Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.254
Filtrar
1.
Kidney Int ; 106(3): 408-418, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38801992

RESUMO

The mechanisms responsible for glomerular hemodynamic regulation with sodium-glucose co-transporter 2 (SGLT2) inhibitors in kidney disease due to type 2 diabetes remain unclear. Therefore, we investigated changes in glomerular hemodynamic function using an animal model of type 2 diabetes, treated with an SGLT2 inhibitor alone or in combination with a renin-angiotensin-aldosterone system inhibitor using male Zucker lean (ZL) and Zucker diabetic fatty (ZDF) rats. Afferent and efferent arteriolar diameter and single-nephron glomerular filtration rate (SNGFR) were evaluated in ZDF rats measured at 0, 30, 60, 90, and 120 minutes after the administration of a SGLT2 inhibitor (luseogliflozin). Additionally, we assessed these changes under the administration of the adenosine A1 receptor (A1aR) antagonist (8-cyclopentyl-1,3-dipropylxanthine), along with coadministration of luseogliflozin and an angiotensin II receptor blocker (ARB), telmisartan. ZDF rats had significantly increased SNGFR, and afferent and efferent arteriolar diameters compared to ZL rats, indicating glomerular hyperfiltration. Administration of luseogliflozin significantly reduced afferent vasodilatation and glomerular hyperfiltration, with no impact on efferent arteriolar diameter. Urinary adenosine levels were increased significantly in the SGLT2 inhibitor group compared to the vehicle group. A1aR antagonism blocked the effect of luseogliflozin on kidney function. Co-administration of the SGLT2 inhibitor and ARB decreased the abnormal expansion of glomerular afferent arterioles, whereas the efferent arteriolar diameter was not affected. Thus, regulation of afferent arteriolar vascular tone via the A1aR pathway is associated with glomerular hyperfiltration in type 2 diabetic kidney disease.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Taxa de Filtração Glomerular , Glomérulos Renais , Ratos Zucker , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/fisiopatologia , Glomérulos Renais/patologia , Glomérulos Renais/irrigação sanguínea , Taxa de Filtração Glomerular/efeitos dos fármacos , Ratos , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Xantinas/farmacologia , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Sorbitol/análogos & derivados
3.
Kidney360 ; 5(5): 771-782, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38523127

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk for kidney failure and are a key component of guideline-directed therapy for CKD. While SGLT2 inhibitors' ability to activate tubuloglomerular feedback and reduce hyperfiltration-mediated kidney injury is considered to be the central mechanism for kidney protection, recent data from experimental studies raise questions on the primacy of this mechanism. This review examines SGLT2 inhibitors' role in tubuloglomerular feedback and summarizes emerging evidence on following of SGLT2 inhibitors' other putative mechanisms for kidney protection: optimization of kidney's energy substrate utilization and delivery, regulation of autophagy and maintenance of cellular homeostasis, attenuation of sympathetic hyperactivity, and improvement in vascular health and microvascular function. It is imperative to examine the effect of SGLT2 inhibition on these different physiologic processes to help our understanding of mechanisms underpinning kidney protection with this important class of drugs.


Assuntos
Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Animais , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Glomérulos Renais/irrigação sanguínea , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Autofagia/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos
4.
J Med Case Rep ; 17(1): 549, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129918

RESUMO

BACKGROUND: Crescentic glomerulonephritis with syphilis infection is rare, and the mechanism underlying the formation of glomerular capillary wall damage-induced crescent has not been elucidated. CASE PRESENTATION: A 62-year-old Japanese male showed edema, eruption, and rapid deterioration of the renal function after an acute syphilis infection. A renal biopsy showed crescentic glomerulonephritis with C3 deposition in the glomerular capillary wall, and immunostaining for anti-Treponema pallidum antibody was weakly positive in some interstitium and one glomerulus. Electron microscopy revealed the presence of string-shaped structures in the glomerular capillary walls. After treatment with penicillin followed by prednisolone, the renal function and urinary abnormalities, including Treponema pallidum protein, disappeared. CONCLUSIONS: Crescentic glomerulonephritis associated with syphilis showed a string-shaped deposition in the glomerular capillary and urinary Treponema pallidum protein excretion, and was effectively treated with penicillin and prednisolone.


Assuntos
Glomerulonefrite , Sífilis , Humanos , Masculino , Pessoa de Meia-Idade , Doença Aguda , Glomerulonefrite/complicações , Glomerulonefrite/tratamento farmacológico , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/patologia , Penicilinas/uso terapêutico , Prednisolona/uso terapêutico , Sífilis/complicações , Sífilis/diagnóstico , Sífilis/tratamento farmacológico
5.
Intern Med ; 62(15): 2209-2214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532513

RESUMO

A 32-year-old man was admitted for the evaluation of proteinuria (5.69 g/day). A light microscopic examination showed markedly dilated glomerular capillary loops with vacuolated areas in many glomeruli, and vacuolated areas were seen on peritubular capillaries in the tubulointerstitium. When electron microscopy specimens prepared by pre-fixation with glutaraldehyde and post-fixation with osmium tetroxide were used for oil red staining, the deposition was confirmed on the affected areas. A genetic analysis of apoE showed that the lipoprotein glomerulopathy was due to apoE-Sendai (Arg145Pro, p.R163P) heterozygosity, which was found in not only the patient but also his mother and twin brother.


Assuntos
Apolipoproteínas E , Nefropatias , Masculino , Humanos , Adulto , Apolipoproteínas E/genética , Glomérulos Renais/irrigação sanguínea , Proteinúria , Heterozigoto
7.
Biofabrication ; 15(3)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36898152

RESUMO

Glomerulus-on-a-chip, as a promising alternative for drug nephrotoxicity evaluation, is attracting increasing attention. For glomerulus-on-a-chip, the more biomimetic the chip is, the more convincing the application of the chip is. In this study, we proposed a hollow fiber-based biomimetic glomerulus chip that can regulate filtration in response to blood pressure and hormone levels. On the chip developed here, bundles of hollow fibers were spherically twisted and embedded in designed Bowman's capsules to form spherical glomerular capillary tufts, with podocytes and endotheliocytes cultured on the outer and inner surfaces of the hollow fibers, respectively. We evaluated the morphology of cells, the viability of cells, and the metabolic function of cells in terms of glucose consumption and urea synthesis by comparing the results obtained under fluidic and static conditions, confirmed the barrier function of the endotheliocyte-fiber membrane-podocyte structure by monitoring the diffusion of fluorescein isothiocyanate (FITC)-labeled inulin, albumin and IgG, and, for the first time, achieved on-chip filtration regulation in response to the hormone atrial natriuretic peptide. In addition, the application of the chip in the evaluation of drug nephrotoxicity was also preliminarily demonstrated. This work offers insights into the design of a more physiologically similar glomerulus on a microfluidic chip.


Assuntos
Glomérulos Renais , Podócitos , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/fisiologia , Células Endoteliais
8.
J Am Soc Nephrol ; 33(9): 1641-1648, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853715

RESUMO

The glomerular vascular pole is the gate for the afferent and efferent arterioles and mesangial cells and a frequent location of peripolar cells with an unclear function. It has been studied in definitive detail for >30 years, and functionally interrogated in the context of signal transduction from the macula densa to the mesangial cells and afferent arteriolar smooth muscle cells from 10 to 20 years ago. Two recent discoveries shed additional light on the vascular pole, with possibly far-reaching implications. One, which uses novel serial section electron microscopy, reveals a shorter capillary pathway between the basins of the afferent and efferent arterioles. Such a pathway, when patent, may short-circuit the multitude of capillaries in the glomerular tuft. Notably, this shorter capillary route is enclosed within the glomerular mesangium. The second study used anti-Thy1.1-induced mesangiolysis and intravital microscopy to unequivocally establish in vivo the long-suspected contractile function of mesangial cells, which have the ability to change the geometry and curvature of glomerular capillaries. These studies led me to hypothesize the existence of a glomerular perfusion rheostat, in which the shorter path periodically fluctuates between being more and less patent. This action reduces or increases blood flow through the entire glomerular capillary tuft. A corollary is that the GFR is a net product of balance between the states of capillary perfusion, and that deviations from the balanced state would increase or decrease GFR. Taken together, these studies may pave the way to a more profound understanding of glomerular microcirculation under basal conditions and in progression of glomerulopathies.


Assuntos
Mesângio Glomerular , Glomérulos Renais , Microcirculação , Glomérulos Renais/irrigação sanguínea , Arteríolas , Túbulos Renais
9.
Microscopy (Oxf) ; 71(5): 289-296, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-35778971

RESUMO

Sandwich freezing is a method of rapid freezing by sandwiching specimens between two metal disks and has been used for observing exquisite the close-to-native ultrastructure of living yeast and bacteria. Recently, this method has been found to be useful for preserving cell images of glutaraldehyde-fixed animal and human tissues. In the present study, this method was applied to observe the fine structure of mouse glomerular capillary loops. Morphometry was then performed, and the results were compared with the data obtained by an in vivo cryotechnique, which may provide the closest ultrastructure to the native state of living tissue. The results show that the ultrastructure of glomerular capillary loops obtained by sandwich freezing-freeze-substitution after glutaraldehyde fixation was close to that of the ultrastructure obtained by in vivo cryotechnique not only in the quality of cell image but also in quantitative morphometry. They indicate that the ultrastructure obtained by sandwich freezing-freeze-substitution after glutaraldehyde fixation may more closely reflect the living state of cells and tissues than conventional chemical fixation and dehydration at room temperature and conventional rapid freezing-freeze-substitution of excised tissues without glutaraldehyde fixation. Sandwich freezing-freeze-substitution techniques should be used routinely as a standard method for observing the close-to-native ultrastructure of biological specimens.


Assuntos
Substituição ao Congelamento , Glomérulos Renais , Animais , Capilares/ultraestrutura , Substituição ao Congelamento/métodos , Glutaral , Técnicas Histológicas , Humanos , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/ultraestrutura , Camundongos
10.
Kidney360 ; 3(4): 700-713, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35721616

RESUMO

Background: The renal glomerulus is a tuft of capillaries in Bowman's capsule and functions as a blood-filtration unit in the kidney. The unique glomerular capillary tuft structure is relatively conserved through vertebrate species. However, the morphogenetic mechanism governing glomerular capillary tuft formation remains elusive. Methods: To clarify how glomerular capillaries develop, we analyzed glomerular capillary formation in the zebrafish pronephros by exploiting fluorescence-based bio-imaging technology. Results: During glomerular capillary formation in the zebrafish pronephros, endothelial cells initially sprouted from the dorsal aorta and formed the capillaries surrounding the bilateral glomerular primordia in response to podocyte progenitor-derived vascular endothelial growth factor-A. After formation, blood flow immediately occurred in the glomerular primordia-associated capillaries, while in the absence of blood flow, they were transformed into sheet-like structures enveloping the glomerular primordia. Subsequently, blood flow induced formation of Bowman's space at the lateral sides of the bilateral glomerular primordia. Concomitantly, podocyte progenitors enveloped their surrounding capillaries while moving toward and coalescing at the midline. These capillaries then underwent extensive expansion and remodeling to establish a functional glomerular capillary tuft. However, stopping blood flow inhibited the remodeling of bilateral glomerular primordia, which therefore remained unvascularized but covered by the vascular sheets. Conclusions: We delineated the morphogenetic processes governing glomerular capillary tuft formation in the zebrafish pronephros and demonstrated crucial roles of blood flow in its formation. Blood flow maintains tubular structures of the capillaries surrounding the glomerular primordia and promotes glomerular incorporation of these vessels by inducing the remodeling of glomerular primordia.


Assuntos
Pronefro , Peixe-Zebra , Animais , Células Endoteliais , Glomérulos Renais/irrigação sanguínea , Pronefro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Elife ; 112022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35522041

RESUMO

Internephron interaction is fundamental for kidney function. Earlier studies have shown that nephrons signal to each other, synchronize over short distances, and potentially form large synchronized clusters. Such clusters would play an important role in renal autoregulation, but due to the technological limitations, their presence is yet to be confirmed. In the present study, we introduce an approach for high-resolution laser speckle imaging of renal blood flow and apply it to estimate the frequency and phase differences in rat kidney microcirculation under different conditions. The analysis unveiled the spatial and temporal evolution of synchronized blood flow clusters of various sizes, including the formation of large (>90 vessels) and long-lived clusters (>10 periods) locked at the frequency of the tubular glomerular feedback mechanism. Administration of vasoactive agents caused significant changes in the synchronization patterns and, thus, in nephrons' co-operative dynamics. Specifically, infusion of vasoconstrictor angiotensin II promoted stronger synchronization, while acetylcholine caused complete desynchronization. The results confirm the presence of the local synchronization in the renal microcirculatory blood flow and that it changes depending on the condition of the vascular network and the blood pressure, which will have further implications for the role of such synchronization in pathologies development.


Assuntos
Rim , Circulação Renal , Animais , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/fisiologia , Microcirculação , Néfrons/fisiologia , Ratos , Circulação Renal/fisiologia
12.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793332

RESUMO

Alport syndrome (AS) is a genetic disorder caused by mutations in type IV collagen that lead to defective glomerular basement membrane, glomerular filtration barrier (GFB) damage, and progressive chronic kidney disease. While the genetic basis of AS is well known, the molecular and cellular mechanistic details of disease pathogenesis have been elusive, hindering the development of mechanism-based therapies. Here, we performed intravital multiphoton imaging of the local kidney tissue microenvironment in a X-linked AS mouse model to directly visualize the major drivers of AS pathology. Severely distended glomerular capillaries and aneurysms were found accompanied by numerous microthrombi, increased glomerular endothelial surface layer (glycocalyx) and immune cell homing, GFB albumin leakage, glomerulosclerosis, and interstitial fibrosis by 5 months of age, with an intermediate phenotype at 2 months. Renal histology in mouse or patient tissues largely failed to detect capillary aberrations. Treatment of AS mice with hyaluronidase or the ACE inhibitor enalapril reduced the excess glomerular endothelial glycocalyx and blocked immune cell homing and GFB albumin leakage. This study identified central roles of glomerular mechanical forces and endothelial and immune cell activation early in AS, which could be therapeutically targeted to reduce mechanical strain and local tissue inflammation and improve kidney function.


Assuntos
Capilares , Microscopia Intravital , Glomérulos Renais , Nefrite Hereditária , Animais , Capilares/diagnóstico por imagem , Capilares/imunologia , Capilares/patologia , Microambiente Celular/fisiologia , Modelos Animais de Doenças , Humanos , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/diagnóstico por imagem , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Masculino , Camundongos , Nefrite Hereditária/diagnóstico por imagem , Nefrite Hereditária/patologia
13.
Biochem Biophys Res Commun ; 587: 1-8, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34856423

RESUMO

BACKGROUND: Accidental hypothermia (AH) sometimes leads to coagulation disorder, especially in severe AH. We previously demonstrated that intrasplenic platelet activation caused aberrant hemostasis and thrombus formation after rewarming in a murine AH model. However, no study has focused on the appropriate management of platelets causing coagulation activation after rewarming of AH. We investigated whether or not recombinant soluble thrombomodulin (rTM) can suppress thrombosis formation after rewarming using a rat AH model. METHODS: Wistar rats were exposed to an ambient temperature of -20 °C under general anesthesia until their rectal temperature decreased to 26 °C. The Hypo group rats (n = 5) were immediately euthanized, while the Hypo/Re group (n = 5) and rTM group rats (n = 5), which were administered rTM (1 mg/kg) via the tail vein, were rewarmed until the rectal temperature returned to 34 °C and then euthanized 6 h later. Tissue and blood samples were collected from all rats for histopathological and coagulation analyses at euthanasia. RESULTS: There was no significant change in the D-dimer level in the Hypo group rats, while the D-dimer level was significantly elevated at 6 h after rewarming in the Hypo/Re group rats (P = 0.015), and histopathology detected both fibrin and platelets in the renal glomerulus. However, the rTM group rats did not show any elevation of the D-dimer levels at 6 h after rewarming, and no fibrin was noted on histopathology. CONCLUSIONS: rTM may be useful as an appropriate anticoagulant in cases of aberrant hemostasis after rewarming of AH.


Assuntos
Anticoagulantes/farmacologia , Plaquetas/efeitos dos fármacos , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Hipotermia/complicações , Trombomodulina/administração & dosagem , Trombose/prevenção & controle , Animais , Biomarcadores/metabolismo , Plaquetas/metabolismo , Plaquetas/patologia , Modelos Animais de Doenças , Fibrina/química , Fibrina/metabolismo , Hipotermia/sangue , Hipotermia/fisiopatologia , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Ativação Plaquetária/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia , Reaquecimento/efeitos adversos , Solubilidade , Baço/irrigação sanguínea , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/patologia , Trombose/sangue , Trombose/etiologia , Trombose/fisiopatologia
14.
Am J Physiol Renal Physiol ; 321(4): F548-F557, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486399

RESUMO

Chronic kidney disease (CKD) is characterized by the progressive functional loss of nephrons and hypertension (HTN). Some antihypertensive regimens attenuate the progression of CKD (blockers of the renin-angiotensin system). Although studies have suggested that calcium channel blocker (CCB) therapy mitigates the decline in renal function in humans with essential HTN, there are few long-term clinical studies that have determined the impact of CCBs in patients with hypertensive CKD. Dihydropyridine (DHP) or L-type CCBs preferentially vasodilate the afferent arteriole and have been associated with glomerular HTN and increases in proteinuria in animal models with low renal function. Small clinical studies in vulnerable populations with renal disease such as African Americans, children, and diabetics have also suggested that DHP CCBs exacerbate glomerular injury, which questions the renoprotective effect of this class of antihypertensive drug. We used an established integrative mathematical model of human physiology, HumMod, to test the hypothesis that DHP CCB therapy exacerbates pressure-induced glomerular injury in hypertensive CKD. Over a simulation of 3 yr, CCB therapy reduced mean blood pressure by 14-16 mmHg in HTN both with and without CKD. Both impaired tubuloglomerular feedback and low baseline renal function exacerbated glomerular pressure, glomerulosclerosis, and the decline in renal function during L-type CCB treatment. However, simulating CCB therapy that inhibited both L- and T-type calcium channels increased efferent arteriolar vasodilation and alleviated glomerular damage. These simulations support the evidence that DHP (L-type) CCBs potentiate glomerular HTN during CKD and suggest that T/L-type CCBs are valuable in proteinuric renal disease treatment.NEW & NOTEWORTHY Our physiological model replicates clinical trial results and provides unique insights into possible mechanisms that play a role in glomerular injury and hypertensive kidney disease progression during chronic CCB therapy. Specifically, these simulations predict the temporal changes in renal function with CCB treatment and demonstrate important roles for tubuloglomerular feedback and efferent arteriolar conductance in the control of chronic kidney disease progression.


Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo T/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Glomérulos Renais/irrigação sanguínea , Modelos Biológicos , Insuficiência Renal Crônica/tratamento farmacológico , Vasodilatadores/uso terapêutico , Anti-Hipertensivos/efeitos adversos , Bloqueadores dos Canais de Cálcio/efeitos adversos , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Simulação por Computador , Humanos , Hipertensão/diagnóstico , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Vasodilatadores/efeitos adversos
15.
Sci Rep ; 11(1): 18937, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556708

RESUMO

In kidney transplantation, microthrombi and fibrin deposition may lead to local perfusion disorders and subsequently poor initial graft function. Microthrombi are often regarded as donor-derived. However, the incidence, time of development, and potential difference between living donor kidneys (LDK) and deceased donor kidneys(DDK), remains unclear. Two open-needle biopsies, taken at preimplantation and after reperfusion, were obtained from 17 LDK and 28 DDK transplanted between 2005 and 2008. Paraffin-embedded sections were immunohistochemically stained with anti-fibrinogen antibody. Fibrin deposition intensity in peritubular capillaries(PTC) and glomeruli was categorized as negative, weak, moderate or strong and the number of microthrombi/mm2 was quantified. Reperfusion biopsies showed more fibrin deposition (20% to 100% moderate/strong, p < 0.001) and more microthrombi/mm2 (0.97 ± 1.12 vs. 0.28 ± 0.53, p < 0.01) than preimplantation biopsies. In addition, more microthrombi/mm2 (0.38 ± 0.61 vs. 0.09 ± 0.22, p = 0.02) and stronger fibrin intensity in glomeruli (28% vs. 0%, p < 0.01) and PTC (14% vs. 0%, p = 0.02) were observed in preimplantation DDK than LDK biopsies. After reperfusion, microthrombi/mm2 were comparable (p = 0.23) for LDK (0.09 ± 0.22 to 0.76 ± 0.49, p = 0.03) and DDK (0.38 ± 0.61 to 0.90 ± 1.11, p = 0.07). Upon reperfusion, there is an aggravation of microthrombus formation and fibrin deposition within the graft. The prominent increase of microthrombi in LDK indicates that they are not merely donor-derived.


Assuntos
Fibrina/análise , Transplante de Rim/efeitos adversos , Complicações Pós-Operatórias/epidemiologia , Trombose/epidemiologia , Adulto , Aloenxertos/irrigação sanguínea , Aloenxertos/patologia , Biópsia , Feminino , Fibrina/metabolismo , Sobrevivência de Enxerto , Heparina/administração & dosagem , Humanos , Cuidados Intraoperatórios/métodos , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/patologia , Transplante de Rim/métodos , Transplante de Rim/estatística & dados numéricos , Doadores Vivos/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Estudos Prospectivos , Trombose/diagnóstico , Trombose/etiologia , Trombose/prevenção & controle , Transplante Homólogo/efeitos adversos , Transplante Homólogo/métodos , Transplante Homólogo/estatística & dados numéricos
16.
J Diabetes Investig ; 12(12): 2124-2125, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34469624

RESUMO

The key physiological parameters that determine glomerular filtration rate levels are renal plasma flow, filtration fraction, intraglomerular pressure, and balance between afferent and efferent glomerular arteriolar resistance. The evaluation of the balance between afferent and efferent glomerular arteriolar resistance might be useful for the classification of diabetic kidney disease.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Glomérulos Renais/irrigação sanguínea , Insuficiência Renal/fisiopatologia , Animais , Arteríolas/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/etiologia , Taxa de Filtração Glomerular , Humanos , Rim/fisiopatologia , Insuficiência Renal/etiologia , Resistência Vascular
17.
J Am Soc Nephrol ; 32(9): 2255-2272, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34341180

RESUMO

BACKGROUND: Kidney function requires continuous blood filtration by glomerular capillaries. Disruption of glomerular vascular development or maintenance contributes to the pathogenesis of kidney diseases, but the signaling events regulating renal endothelium development remain incompletely understood. Here, we discovered a novel role of Slit2-Robo signaling in glomerular vascularization. Slit2 is a secreted polypeptide that binds to transmembrane Robo receptors and regulates axon guidance as well as ureteric bud branching and angiogenesis. METHODS: We performed Slit2-alkaline phosphatase binding to kidney cryosections from mice with or without tamoxifen-inducible Slit2 or Robo1 and -2 deletions, and we characterized the phenotypes using immunohistochemistry, electron microscopy, and functional intravenous dye perfusion analysis. RESULTS: Only the glomerular endothelium, but no other renal endothelial compartment, responded to Slit2 in the developing kidney vasculature. Induced Slit2 gene deletion or Slit2 ligand trap at birth affected nephrogenesis and inhibited vascularization of developing glomeruli by reducing endothelial proliferation and migration, leading to defective cortical glomerular perfusion and abnormal podocyte differentiation. Global and endothelial-specific Robo deletion showed that both endothelial and epithelial Robo receptors contributed to glomerular vascularization. CONCLUSIONS: Our study provides new insights into the signaling pathways involved in glomerular vascular development and identifies Slit2 as a potential tool to enhance glomerular angiogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Glomérulos Renais/irrigação sanguínea , Néfrons/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética , Animais , Animais Recém-Nascidos , Glomérulos Renais/crescimento & desenvolvimento , Glomérulos Renais/patologia , Camundongos , Néfrons/patologia , Transdução de Sinais , Proteínas Roundabout
18.
J Am Heart Assoc ; 10(15): e019437, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34308664

RESUMO

Background Proteinuria and glomerular segmental fibrosis are inevitable complications of diabetic nephropathy though their mechanisms are poorly understood. Understanding the clinical characteristics and pathogenesis of proteinuria and glomerular segmental fibrosis in diabetic nephropathy is, therefore, urgently needed for patient management of this severe disease. Methods and Results Diabetes mellitus was induced in podocyte-specific glucocorticoid receptor knockout (GRPKO) mice and control littermates by administration of streptozotocin. Primary podocytes were isolated and subjected to analysis of Wnt signaling and fatty acid metabolism. Conditioned media from primary podocytes was transferred to glomerular endothelial cells. Histologic analysis of kidneys from diabetic GRPKO mice showed worsened fibrosis, increased collagen deposition, and glomerulomegaly indicating severe glomerular fibrosis. Higher expression of transforming growth factor-ßR1 and ß-catenin and suppressed expression of carnitine palmitoyltransferase 1A in nephrin-positive cells were found in the kidneys of diabetic GRPKO mice. Podocytes isolated from diabetic GRPKO mice demonstrated significantly higher profibrotic gene expression and suppressed fatty acid oxidation compared with controls. Administration of a Wnt inhibitor significantly improved the fibrotic features in GRPKO mice. The glomerular endothelium of diabetic GRPKO mice demonstrated the features of endothelial-to-mesenchymal transition. Moreover, endothelial cells treated with conditioned media from podocytes lacking GR showed increased expression of α-smooth muscle actin, transforming growth factor-ßR1 and ß-catenin levels. Conclusions These data demonstrate that loss of podocyte GR leads to upregulation of Wnt signaling and disruption in fatty acid metabolism. Podocyte-endothelial cell crosstalk, mediated through GR, is important for glomerular homeostasis, and its disruption likely contributes to diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glomérulos Renais/irrigação sanguínea , Podócitos/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal , Ácidos Graxos/metabolismo , Fibrose , Regulação da Expressão Gênica , Homeostase , Masculino , Camundongos Knockout , Podócitos/patologia , Receptores de Glucocorticoides/genética , Estreptozocina , Via de Sinalização Wnt
19.
Microcirculation ; 28(7): e12721, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192389

RESUMO

OBJECTIVE: Chronic glomerular hypertension is associated with glomerular injury and sclerosis; however, the mechanism by which increases in pressure damage glomerular podocytes remains unclear. We tested the hypothesis that increases in glomerular pressure may deleteriously affect podocyte structural integrity by increasing the strain of the glomerular capillary walls, and that glomerular capillary wall strain may play a significant role in the perpetuation of glomerular injury in disease states that are associated with glomerular hypertension. METHODS: We developed an anatomically accurate mathematical model of a compliant, filtering rat glomerulus to quantify the strain of the glomerular capillary walls in a remnant glomerulus of the 5/6-nephrectomized rat model of chronic kidney disease. In terms of estimating the mechanical stresses and strains in the glomerular capillaries, this mathematical model is a substantial improvement over previous models which do not consider pressure-induced alterations in glomerular capillary diameters in distributing plasma and erythrocytes throughout the network. RESULTS: Using previously reported data from experiments measuring the change of glomerular volume as a function of perfusion pressure, we estimated the Young's modulus of the glomerular capillary walls in both control and 5/6-nephrectomized conditions. We found that in 5/6-nephrectomized conditions, the Young's modulus increased to 8.6 MPa from 7.8 MPa in control conditions, but the compliance of the capillaries increased in 5/6-nephrectomized conditions due to a 23.3% increase in the baseline glomerular capillary diameters. We found that glomerular capillary wall strain was increased approximately threefold in 5/6-nephrectomized conditions over control, which may deleteriously affect both mesangial cells and podocytes. The magnitudes of strain in model simulations of 5/6-nephrectomized conditions were consistent with magnitudes of strain that elicit podocyte hypertrophy and actin cytoskeleton reorganization in vitro. CONCLUSIONS: Our findings indicate that glomerular capillary wall strain may deleteriously affect podocytes directly, as well as act in concert with other mechanical changes and environmental factors inherent to the in vivo setting to potentiate glomerular injury in severe renoprival conditions.


Assuntos
Capilares , Glomérulos Renais , Animais , Módulo de Elasticidade , Glomérulos Renais/irrigação sanguínea , Ratos , Estresse Mecânico
20.
Clin Exp Nephrol ; 25(11): 1193-1202, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34115234

RESUMO

BACKGROUND: Inhibitors of vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) signaling, such as bevacizumab (Bmab), are used for the treatment of various advanced cancers. However, these inhibitors induce renal thrombotic microangiopathy (TMA). Recently, two European cohort studies showed a distinctive histopathological pseudothrombotic pattern different from TMA in Bmab-treated patients. METHODS: We analyzed 9 renal biopsies from proteinuric cancer patients treated with VEGF-VEGFR2 inhibitors in our Japanese cohort. Clinical and laboratory features were also assessed in these patients. RESULTS: All 9 patients had moderate to heavy proteinuria with normal or slightly elevated serum creatinine levels. On light microscopy, a patchy pattern of hemispherical/spherical lesions along glomerular capillary walls was a characteristic finding. On immunofluorescence microscopy, staining for immunoglobulins (IgM dominant) at varying intensities was observed mainly along glomerular capillary walls. Especially, hemispherical/spherical positive staining for immunoglobulins was a characteristic pattern. Immunohistochemical studies showed positive staining for immunoglobulins and negative staining for CD61-positive platelets in capillary hemispherical/spherical lesions and positive VEGF staining in podocytes. On electron microscopy, variably electron-dense material in dilated glomerular capillaries and partial effacement of podocyte foot processes were observed. After the withdrawal of VEGF-VEGFR2 inhibitors, proteinuria improved without any specific treatment in 8 patients. CONCLUSIONS: Histopathological findings in our patients treated with VEGF-VEGFR2 inhibitors were consistent with those observed in the recently described new form of Bmab-associated hyaline occlusive glomerular microangiopathy. This form should be considered in proteinuric cancer patients treated with VEGF-VEGFR2 inhibitors. Discontinuing VEGF-VEGFR2 inhibitors may lead to improvement of glomerular microangiopathy induced by these drugs.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Bevacizumab/efeitos adversos , Capilares/patologia , Nefropatias/patologia , Glomérulos Renais/patologia , Microangiopatias Trombóticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Plaquetas/metabolismo , Capilares/metabolismo , Feminino , Humanos , Hialina/metabolismo , Imunoglobulinas/metabolismo , Integrina beta3/metabolismo , Japão , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Glomérulos Renais/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Podócitos/metabolismo , Proteinúria/etiologia , Transdução de Sinais/efeitos dos fármacos , Microangiopatias Trombóticas/induzido quimicamente , Microangiopatias Trombóticas/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...