Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172.075
Filtrar
1.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822901

RESUMO

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Assuntos
Movimento Celular , Exossomos , Glucose , Células Endoteliais da Veia Umbilical Humana , Proteínas de Membrana , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Cicatrização , Humanos , Exossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Transdução de Sinais , Ubiquitinação , Neovascularização Fisiológica , Células Cultivadas , Células-Tronco/metabolismo , Fatores de Transcrição
2.
Food Res Int ; 188: 114454, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823832

RESUMO

The Amadori rearrangement products are an important flavor precursor in the Maillard reaction. Its thermal decomposition products usually contribute good flavors in foods. Therefore, investigating the thermal breakdown of Amadori products is significant for understanding the flavor forming mechanism in the Maillard reaction. In this study, volatiles from thermal decomposition of Amadori products in cysteine and glucose Maillard reaction was investigated by a thermal desorption cryo-trapping system combined with gas chromatography-mass spectrometry (GC-MS). A total of 60 volatiles were detected and identified. Meanwhile, the forming mechanism of 2-methylthiophene, a major decomposition product, was also investigated by using density functional theory. Seventeen reactions, 12 transition states, energy barrier and rate constant of each reaction were finally obtained. Results reveal that it is more likely for Amadori products of cysteine and glucose to undergo decomposition under neutral or weakly alkaline conditions.


Assuntos
Cisteína , Cromatografia Gasosa-Espectrometria de Massas , Glucose , Reação de Maillard , Compostos Orgânicos Voláteis , Cisteína/química , Glucose/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Teoria da Densidade Funcional , Temperatura Alta
3.
Artigo em Inglês | MEDLINE | ID: mdl-38833293

RESUMO

Strain LMG 33000T was isolated from a Bombus lapidarius gut sample. It shared the highest percentage 16S rRNA sequence identity, average amino acid identity, and amino acid identity of conserved genes with Convivina intestini LMG 28291T (95.86 %, 69.9 and 76.2 %, respectively), and the highest percentage OrthoANIu value with Fructobacillus fructosus DSM 20349T (71.4 %). Phylogenomic analyses by means of 107 or 120 conserved genes consistently revealed Convivina as nearest neighbour genus. The draft genome of strain LMG 33000T was 1.44 Mbp in size and had a DNA G+C content of 46.1 mol%. Genomic and physiological analyses revealed that strain LMG 33000T was a typical obligately fructophilic lactic acid bacterium that lacked the adhE and aldh genes and that did not produce ethanol during glucose or fructose metabolism. In contrast, Convivina species have the adhE and aldh genes in their genomes and produced ethanol from glucose and fructose metabolism, which is typical for heterofermentative lactic acid bacteria. Moreover, strain LMG 33000T exhibited catalase activity, an unusual characteristic among lactic acid bacteria, that is not shared with Convivina species. Given its position in the phylogenomic trees, and the difference in genomic percentage G+C content and in physiological and metabolic characteristics between strain LMG 33000T and Convivina species, we considered it most appropriate to classify strain LMG 33000T into a novel genus and species within the Lactobacillaceae family for which we propose the name Eupransor demetentiae gen. nov., sp. nov., with LMG 33000T (=CECT 30958T) as the type strain.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , RNA Ribossômico 16S/genética , Abelhas/microbiologia , DNA Bacteriano/genética , Frutose/metabolismo , Ácido Láctico/metabolismo , Glucose/metabolismo , Etanol/metabolismo
4.
Anal Chim Acta ; 1312: 342761, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834276

RESUMO

BACKGROUND: Diabetes is a significant health threat, with its prevalence and burden increasing worldwide indicating its challenge for global healthcare management. To decrease the disease severity, the diabetic patients are recommended to regularly check their blood glucose levels. The conventional finger-pricking test possesses some drawbacks, including painfulness and infection risk. Nowadays, smartphone has become a part of our lives offering an important benefit in self-health monitoring. Thus, non-invasive wearable sweat glucose sensor connected with a smartphone readout is of interest for real-time glucose detection. RESULTS: Wearable sweat glucose sensing device is fabricated for self-monitoring of diabetes. This device is designed as a body strap consisting of a sensing strip and a portable potentiostat connected with a smartphone readout via Bluetooth. The sensing strip is modified by carbon nanotubes (CNTs)-cellulose nanofibers (CNFs), followed by electrodeposition of Prussian blue. To preserve the activity of glucose oxidase (GOx) immobilized on the modified sensing strip, chitosan is coated on the top layer of the electrode strip. Herein, machine learning is implemented to correlate between the electrochemical results and the nanomaterial content along with deposition cycle of prussian blue, which provide the highest current response signal. The optimized regression models provide an insight, establishing a robust framework for design of high-performance glucose sensor. SIGNIFICANCE: This wearable glucose sensing device connected with a smartphone readout offers a user-friendly platform for real-time sweat glucose monitoring. This device provides a linear range of 0.1-1.5 mM with a detection limit of 0.1 mM that is sufficient enough for distinguishing between normal and diabetes patient with a cut-off level of 0.3 mM. This platform might be an alternative tool for improving health management for diabetes patients.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Aprendizado de Máquina , Smartphone , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Técnicas Biossensoriais/instrumentação , Diabetes Mellitus/diagnóstico , Glucose/análise , Nanotubos de Carbono/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Técnicas Eletroquímicas/instrumentação
5.
Sci Rep ; 14(1): 12869, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834614

RESUMO

In this work, the effect of moderate electromagnetic fields (2.5, 10, and 15 mT) was studied using an immersed coil inserted directly into a bioreactor on batch cultivation of yeast under both aerobic and anaerobic conditions. Throughout the cultivation, parameters, including CO2 levels, O2 saturation, nitrogen consumption, glucose uptake, ethanol production, and yeast growth (using OD 600 measurements at 1-h intervals), were analysed. The results showed that 10 and 15 mT magnetic fields not only statistically significantly boosted and sped up biomass production (by 38-70%), but also accelerated overall metabolism, accelerating glucose, oxygen, and nitrogen consumption, by 1-2 h. The carbon balance analysis revealed an acceleration in ethanol and glycerol production, albeit with final concentrations by 22-28% lower, with a more pronounced effect in aerobic cultivation. These findings suggest that magnetic fields shift the metabolic balance toward biomass formation rather than ethanol production, showcasing their potential to modulate yeast metabolism. Considering coil heating, opting for the 10 mT magnetic field is preferable due to its lower heat generation. In these terms, we propose that magnetic field can be used as novel tool to increase biomass yield and accelerate yeast metabolism.


Assuntos
Biomassa , Etanol , Fermentação , Campos Magnéticos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Aerobiose , Anaerobiose , Etanol/metabolismo , Glucose/metabolismo , Reatores Biológicos/microbiologia , Glicerol/metabolismo , Oxigênio/metabolismo , Nitrogênio/metabolismo
6.
PeerJ ; 12: e17467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827301

RESUMO

Dye-decolorizing peroxidases (DyPs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similarly to oxygenases. DyPs utilize hydrogen peroxide (H2O2) both as an electron acceptor co-substrate and as an electron donor when oxidized to their respective radicals. The production of both DyPs and lignin-modifying enzymes (LMEs) is regulated by the carbon source, although less readily metabolizable carbon sources do improve LME production. The present study analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyP activity, and the expression of three Pleos-dyp genes (Pleos-dyp1, Pleos-dyp2 and Pleos-dyp4), via real-time RT-qPCR, monitoring the time course of P. ostreatus cultures supplemented with either glycerol or glucose and Acetyl Yellow G (AYG) dye. The results obtained indicate that glycerol negatively affects P. ostreatus growth, giving a biomass production of 5.31 and 5.62 g/L with respective growth rates (micra; m) of 0.027 and 0.023 h-1 for fermentations in the absence and presence of AYG dye. In contrast, respective biomass production levels of 7.09 and 7.20 g/L and growth rates (µ) of 0.033 and 0.047 h-1 were observed in equivalent control fermentations conducted with glucose in the absence and presence of AYG dye. Higher DyP activity levels, 4,043 and 4,902 IU/L, were obtained for fermentations conducted on glycerol, equivalent to 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as the carbon source. The differential regulation of the DyP-encoding genes in P. ostreatus were explored, evaluating the carbon source, the growth phase, and the influence of the dye. The global analysis of the expression patterns throughout the fermentation showed the up- and down- regulation of the three Pleos-dyp genes evaluated. The highest induction observed for the control media was that found for the Pleos-dyp1 gene, which is equivalent to an 11.1-fold increase in relative expression (log2) during the stationary phase of the culture (360 h), and for the glucose/AYG media was Pleos-dyp-4 with 8.28-fold increase after 168 h. In addition, glycerol preferentially induced the Pleos-dyp1 and Pleos-dyp2 genes, leading to respective 11.61 and 4.28-fold increases after 144 h. After 360 and 504 h of culture, 12.86 and 4.02-fold increases were observed in the induction levels presented by Pleos-dyp1 and Pleos-dyp2, respectively, in the presence of AYG. When transcription levels were referred to those found in the control media, adding AYG led to up-regulation of the three dyp genes throughout the fermentation. Contrary to the fermentation with glycerol, where up- and down-regulation was observed. The present study is the first report describing the effect of a less-metabolizable carbon source, such as glycerol, on the differential expression of DyP-encoding genes and their corresponding activity.


Assuntos
Corantes , Glicerol , Pleurotus , Glicerol/metabolismo , Glicerol/farmacologia , Pleurotus/genética , Pleurotus/enzimologia , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Corantes/metabolismo , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Peroxidases/genética , Peroxidases/metabolismo , Glucose/metabolismo
7.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 78-84, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836678

RESUMO

Macrophages in the tumor microenvironment can polarize into M1 or M2 forms, with M2 macrophages (M2φ) promoting tumor growth and metastasis in cervical squamous cell carcinoma (CESC). This study explored the effects of M2φ on CESC metabolic reprogramming both in vitro and in vivo. Results showed that M2φ secreted CXCL1, which significantly increased CESC migration and metabolic regulation. Further experiments revealed that CXCL1 upregulated KDM6B to enhance PFKFB2 transcriptional activity, thus regulating CESC glucose metabolism. Transcriptome sequencing screened 5 upregulated genes related to glycolysis, with PFKFB2 showing the most significant increase in cells treated with rCXCL1. Dual-luciferase reporter assay confirmed that rCXCL1 enhances PFKFB2 transcriptional activity. Bioinformatics analysis revealed a high correlation between expressions of KDM6B and PFKFB2 in CESC. Mechanistic experiments demonstrated that KDM6B inhibited H3K27me3 modification to activate PFKFB2 transcriptional expression. In conclusion, M2φ secreted CXCL1 to promote CESC cell migration and invasion, and CXCL1 activated KDM6B expression in CESC cells, inhibiting H3K27 protein methylation modification, and enhanced PFKFB2 transcriptional activity to regulate CESC glucose metabolism. These results provided new insights into the complex interplay between the immune system and cancer metabolism, which may have broader implications for understanding and treating other types of cancer.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Quimiocina CXCL1 , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji , Macrófagos , Fosfofrutoquinase-2 , Neoplasias do Colo do Útero , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Humanos , Feminino , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Macrófagos/metabolismo , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Movimento Celular/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Linhagem Celular Tumoral , Camundongos , Microambiente Tumoral/genética , Glucose/metabolismo , Camundongos Nus , Glicólise/genética , Reprogramação Metabólica
8.
J Biomed Sci ; 31(1): 49, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735943

RESUMO

BACKGROUND: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation. METHODS: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45- MSCs. RESULTS: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD+), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD+, with oral NAD+ precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days. CONCLUSIONS: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD+-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.


Assuntos
Glucose , Células-Tronco Mesenquimais , Mitocôndrias , NAD , Osteogênese , Sirtuína 1 , Células-Tronco Mesenquimais/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Osteogênese/fisiologia , Camundongos , Humanos , Animais , Mitocôndrias/metabolismo , Glucose/metabolismo , NAD/metabolismo , Diferenciação Celular
9.
Pak J Pharm Sci ; 37(1): 33-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38741398

RESUMO

The objective of this research is to assess how salvianolate impacts inflammation and oxidative stress in a laboratory setting, as well as to investigate the underlying mechanisms. HK-2 cells were subjected to different treatments, including normal glucose, mannitol, high glucose and high glucose plus salvianolate. Cell proliferation, death, MDA levels, IL-1ß, IL-6, TNF-α, MCP-1 concentrations, ROS levels, MMP, MPTP and ATP levels were assessed using various kits. The protein expressions of NOX4, TGF-ß1, P-Smad2, P-Smad3, Smad4 and Smad7 were ascertained through western blot analysis. Our results indicated salvianolate could reduce the release of IL-1ß, IL-6, TNF-α, as well as MCP-1, alleviate the levels of oxidative stress markers NOX4 and MDA, and improve mitochondrial function by increasing MMP and ATP levels while reducing ROS and MPTP opening. Furthermore, salvianolate inhibited the TGF-ß1/Smad2, Smad3 signaling pathway, suppressed Smad4 expression and increased Smad7 expression. Salvianolate seems to mitigate inflammation and oxidative stress through a variety of mechanisms. These discoveries offer valuable understanding into the possible mechanisms by which salvianolate may be employed in the treatment of diabetic nephropathy.


Assuntos
Glucose , Inflamação , Estresse Oxidativo , Transdução de Sinais , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glucose/metabolismo , Humanos , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteínas Smad/metabolismo , Extratos Vegetais/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos
10.
Pol J Pathol ; 75(1): 40-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741428

RESUMO

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Estresse do Retículo Endoplasmático , Células Ganglionares da Retina , Transdução de Sinais , Resposta a Proteínas não Dobradas , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Linhagem Celular , Adiponectina/metabolismo , Sobrevivência Celular , Glucose/metabolismo , Glaucoma/metabolismo , Glaucoma/patologia , Glicoproteínas
11.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731867

RESUMO

Interleukin-4 (IL4) is a Th2 cytokine that can signal through two different receptors, one of which-the type II receptor-is overexpressed by various cancer cells. Previously, we have shown that type II IL4 receptor signaling increases proliferation and metastasis in mouse models of breast cancer, as well as increasing glucose and glutamine metabolism. Here, we expand on those findings to determine mechanistically how IL4 signaling links glucose metabolism and histone acetylation to drive proliferation in the context of triple-negative breast cancer (TNBC). We used a combination of cellular, biochemical, and genomics approaches to interrogate TNBC cell lines, which represent a cancer type where high expression of the type II IL4 receptor is linked to reduced survival. Our results indicate that type II IL4 receptor activation leads to increased glucose uptake, Akt and ACLY activation, and histone acetylation in TNBC cell lines. Inhibition of glucose uptake through the deletion of Glut1 ablates IL4-induced proliferation. Additionally, pharmacological inhibition of histone acetyltransferase P300 attenuates IL4-mediated gene expression and proliferation in vitro. Our work elucidates a role for type II IL4 receptor signaling in promoting TNBC progression, and highlights type II IL4 signaling, as well as histone acetylation, as possible targets for therapy.


Assuntos
Proliferação de Células , Epigênese Genética , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Interleucina-4/metabolismo , Interleucina-4/genética , Transdução de Sinais , Glucose/metabolismo , Receptores de Interleucina-4/metabolismo , Receptores de Interleucina-4/genética , Regulação Neoplásica da Expressão Gênica , Acetilação , Progressão da Doença , Animais , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética
12.
Food Res Int ; 183: 114183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760123

RESUMO

A large number of volatile compounds are formed during the baking of foods by reactions such as caramelization and Maillard reactions. Elucidating the reaction mechanisms may be useful to predict and control food quality. Ten reaction volatile markers were extracted during baking of solid model cakes implemented with known amounts of precursors (glucose with or without leucine) and then quantified by Thermal desorption-Gas chromatography-Mass spectrometry. The kinetic data showed that the level of air convection in the oven had no significant influence on the reaction rates. In contrast, increasing baking temperatures had a nonlinear accelerating impact on the generation of newly formed volatile compounds with a bell-shaped kinetic curve found for most of the markers at 200 °C. The presence of leucine triggered the activation of the Maillard and Strecker routes with a specific and very rapid formation of 3-Methylbutanal and pyrazines. A dynamic model was developed, combining evaporation flow rate and kinetic formation and consumption of reaction markers. It can be used to describe, for two furanic compounds of different volatilities, the vapor concentrations in the oven from the concentrations measured in the model cakes.


Assuntos
Culinária , Cromatografia Gasosa-Espectrometria de Massas , Glucose , Temperatura Alta , Leucina , Reação de Maillard , Compostos Orgânicos Voláteis , Cinética , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Culinária/métodos , Glucose/química , Glucose/análise , Leucina/química , Aldeídos/análise , Aldeídos/química , Pirazinas/análise , Pirazinas/química
13.
PLoS Biol ; 22(5): e3002299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713712

RESUMO

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Assuntos
Glucose , Hemócitos , Via de Pentose Fosfato , Trealose , Animais , Trealose/metabolismo , Glucose/metabolismo , Hemócitos/metabolismo , Larva/metabolismo , Larva/parasitologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Resistência à Doença , Glicólise , Interações Hospedeiro-Parasita , Vespas/metabolismo , Vespas/fisiologia , Diferenciação Celular , Drosophila/metabolismo , Drosophila/parasitologia
14.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38755006

RESUMO

Diabetes complications such as nephropathy, retinopathy, or cardiovascular disease arise from vascular dysfunction. In this context, it has been observed that past hyperglycemic events can induce long-lasting alterations, a phenomenon termed "metabolic memory." In this study, we evaluated the genome-wide gene expression and chromatin accessibility alterations caused by transient high-glucose exposure in human endothelial cells (ECs) in vitro. We found that cells exposed to high glucose exhibited substantial gene expression changes in pathways known to be impaired in diabetes, many of which persist after glucose normalization. Chromatin accessibility analysis also revealed that transient hyperglycemia induces persistent alterations, mainly in non-promoter regions identified as enhancers with neighboring genes showing lasting alterations. Notably, activation of the NRF2 pathway through NRF2 overexpression or supplementation with the plant-derived compound sulforaphane, effectively reverses the glucose-induced transcriptional and chromatin accessibility memories in ECs. These findings underscore the enduring impact of transient hyperglycemia on ECs' transcriptomic and chromatin accessibility profiles, emphasizing the potential utility of pharmacological NRF2 pathway activation in mitigating and reversing the high-glucose-induced transcriptional and epigenetic alterations.


Assuntos
Epigênese Genética , Glucose , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Humanos , Glucose/metabolismo , Epigênese Genética/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Hiperglicemia/metabolismo , Hiperglicemia/genética , Cromatina/metabolismo , Cromatina/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sulfóxidos/farmacologia
15.
PeerJ ; 12: e17414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784400

RESUMO

Background: Sepsis-induced myocardial injury, as one of the important complications of sepsis, can significantly increase the mortality of septic patients. Our previous study found that nucleolin affected mitochondrial function in energy synthesis and had a protective effect on septic cardiomyopathy in mice. During sepsis, glucose metabolism disorders aggravated myocardial injury and had a negative effect on septic patients. Objectives: We investigated whether nucleolin could regulate glucose metabolism during endotoxemia-induced myocardial injury. Methods: The study tested whether the nucleolin cardiac-specific knockout in the mice could affect glucose metabolism through untargeted metabolomics, and the results of metabolomics were verified experimentally in H9C2 cells. The ATP content, lactate production, and oxygen consumption rate (OCR) were evaluated. Results: The metabolomics results suggested that glycolytic products were increased in endotoxemia-induced myocardial injury, and that nucleolin myocardial-specific knockout altered oxidative phosphorylation-related pathways. The experiment data showed that TNF-α combined with LPS stimulation could increase the lactate content and the OCR values by about 25%, and decrease the ATP content by about 25%. However, interference with nucleolin expression could further decrease ATP content and OCR values by about 10-20% and partially increase the lactate level in the presence of TNF-α and LPS. However, nucleolin overexpression had the opposite protective effect, which partially reversed the decrease in ATP content and the increase in lactate level. Conclusion: Down-regulation of nucleolin can exacerbate glucose metabolism disorders in endotoxemia-induced myocardial injury. Improving glucose metabolism by regulating nucleolin was expected to provide new therapeutic ideas for patients with septic cardiomyopathy.


Assuntos
Endotoxemia , Glucose , Camundongos Knockout , Nucleolina , Fosfoproteínas , Proteínas de Ligação a RNA , Endotoxemia/metabolismo , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Camundongos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/deficiência , Glucose/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/etiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Metabolômica , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Consumo de Oxigênio , Lipopolissacarídeos , Fosforilação Oxidativa
16.
Bioprocess Biosyst Eng ; 47(6): 957-969, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38717593

RESUMO

γ-Aminobutyric acid (GABA) is a crucial neurotransmitter with wide application prospects. In this study, we focused on a GABA-producing strain from a traditional Chinese fermented beverage system. Among the six isolates, Lactobacillus hilgardii GZ2 exhibited the greatest ability to produce GABA in the traditional Chinese fermented beverage system. To increase GABA production, we optimized carbon sources, nitrogen sources, temperature, pH, and monosodium glutamate and glucose concentrations and conducted fed-batch fermentation. The best carbon and nitrogen sources for GABA production and cell growth were glucose, yeast extract and tryptone. Gradual increases in GABA were observed as the glucose and monosodium glutamate concentrations increased from 10 g/L to 50 g/L. During fed-batch fermentation, lactic acid was used to maintain the pH at 5.56, and after feeding with 0.03 g/mL glucose and 0.4 g/mL sodium glutamate for 72 h, the GABA yield reached 239 g/L. This novel high-GABA-producing strain holds great potential for the industrial production of GABA, as well as the development of health-promoting functional foods and medical fields.


Assuntos
Lactobacillus , Ácido gama-Aminobutírico , Bebidas , Fermentação , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillus/metabolismo , Lactobacillus/crescimento & desenvolvimento , Glutamato de Sódio/metabolismo
17.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703775

RESUMO

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Assuntos
Glioblastoma , Glucose , Histonas , Macrófagos , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Histonas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Glucose/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Interleucina-10/metabolismo , Glicólise , Microglia/metabolismo , Microglia/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tolerância Imunológica
18.
Biosystems ; 240: 105227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718915

RESUMO

Hepatocyte lipid and glucose metabolism is regulated not only by major hormones like insulin and glucagon but also by many other factors, including calcium ions. Recently, mitochondria-associated membrane (MAM) dysfunction combined with incorrect IP3-receptor regulation has been shown to result in abnormal calcium signaling in hepatocytes. This dysfunction could further lead to hepatic metabolism pathology. However, the exact contribution of MAM dysfunction, incorrect IP3-receptor regulation and insulin resistance to the calcium-insulin-glucagon interplay is not understood yet. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network with a detailed focus on the model construction details besides the biological aspect. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network. We focus on the model construction details, model validation, and predictions. We describe the dynamic regulation of signaling processes by sigmoid Hill function. In particular, we study the effect of both the Hill function slope and the distance between Hill function extremes on metabolic processes in hepatocytes as a model of nonspecific insulin dysfunction. We also address the significant time difference between characteristic time of glucose hepatic processing and a typical calcium oscillation period in hepatocytes. Our modeling results show that calcium signaling dysfunction results in an abnormal increase in postprandial glucose levels, an abnormal glucose decrease in fasting, and a decreased amount of stored glycogen. An insulin dysfunction of glucose phosphorylation, glucose dephosphorylation, and glycogen breakdown also cause a noticeable effect. We also get some insight into the so-called hepatic insulin resistance paradox, confirming the hypothesis regarding indirect insulin action on hepatocytes via dysfunctional adipocyte lipolysis.


Assuntos
Sinalização do Cálcio , Cálcio , Glucose , Hepatócitos , Metabolismo dos Lipídeos , Modelos Biológicos , Hepatócitos/metabolismo , Glucose/metabolismo , Cálcio/metabolismo , Metabolismo dos Lipídeos/fisiologia , Sinalização do Cálcio/fisiologia , Humanos , Insulina/metabolismo , Animais , Resistência à Insulina/fisiologia , Redes e Vias Metabólicas
19.
Anal Methods ; 16(21): 3372-3384, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38747244

RESUMO

Microfluidic channels fabricated over fabrics or papers have the potential to find substantial application in the next generation of wearable healthcare monitoring systems. The present work focuses on the fabrication procedures that can be used to obtain practically realizable fabric-based microfluidic channels (µFADs) utilizing patterning masks and wax, unlike conventional printing techniques. In this study, comparative analysis was used to differentiate channels obtained using different masking tools for channel patterning as well as different wax materials as hydrophobic barriers. Drawbacks of the conventional tape and candle wax technique were noted and a novel approach was used to create microfluidic channels through a facile and simple masking technique using PVC clear sheets as channel stencils and beeswax as the channel barriers. The resulting fabric based microfluidic channels with varying widths as well as complex microchannel, microwell, and micromixer designs were investigated and a minimum channel width resolution of 500 µm was successfully obtained over cotton based fabrics. Thereafter, the PVC clear sheet-beeswax based microwells were successfully tested to confine various organic and inorganic samples indicating vivid applicability of the technique. Finally, the microwells were used to make a simple and facile colorimetric assay for glucose detection and demonstrated effective detection of glucose levels from 10 mM to 50 mM with significant color variation using potassium iodide as the coloring agent. The above findings clearly suggest the potential of this alternative technique for making low-cost and practically realizable fabric based diagnostic devices (µFADs) in contrast to the other approaches that are currently in use.


Assuntos
Cloreto de Polivinila , Têxteis , Ceras , Ceras/química , Cloreto de Polivinila/química , Colorimetria/métodos , Colorimetria/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise Custo-Benefício , Glucose/análise , Dispositivos Lab-On-A-Chip , Humanos , Desenho de Equipamento , Dispositivos Eletrônicos Vestíveis
20.
Rev Med Suisse ; 20(876): 1083-1086, 2024 May 29.
Artigo em Francês | MEDLINE | ID: mdl-38812341

RESUMO

The technologies used to measure blood glucose have significantly evolved the past few years, especially with the introduction of continuous interstitial glucose measurements, simplifying the management of the disease. More recently, there has been a lot of interest regarding some potential revolutionary methods, such as smartwatches, and glucose measurements in sweat, saliva, and even tears. In this article, we review the different technologies that are under development, and notice that although promising, they rest imprecise. False measurements can have fatal consequences for our patients. Nevertheless, these innovations are promising and have the potential to change the daily life of people with diabetes in the future.


Les technologies utilisées pour mesurer les glycémies des personnes présentant un diabète ont beaucoup évolué ces dernières années, avec notamment l'introduction des mesures interstitielles en continu, rendant le contrôle glycémique plus aisé. Depuis peu, il y a un intérêt croissant, notamment dans les médias, autour de potentielles méthodes révolutionnaires via des montres intelligentes, la sueur, la salive et même les larmes. Dans cet article, nous répertorions les différentes technologies en cours d'investigation et notons que plusieurs d'entre elles restent imprécises, empêchant leur utilisation pour nos patients diabétiques, chez qui des mesures incorrectes peuvent avoir de graves conséquences. Néanmoins, ces nouveautés sont prometteuses et ont le potentiel de changer le quotidien des personnes présentant un diabète dans le futur.


Assuntos
Glicemia , Diabetes Mellitus , Humanos , Glicemia/análise , Diabetes Mellitus/sangue , Diabetes Mellitus/diagnóstico , Automonitorização da Glicemia/métodos , Automonitorização da Glicemia/instrumentação , Suor/química , Saliva/química , Glucose/análise , Lágrimas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA