenciamento Clínico , Mutação , Terapia de Alvo Molecular
4.
Front Immunol ; 15: 1369972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690285

RESUMO

Background: Temozolomide (TMZ) is a key component in the treatment of gliomas. Hypermutation induced by TMZ can be encountered in routine clinical practice, and its significance is progressively gaining recognition. However, the relationship between TMZ-induced hypermutation and the immunologic response remains controversial. Case presentation: We present the case of a 38-year-old male patient who underwent five surgeries for glioma. Initially diagnosed with IDH-mutant astrocytoma (WHO grade 2) during the first two surgeries, the disease progressed to grade 4 in subsequent interventions. Prior to the fourth surgery, the patient received 3 cycles of standard TMZ chemotherapy and 9 cycles of dose-dense TMZ regimens. Genomic and immunologic analyses of the tumor tissue obtained during the fourth surgery revealed a relatively favorable immune microenvironment, as indicated by an immunophenoscore of 5, suggesting potential benefits from immunotherapy. Consequently, the patient underwent low-dose irradiation combined with immunoadjuvant treatment. After completing 4 cycles of immunotherapy, the tumor significantly shrank, resulting in a partial response. However, after a 6-month duration of response, the patient experienced disease progression. Subsequent analysis of the tumor tissue obtained during the fifth surgery revealed the occurrence of hypermutation, with mutation signature analysis attributing TMZ treatment as the primary cause. Unfortunately, the patient succumbed shortly thereafter, with a survival period of 126 months. Conclusion: Patients subjected to a prolonged regimen of TMZ treatment may exhibit heightened vulnerability to hypermutation. This hypermutation induced by TMZ holds the potential to function as an indicator associated with unfavorable response to immunotherapy in gliomas.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Glioma , Mutação , Temozolomida , Humanos , Temozolomida/uso terapêutico , Masculino , Adulto , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Glioma/genética , Glioma/terapia , Glioma/tratamento farmacológico , Antineoplásicos Alquilantes/uso terapêutico , Imunoterapia/métodos , Evolução Fatal , Microambiente Tumoral/imunologia
5.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701414

RESUMO

Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.


Assuntos
Glioma , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Animais , Modelos Biológicos , Linhagem Celular Tumoral , Compostos Organofosforados/uso terapêutico , Compostos Organofosforados/farmacologia
6.
Photodiagnosis Photodyn Ther ; 45: 103869, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38787766

RESUMO

BACKGROUND: For malignant glioma, intraoperative photodynamic therapy (PDT) using talaporfin sodium is a powerful tool for local tumor control, when gross total removal is performed. However, the efficacy of PDT for non-totally resectable malignant glioma has not been clearly confirmed. Therefore, the purpose of this study was to clarify the usefulness of PDT using talaporfin sodium for non-totally resectable malignant glioma. METHODS: Eighteen patients with malignant glioma (16 new onset, 2 recurrent) in whom gross total removal was judged to be difficult from the images obtained before surgery were evaluated. Fifteen patients had glioblastoma (14 newly diagnosed, 1 recurrent), and 3 patients had anaplastic oligodendroglioma (2 newly diagnosed, 1 recurrent). The whole resection cavity was subjected to PDT during the surgery. For newly diagnosed glioblastoma, postoperative therapy involved the combined use of radiation and temozolomide. Bevacizumab treatment was also started at an early stage after surgery. RESULTS: In some patients, reduction of the residual tumor was observed at an early stage of chemoradiotherapy after the surgery, suggesting the positive effect of PDT. Recurrence occurred in 15 of the 18 patients during the course of treatment. Distant recurrence occurred in 8 of these 15 patients, despite good local tumor control. In the 14 patients with newly diagnosed glioblastoma, the median progression-free survival was almost 10.5 months, and the median overall survival was almost 16.9 months. CONCLUSIONS: PDT for malignant glioma is expected to slightly improve local tumor control for non-totally resectable lesions.


Assuntos
Neoplasias Encefálicas , Glioma , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Humanos , Fotoquimioterapia/métodos , Masculino , Feminino , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Pessoa de Meia-Idade , Glioma/tratamento farmacológico , Idoso , Adulto , Neoplasias Encefálicas/tratamento farmacológico , Recidiva Local de Neoplasia , Temozolomida/uso terapêutico
7.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718220

RESUMO

Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.


Assuntos
Barreira Hematoencefálica , Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanopartículas , Dióxido de Silício , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Dióxido de Silício/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Animais , Porosidade , Camundongos , Humanos , Polietilenoglicóis/química , Portadores de Fármacos/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Tamanho da Partícula , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ligantes , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem
8.
Comput Biol Med ; 175: 108532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703547

RESUMO

BACKGROUND: Glioma is a malignant brain tumor originating from glial cells, and there still a challenge to accurately predict the prognosis. Programmed cell death (PCD) plays a key role in tumorigenesis and immune response. However, the crosstalk and potential role of various PCDs in prognosis and tumor microenvironment remains unknown. Therefore, we comprehensively discussed the relationship between different models of PCD and the prognosis of glioma and provided new ideas for the optimal targeted therapy of glioma. MATERIALS AND METHODS: We compared and analyzed the role of 14 PCD patterns on the prognosis from different levels. We constructed the cell death risk score (CDRS) index and conducted a comprehensive analysis of CDRS and TME characteristics, clinical characteristics, and drug response. RESULTS: Effects of different PCDs at the genomic, functional, and immune microenvironment levels were discussed. CDRS index containing 6 gene signatures and a nomogram were established. High CDRS is associated with a worse prognosis. Through transcriptome and single-cell data, we found that patients with high CDRS showed stronger immunosuppressive characteristics. Moreover, the high-CDRS group was resistant to the traditional glioma chemotherapy drug Vincristine, but more sensitive to the Temozolomide and the clinical experimental drug Bortezomib. In addition, we identified 19 key potential therapeutic targets during malignant differentiation of tumor cells. CONCLUSION: Overall, we provide the first systematic description of the role of 14 PCDs in glioma. A new CDRS model was built to predict the prognosis and to provide a new idea for the targeted therapy of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Humanos , Glioma/genética , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/patologia , Glioma/mortalidade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Prognóstico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Transcriptoma , Apoptose/efeitos dos fármacos
9.
CNS Neurosci Ther ; 30(5): e14715, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38708806

RESUMO

Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.


Assuntos
Neoplasias Encefálicas , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Glioma , Nanopartículas , Humanos , Glioma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/tendências , Antineoplásicos/uso terapêutico
10.
ACS Appl Mater Interfaces ; 16(21): 27187-27201, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747985

RESUMO

Development of theranostic nanomedicines to tackle glioma remains to be challenging. Here, we present an advanced blood-brain barrier (BBB)-crossing nanovaccine based on cancer cell membrane-camouflaged poly(N-vinylcaprolactam) (PVCL) nanogels (NGs) incorporated with MnO2 and doxorubicin (DOX). We show that the disulfide bond-cross-linked redox-responsive PVCL NGs can be functionalized with dermorphin and imiquimod R837 through cell membrane functionalization. The formed functionalized PVCL NGs having a size of 220 nm are stable, can deplete glutathione, and responsively release both Mn2+ and DOX under the simulated tumor microenvironment to exert the chemo/chemodynamic therapy mediated by DOX and Mn2+, respectively. The combined therapy induces tumor immunogenic cell death to maturate dendritic cells (DCs) and activate tumor-killing T cells. Further, the nanovaccine composed of cancer cell membranes as tumor antigens, R837 as an adjuvant with abilities of DC maturation and macrophages M1 repolarization, and MnO2 with Mn2+-mediated stimulator of interferon gene activation of tumor cells can effectively act on both targets of tumor cells and immune cells. With the dermorphin-mediated BBB crossing, cell membrane-mediated homologous tumor targeting, and Mn2+-facilitated magnetic resonance (MR) imaging property, the designed NG-based theranostic nanovaccine enables MR imaging and combination chemo-, chemodynamic-, and imnune therapy of orthotopic glioma with a significantly decreased recurrence rate.


Assuntos
Glioma , Imageamento por Ressonância Magnética , Compostos de Manganês , Nanomedicina Teranóstica , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/terapia , Glioma/patologia , Animais , Camundongos , Humanos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Vacinas Anticâncer/química , Imunoterapia , Óxidos/química , Óxidos/farmacologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Barreira Hematoencefálica/metabolismo , Nanogéis/química , Imiquimode/química , Imiquimode/farmacologia , Nanovacinas
11.
ACS Appl Mater Interfaces ; 16(22): 28193-28208, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776411

RESUMO

Ferroptosis therapy and immunotherapy have been widely used in cancer treatment. However, nonselective induction of ferroptosis in tumors is prone to immunosuppression, limiting the therapeutic effect of ferroptosis cancer treatment. To address this issue, this study reports a customized hybrid nanovesicle composed of NK cell-derived extracellular versicles and RSL3-loaded liposomes (hNRVs), aiming to establish a positive cycle between ferroptosis therapy and immunotherapy. Thanks to the enhanced permeability and retention effect and the tumor homing characteristics of NK exosomes, our data indicate that hNRVs can actively accumulate in tumors and enhance cellular uptake. FASL, IFN-γ, and RSL3 are released into the tumor microenvironment, where FASL derived from NK cells effectively lyses tumor cells. RSL3 downregulates the expression of GPX4 in the tumor, leading to the accumulation of LPO and ROS, and promotes ferroptosis in tumor cells. The accumulation of IFN-γ and TNF-α stimulates the maturation of dendritic cells and effectively induces the inactivation of GPX4, promoting lipid peroxidation, making them sensitive to ferroptosis and indirectly promoting the occurrence of ferroptosis. This study highlights the role of the customized hNRV platform in enhancing the effectiveness of synergistic treatment with selective delivery of ferroptosis inducers and immune activation against glioma without causing additional side effects on healthy organs.


Assuntos
Exossomos , Ferroptose , Glioma , Imunoterapia , Células Matadoras Naturais , Lipossomos , Ferroptose/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/química , Lipossomos/química , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Animais , Camundongos , Glioma/terapia , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/metabolismo , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Linhagem Celular Tumoral , Interferon gama/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Carbolinas
12.
Oncoimmunology ; 13(1): 2338965, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590799

RESUMO

Immunotherapy has revolutionized the treatment of cancers. Reinvigorating lymphocytes with checkpoint blockade has become a cornerstone of immunotherapy for multiple tumor types, but the treatment of glioblastoma has not yet shown clinical efficacy. A major hurdle to treat GBM with checkpoint blockade is the high degree of myeloid-mediated immunosuppression in brain tumors that limits CD8 T-cell activity. A potential strategy to improve anti-tumor efficacy against glioma is to use myeloid-modulating agents to target immunosuppressive cells, such as myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. We found that the co-inhibition of the chemokine receptors CCR2 and CCR5 in murine model of glioma improves the survival and synergizes robustly with anti-PD-1 therapy. Moreover, the treatment specifically reduced the infiltration of monocytic-MDSCs (M-MDSCs) into brain tumors and increased lymphocyte abundance and cytokine secretion by tumor-infiltrating CD8 T cells. The depletion of T-cell subsets and myeloid cells abrogated the effects of CCR2 and CCR5 blockade, indicating that while broad depletion of myeloid cells does not improve survival, specific reduction in the infiltration of immunosuppressive myeloid cells, such as M-MDSCs, can boost the anti-tumor immune response of lymphocytes. Our study highlights the potential of CCR2/CCR5 co-inhibition in reducing myeloid-mediated immunosuppression in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Glioma/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Células Mieloides/patologia , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral , Receptores CCR2 , Receptores CCR5/uso terapêutico
13.
J Ethnopharmacol ; 328: 118128, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38561056

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the clinic, Shenqi Fuzheng Injection (SFI) is used as an adjuvant for cancer chemotherapy. However, the molecular mechanism is unclear. AIM OF THE STUDY: We screened potential targets of SFI action on gliomas by network pharmacology and performed experiments to validate possible molecular mechanisms against gliomas. MATERIALS AND METHODS: We consulted relevant reports on the SFI and glioma incidence from PubMed and Web of Science and focused on the mechanism through which the SFI inhibits glioma. According to the literature, two primary SFI components-Codonopsis pilosula (Franch.) Nannf. and Astragalus membranaceus (Fisch.) Bunge-have been found. All plant names have been sourced from "The Plant List" (www.theplantlist.org). The cell lines U87, T98G and GL261 were used in this study. The inhibitory effects of SFI on glioma cells U87 and T98G were detected by CCK-8 assay, EdU, plate cloning assay, scratch assay, Transwell assay, immunofluorescence, flow cytometry and Western blot. A subcutaneous tumor model of C57BL/6 mice was constructed using GL261 cells, and the SFI was evaluated by HE staining and immunohistochemistry. The targets of glioma and the SFI were screened using network pharmacology. RESULTS: A total of 110 targets were enriched, and a total of 26 major active components in the SFI were investigated. There were a total of 3,343 targets for gliomas, of which 79 targets were shared between the SFI and glioma tissues. SFI successfully prevented proliferation and caused cellular S-phase blockage in U87 and T98G cells, thus decreasing their growth. Furthermore, SFI suppressed cell migration by downregulating EMT marker expression. According to the results of the in vivo tests, the SFI dramatically decreased the development of tumors in a transplanted tumour model. Network pharmacological studies revealed that the SRC/PI3K/AKT signaling pathway may be the pathway through which SFI exerts its anti-glioma effects. CONCLUSIONS: The findings revealed that the SRC/PI3K/AKT signaling pathway may be involved in the mechanism through which SFI inhibits the proliferation and migration of glioma cells.


Assuntos
Medicamentos de Ervas Chinesas , Glioma , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Camundongos Endogâmicos C57BL , Transdução de Sinais , Glioma/tratamento farmacológico , Proliferação de Células
14.
Sci Rep ; 14(1): 9137, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644422

RESUMO

To investigate the therapeutic potential of photodynamic therapy (PDT) for malignant gliomas arising in unresectable sites, we investigated the effect of tumor tissue damage by interstitial PDT (i-PDT) using talaporfin sodium (TPS) in a mouse glioma model in which C6 glioma cells were implanted subcutaneously. A kinetic study of TPS demonstrated that a dose of 10 mg/kg and 90 min after administration was appropriate dose and timing for i-PDT. Performing i-PDT using a small-diameter plastic optical fiber demonstrated that an irradiation energy density of 100 J/cm2 or higher was required to achieve therapeutic effects over the entire tumor tissue. The tissue damage induced apoptosis in the area close to the light source, whereas vascular effects, such as fibrin thrombus formation occurred in the area slightly distant from the light source. Furthermore, when irradiating at the same energy density, irradiation at a lower power density for a longer period of time was more effective than irradiation at a higher power density for a shorter time. When performing i-PDT, it is important to consider the rate of delivery of the irradiation light into the tumor tissue and to set irradiation conditions that achieve an optimal balance between cytotoxic and vascular effects.


Assuntos
Glioma , Lasers Semicondutores , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Animais , Fotoquimioterapia/métodos , Glioma/tratamento farmacológico , Glioma/patologia , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Camundongos , Lasers Semicondutores/uso terapêutico , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Modelos Animais de Doenças , Aloenxertos , Apoptose/efeitos dos fármacos , Masculino
15.
Cancer Med ; 13(8): e7154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629258

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICI) have improved outcomes in a variety of adult cancers and are prescribed with increasing frequency across oncology. However, patterns of off-label use of ICI in pediatrics remain unclear. METHODS: This is a single-institution, retrospective cohort study evaluating off-label ICI use in pediatric and young adult patients with cancer treated at our institution from 2014 to 2022. Response was based on clinician assessment derived from clinical records. Immune-related adverse events (iRAEs) were classified according to CTCAE v5.0. RESULTS: We identified 50 unique patients treated with off-label ICI (28 with solid tumors, 20 with central nervous system (CNS) tumors, 2 with hematologic malignancies). At time of ICI initiation, only five patients (10%) had localized disease, and all but one patient was treated in the relapsed/refractory setting. All patients were treated with the FDA-approved weight-based dosing recommendations. Overall, there was disease control in 21 patients (42%), with best response including one complete response (melanoma), two partial responses (high-grade glioma, CNS nongerminomatous germ cell tumor), and 18 patients with stable disease. Forty-four patients (88%) eventually experienced disease progression. Among 22 patients (44%) experiencing iRAEs, 10 (20%) had a grade ≥3 irAE, 12 (24%) required corticosteroids, and 14 (28%) required ICI discontinuation. irAE occurrence was associated with significantly improved progression-free survival (HR 0.35; 95% CI: 0.18 to 0.68; p = 0.002) and overall survival (HR 0.33; 95% CI: 0.17 to 0.66; p = 0.002). CONCLUSIONS: At our institution, ICI was most commonly prescribed in the relapsed/refractory setting to patients with metastatic disease. The treatment was generally well-tolerated in the pediatric population. The overall response rate was low, and the majority of patients eventually experienced disease progression. A few patients, however, had durable treatment responses. Further studies are needed to identify which pediatric patients are most likely to benefit from ICI.


Assuntos
Glioma , Inibidores de Checkpoint Imunológico , Adulto Jovem , Humanos , Criança , Inibidores de Checkpoint Imunológico/efeitos adversos , Uso Off-Label , Estudos Retrospectivos , Glioma/tratamento farmacológico , Progressão da Doença
16.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673835

RESUMO

Virotherapy is one of the perspective technologies in the treatment of malignant neoplasms. Previously, we have developed oncolytic vaccinia virus VV-GMCSF-Lact and its high cytotoxic activity and antitumor efficacy against glioma was shown. In this work, using immortalized and patient-derived cells with different sensitivity to VV-GMCSF-Lact, we evaluated the cytotoxic effect of chemotherapy agents. Additionally, we studied the combination of VV-GMCSF-Lact with temozolomide which is the most preferred drug for glioma treatment. Experimental results indicate that first adding temozolomide and then the virus to the cells is inherently more efficient than dosing it in the reverse order. Testing these regimens in the U87 MG xenograft glioblastoma model confirmed this effect, as assessed by tumor growth inhibition index and histological analysis. Moreover, VV-GMCSF-Lact as monotherapy is more effective against U87 MG glioblastoma xenografts comparing temozolomide.


Assuntos
Glioma , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Terapia Viral Oncolítica , Vírus Oncolíticos , Temozolomida , Vaccinia virus , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Glioma/terapia , Glioma/tratamento farmacológico , Glioma/patologia , Vaccinia virus/genética , Vaccinia virus/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Terapia Combinada
17.
Oncol Res ; 32(5): 965-981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686055

RESUMO

Clinical data indicates that glioma patients have poor treatment outcomes and clinical prognosis. The role of olfactory signaling pathway-related genes (OSPRGs) in glioma has not been fully elucidated. In this study, we aimed to investigate the role and relationship between OSPRGs and glioma. Univariate and multivariate Cox regression analyses were performed to assess the relationship between OSPRGs and the overall survival of glioma based on public cohorts, and the target gene (G Protein Subunit Alpha L, GNAL) was screened. The association of GNAL expression with clinicopathological characteristics, gene mutation landscape, tumor immune microenvironment (TIME), deoxyribonucleic acid (DNA) methylation, and naris-occlusion controlled genes (NOCGs) was performed. Immunohistochemistry was used to evaluate GNAL level in glioma. Further analysis was conducted to evaluate the drug sensitivity, immunotherapy response, and functional enrichment of GNAL. GNAL was an independent prognostic factor, and patients with low GNAL expression have a poor prognosis. Expression of GNAL was closely associated with clinicopathological characteristics, DNA methylation, and several immune-related pathways. Immune infiltration analysis indicated that GNAL levels were negatively correlated with immune scores. GNAL low-expression group showed efficacy with anti-PD-1 therapy. Ten compounds with significantly different half-maximal inhibitory concentration (IC50) values between the GNAL high and low-expression groups were identified. Furthermore, its expression was associated with several immune cells, immune-related genes, and NOCGs. The expression of GNAL is closely associated with clinicopathological characteristics, TIME, and the response to therapeutic interventions, highlighting its potential as a prognostic biomarker for glioma.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Metilação de DNA , Glioma , Humanos , Glioma/patologia , Glioma/genética , Glioma/tratamento farmacológico , Glioma/imunologia , Glioma/mortalidade , Glioma/metabolismo , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino , Microambiente Tumoral , Pessoa de Meia-Idade , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica
18.
In Vivo ; 38(3): 1459-1464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688589

RESUMO

BACKGROUND/AIM: Gliomas are the most common and recalcitrant malignant primary brain tumors. All cancer types are addicted to methionine, which is a fundamental and general hallmark of cancer known as the Hoffman effect. Particularly glioma cells exhibit methionine addiction. Because of methionine addiction, [11C]-methionine positron emission tomography (MET-PET) is widely used for glioma imaging in clinical practice, which can monitor the extent of methionine addiction. Methionine restriction including recombinant methioninase (rMETase) and a low-methionine diet, has shown high efficacy in preclinical models of gliomas, especially in combination with chemotherapy. The aim of the present study was to determine the efficacy of methionine restriction with oral rMETase (o-rMETase) and a low-methionine diet, combined with radiation and temozolomide (TMZ), on a teenage female patient with high-grade glioma. CASE REPORT: A 16-year-old girl was diagnosed with high-grade glioma. Magnetic resonance imaging (MRI) showed a left temporal-lobe tumor with compression to the left lateral ventricle and narrowing of sulci in the left temporal lobe. After the start of methionine restriction with o-rMETase and a low-methionine diet, along with TMZ combined with radiotherapy, the tumor size shrunk at least 60%, with improvement in the left lateral ventricle and sulci. The patient's condition remains stable for 19 months without severe adverse effects. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with radiation and TMZ as first-line chemotherapy, were highly effective in a patient with high-grade glioma.


Assuntos
Liases de Carbono-Enxofre , Glioma , Metionina , Temozolomida , Humanos , Feminino , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/terapia , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico , Metionina/administração & dosagem , Adolescente , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Resultado do Tratamento , Gradação de Tumores , Tomografia por Emissão de Pósitrons , Proteínas Recombinantes/administração & dosagem , Terapia Combinada
19.
Sci Rep ; 14(1): 9878, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684848

RESUMO

Chronic stress is associated with major depressive disorder (MDD). Increased glucocorticoid levels caused by uncontrolled release through the hypothalamic‒pituitary‒adrenal (HPA) axis can cause changes in the lipid content of the cellular plasma membrane. These changes are suspected to be involved in the development of depressive disorders. St. John's wort extract (SJW) Ze 117 has long been used as an alternative to synthetic antidepressants. Part of its effect may be due to an effect on the cellular lipid composition and thus on the properties of plasma membranes and receptor systems embedded therein. In this study, we investigated the effect of Ze 117 on that of dexamethasone and simvastatin. Dexamethasone increases the fluidity of C6 cell plasma membranes. This effect is counteracted by administration of Ze 117. Here we demonstrate that this is not due to a change in C16:1/16:0 and C18:1/18:0 ratios in C6 cell fatty acids. On the other hand, Ze 117 increased the cellular cholesterol content by 42.5%, whereas dexamethasone reduced cholesterol levels similarly to simvastatin. Lowering cholesterol levels by dexamethasone or simvastatin resulted in decreased ß-arrestin 2 recruitment to the 5-HT1a receptor. This effect was counterbalanced by Ze 117, whereas the SJW extract had little effect on ß-arrestin 2 recruitment in non-stressed cells. Taken together, in C6 cells, Ze 117 induces changes in membrane fluidity through its effect on cellular cholesterol metabolism rather than by affecting fatty acid saturation. This effect is reflected in an altered signal transduction of the 5-HT1a receptor under Ze 117 administration. The current in vitro results support the hypothesis that Ze 117 addresses relevant parts of the cellular lipid metabolism, possibly explaining some of the antidepressant actions of Ze 117.


Assuntos
Colesterol , Dexametasona , Hypericum , Fluidez de Membrana , Extratos Vegetais , Sinvastatina , Hypericum/química , Extratos Vegetais/farmacologia , Colesterol/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Dexametasona/farmacologia , Linhagem Celular Tumoral , Sinvastatina/farmacologia , Glioma/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Animais , Ratos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Ácidos Graxos/metabolismo
20.
J Control Release ; 369: 325-334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565395

RESUMO

Challenges for glioma treatment with nanomedicines include physio-anatomical barriers (the blood-brain barrier and blood-brain tumor barrier), low drug loading capacity, and limited circulation time. Here, a red blood cell membrane-coated docetaxel drug nanocrystal (pV-RBCm-NC(DTX)), modified with pHA-VAP (pV) for all-stage targeting of glioma, was designed. The NC(DTX) core exhibited a high drug loading capacity but low in vivo stability, and the RBCm coating significantly enhanced the stability and prolonged in vivo circulation. Moreover, the Y-shaped targeting ligand pV was modified by a mild avidin-biotin interaction, which endowed RBCm-NC(DTX) with superior barrier-crossing ability and therapeutic efficacy. The integration of nanocrystal technology, cell membrane coating, and the avidin-biotin insertion method into this active targeting biomimetic formulation represents a promising drug delivery strategy for glioma.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Docetaxel , Membrana Eritrocítica , Glioma , Nanopartículas , Docetaxel/administração & dosagem , Docetaxel/farmacocinética , Docetaxel/química , Glioma/tratamento farmacológico , Animais , Nanopartículas/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/química , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Masculino , Sistemas de Liberação de Medicamentos , Avidina/administração & dosagem , Avidina/química , Humanos , Biotina/química , Biotina/administração & dosagem , Ratos Sprague-Dawley , Barreira Hematoencefálica/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA