Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.160
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1422674, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39092282

RESUMO

Objective: This study aims to conduct a comprehensive investigation of the serum amino acid profiles of individuals with type 2 diabetes (T2D) and its related complications. Methods: Patients with T2D were enrolled in this study. Sixteen kinds of common amino acids in the fasting circulating were assessed through liquid chromatography-mass spectrometry (LC-MS). Subsequently, correlation, regression analyses, and receiver operating characteristic (ROC) curves were conducted to assess the associations between amino acids and clinical indicators. Results: Thirteen different kinds of amino acids were identified in diabetic patients, as compared with normal controls. The Glutamine/Glutamate (Gln/Glu) ratio was negatively correlated with BMI, HbA1c, serum uric acid, and the triglyceride-glucose (TyG) index, while it was positively correlated with HDL-C. Logistic regression analyses indicated that Gln/Glu was a consistent protective factor for both T2D (OR = 0.65, 95% CI 0.50-0.86) and obesity (OR = 0.79, 95% CI 0.66-0.96). The ROC curves demonstrated that Gln/Glu, proline, valine, and leucine provided effective predictions for diabetes risk, with Gln/Glu exhibiting the highest AUC [0.767 (0.678-0.856)]. In patients with T2D, Gln was the only amino acid that displayed a negative correlation with HbA1c (r = -0.228, p = 0.017). Furthermore, HOMA-ß exhibited a negative correlation with Glu (r = -0.301, p = 0.003) but a positive correlation with Gln/Glu (r = 0.245, p = 0.017). Notably, logistic regression analyses revealed an inverse correlation of Gln/Glu with the risk of diabetic kidney disease (OR = 0.74, 95% CI 0.55-0.98) and a positive association with the risk of diabetic retinopathy (OR = 1.53, 95% CI 1.08-2.15). Conclusion: The Gln/Glu ratio exhibited a significant association with diabetes, common metabolic parameters, and diabetic complications. These findings shed light on the pivotal role of Gln metabolism in T2D and its associated complications.


Assuntos
Diabetes Mellitus Tipo 2 , Ácido Glutâmico , Glutamina , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Glutamina/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Ácido Glutâmico/sangue , Idoso , Estudos de Casos e Controles , Biomarcadores/sangue , Adulto , Glicemia/análise , Glicemia/metabolismo , Complicações do Diabetes/sangue
2.
Development ; 151(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39120084

RESUMO

During tissue regeneration, proliferation, dedifferentiation and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine or pyruvate are individually sufficient to support RPE reprogramming, identifying glycolysis as a requisite. Conversely, the activation of pyruvate dehydrogenase by inhibition of pyruvate dehydrogenase kinases, induces epithelial-to-mesenchymal transition, while simultaneously blocking the activation of neural retina fate. We also identified that epithelial-to-mesenchymal transition fate is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.


Assuntos
Glicólise , Epitélio Pigmentado da Retina , Animais , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Embrião de Galinha , Transição Epitelial-Mesenquimal , Diferenciação Celular , Reprogramação Celular , Proliferação de Células , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Galinhas , Neurogênese/fisiologia , Glutamina/metabolismo
3.
Rapid Commun Mass Spectrom ; 38(19): e9878, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39117991

RESUMO

RATIONALE: Natural variations in the abundance of the stable isotopes of nitrogen (δ15N) and carbon (δ13C) offer valuable insights into metabolic fluxes. In the wake of strong interest in cancer metabolism, recent research has revealed δ15N and δ13C variations in cancerous compared to non-cancerous tissues and cell lines. However, our understanding of natural isotopic variations in cultured mammalian cells, particularly in relation to metabolism, remains limited. This study aims to start addressing this gap using metabolic modulations in cells cultured under controlled conditions. METHODS: Prostate cancer cells (PC3) were cultured in different conditions and their δ15N and δ13C were measured using isotope ratio mass spectrometry. Isotopic variations during successive cell culture passages were assessed and two widely used cell culture media (RPMI and DMEM) were compared. Metabolism was modulated through glutamine deprivation and hypoxia. RESULTS: Successive cell culture passages generally resulted in reproducible δ15N and δ13C values. The impact of culture medium composition on δ15N and δ13C of the cells highlights the importance of maintaining a consistent medium composition across conditions whenever possible. Glutamine deprivation and hypoxia induced a lower δ13C in bulk cell samples, with only the former affecting δ15N. Gaps between theory and experiments were bridged and the lessons learned throughout the process are provided. CONCLUSIONS: Exposing cultured cancer cells to hypoxia allowed us to further investigate the relation between metabolic modulations and natural isotopic variations, while mitigating the confounding impact of changing culture medium composition. This study highlights the potential of natural δ13C variations for studying substrate fluxes and nutrient allocation in reproducible culture conditions. Considering cell yield and culture medium composition is pivotal to the success of this approach.


Assuntos
Isótopos de Carbono , Meios de Cultura , Espectrometria de Massas , Isótopos de Nitrogênio , Humanos , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Espectrometria de Massas/métodos , Meios de Cultura/química , Meios de Cultura/metabolismo , Glutamina/metabolismo , Glutamina/análise , Neoplasias da Próstata/metabolismo , Masculino , Células PC-3 , Linhagem Celular Tumoral , Técnicas de Cultura de Células/métodos
4.
Biotechnol Bioeng ; 121(9): 2848-2867, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39138873

RESUMO

The fast-growing Chinese hamster lung (CHL)-YN cell line was recently developed for monoclonal antibody production. In this study, we applied a serum-free fed-batch cultivation process to immunoglobulin (Ig)G1-producing CHL-YN cells, which were then used to design a dynamic glucose supply system to stabilize the extracellular glucose concentration based on glucose consumption. Glucose consumption of the cultures rapidly oscillated following three phases of glutamine metabolism: consumption, production, and re-consumption. Use of the dynamic glucose supply prolonged the viability of the CHL-YN-IgG1 cell cultures and increased IgG1 production. Liquid chromatography with tandem mass spectrometry-based target metabolomics analysis of the extracellular metabolites during the first glutamine shift was conducted to search for depleted compounds. The results suggest that the levels of four amino acids, namely arginine, aspartate, methionine, and serine, were sharply decreased in CHL-YN cells during glutamine production. Supporting evidence from metabolic and gene expression analyses also suggest that CHL-YN cells acquired ornithine- and cystathionine-production abilities that differed from those in Chinese hamster ovary-K1 cells, potentially leading to proline and cysteine biosynthesis.


Assuntos
Anticorpos Monoclonais , Cricetulus , Glucose , Animais , Glucose/metabolismo , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/metabolismo , Cricetinae , Linhagem Celular , Meios de Cultura Livres de Soro , Metabolômica/métodos , Pulmão/metabolismo , Pulmão/citologia , Metaboloma , Imunoglobulina G/metabolismo , Células CHO , Técnicas de Cultura Celular por Lotes/métodos , Glutamina/metabolismo
5.
Nat Commun ; 15(1): 6696, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107277

RESUMO

Allosteric modulation is a central mechanism for metabolic regulation but has yet to be described for a gut microbiota-host interaction. Phenylacetylglutamine (PAGln), a gut microbiota-derived metabolite, has previously been clinically associated with and mechanistically linked to cardiovascular disease (CVD) and heart failure (HF). Here, using cells expressing ß1- versus ß2-adrenergic receptors (ß1AR and ß2AR), PAGln is shown to act as a negative allosteric modulator (NAM) of ß2AR, but not ß1AR. In functional studies, PAGln is further shown to promote NAM effects in both isolated male mouse cardiomyocytes and failing human heart left ventricle muscle (contracting trabeculae). Finally, using in silico docking studies coupled with site-directed mutagenesis and functional analyses, we identified sites on ß2AR (residues E122 and V206) that when mutated still confer responsiveness to canonical ß2AR agonists but no longer show PAGln-elicited NAM activity. The present studies reveal the gut microbiota-obligate metabolite PAGln as an endogenous NAM of a host GPCR.


Assuntos
Microbioma Gastrointestinal , Glutamina , Miócitos Cardíacos , Receptores Adrenérgicos beta 2 , Animais , Humanos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Regulação Alostérica , Camundongos , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Glutamina/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/microbiologia , Mutagênese Sítio-Dirigida , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/genética , Camundongos Endogâmicos C57BL
6.
Exp Eye Res ; 246: 110018, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111651

RESUMO

NADPH, the primary source of reducing equivalents in the cytosol, is used in vertebrate rod photoreceptor outer segments to reduce the all-trans retinal released from photoactivated visual pigment to all-trans retinol. Light activation of the visual pigment isomerizes the 11-cis retinal chromophore to all-trans, thereby destroying it and necessitating its regeneration. Release and reduction of all-trans retinal are the first steps in the series of reactions that regenerate the visual pigment. Glucose and glutamine can both support the reduction of all-trans retinal to retinol, indicating that the NADPH used in rod photoreceptor outer segments can be generated by the pentose phosphate pathway as well as by mitochondria-linked pathways. We have used the conversion of all-trans retinal to all-trans retinol to examine whether amino acids other than glutamine can also support the generation of NADPH in rod photoreceptors. We have measured this conversion in single isolated mouse rod photoreceptors by imaging the fluorescence of the all-trans retinal and retinol generated after exposure of the cells to light. In agreement with previous work, we find that 5 mM glucose or 0.5 mM glutamine support the conversion of ∼70-80% of all-trans retinal to retinol, corresponding to a reduced NADP fraction of ∼10%. All other amino acids at 0.5 mM concentration support the conversion to a much lesser extent, indicating reduced NADP fractions of 1-2% at most. Taurine was also ineffective at supporting NADPH generation, while formic acid, the toxic metabolite of methanol, suppressed the generation of NADPH by either glucose or glutamine.


Assuntos
Glutamina , Camundongos Endogâmicos C57BL , NADP , Células Fotorreceptoras Retinianas Bastonetes , Vitamina A , Animais , NADP/metabolismo , Camundongos , Glutamina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Vitamina A/metabolismo , Retinaldeído/metabolismo , Glucose/metabolismo
7.
Curr Med Sci ; 44(4): 799-808, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096478

RESUMO

OBJECTIVE: The metabolic reprogramming of acute myeloid leukemia (AML) cells is a compensatory adaptation to meet energy requirements for rapid proliferation. This study aimed to examine the synergistic effects of glutamine deprivation and metformin exposure on AML cells. METHODS: SKM-1 cells (an AML cell line) were subjected to glutamine deprivation and/or treatment with metformin or bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES, a glutaminase inhibitor) or cytarabine. Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay, and cell apoptosis and reactive oxygen species (ROS) by flow cytometry. Western blotting was conducted to examine the levels of apoptotic proteins, including cleaved caspase-3 and poly(ADP-ribose) polymerase (PARP). Moreover, the human long noncoding RNA (lncRNA) microarray was used to analyze gene expression after glutamine deprivation, and results were confirmed with quantitative RT-PCR (qRT-PCR). The expression of metallothionein 2A (MT2A) was suppressed using siRNA. Cell growth and apoptosis were further detected by CCK-8 assay and flow cytometry, respectively, in cells with MT2A knockdown. RESULTS: Glutamine deprivation or treatment with BPTES inhibited cell growth and induced apoptosis in SKM-1 cells. The lncRNA microarray result showed that the expression of MT family genes was significantly upregulated after glutamine deprivation. MT2A knockdown increased apoptosis, while proliferation was not affected in SKM-1 cells. In addition, metformin inhibited cell growth and induced apoptosis in SKM-1 cells. Both glutamine deprivation and metformin enhanced the sensitivity of SKM-1 cells to cytarabine. Furthermore, the combination of glutamine deprivation with metformin exhibited synergistic antileukemia effects on SKM-1 cells. CONCLUSION: Targeting glutamine metabolism in combination with metformin is a promising new therapeutic strategy for AML.


Assuntos
Apoptose , Glutamina , Leucemia Mieloide Aguda , Metformina , Metformina/farmacologia , Humanos , Glutamina/metabolismo , Glutamina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutaminase/genética , Glutaminase/metabolismo , Tiadiazóis/farmacologia , Sulfetos/farmacologia , Sinergismo Farmacológico , Citarabina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética
8.
Front Immunol ; 15: 1418738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050845

RESUMO

Objective: This investigation sought to delineate the causal nexus between plasma glutamine concentrations and leukemia susceptibility utilizing bidirectional Mendelian Randomization (MR) analysis and to elucidate the metabolic ramifications of asparaginase therapy on glutamine dynamics in leukemia patients. Methods: A bidirectional two-sample MR framework was implemented, leveraging genetic variants as instrumental variables from extensive genome-wide association studies (GWAS) tailored to populations of European descent. Glutamine quantification was executed through a rigorously validated Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) protocol. Comparative analyses of glutamine levels were conducted across leukemia patients versus healthy controls, pre- and post-asparaginase administration. Statistical evaluations employed inverse variance weighted (IVW) models, MR-Egger regression, and sensitivity tests addressing pleiotropy and heterogeneity. Results: The MR findings underscored a significant inverse association between glutamine levels and leukemia risk (IVW p = 0.03558833), positing lower glutamine levels as a contributory factor to heightened leukemia susceptibility. Conversely, the analysis disclosed no substantive causal impact of leukemia on glutamine modulation (IVW p = 0.9694758). Notably, post-asparaginase treatment, a marked decrement in plasma glutamine concentrations was observed in patients (p = 0.0068), underlining the profound metabolic influence of the therapeutic regimen. Conclusion: This study corroborates the hypothesized inverse relationship between plasma glutamine levels and leukemia risk, enhancing our understanding of glutamine's role in leukemia pathophysiology. The pronounced reduction in glutamine levels following asparaginase intervention highlights the critical need for meticulous metabolic monitoring to refine therapeutic efficacy and optimize patient management in clinical oncology. These insights pave the way for more tailored and efficacious treatment modalities in the realm of personalized medicine.


Assuntos
Asparaginase , Glutamina , Leucemia , Análise da Randomização Mendeliana , Espectrometria de Massas em Tandem , Humanos , Glutamina/metabolismo , Glutamina/sangue , Cromatografia Líquida , Leucemia/genética , Asparaginase/uso terapêutico , Estudo de Associação Genômica Ampla , Espectrometria de Massa com Cromatografia Líquida
9.
Front Biosci (Landmark Ed) ; 29(7): 251, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39082337

RESUMO

BACKGROUND: Selective deprivation of glutamine has been shown to accelerate the generation of reactive oxygen species (ROS) and to impair the activity of a specific pentose phosphate pathway (PPP) located within the endoplasmic reticulum (ER). The consequent oxidative damage suggests that glucose flux through this reticular pathway might contribute to the redox stress of breast cancer cells. We thus evaluated whether this response is reproduced when the glutamine shortage is coupled with the glucose deprivation. METHODS: Cancer growth, metabolic plasticity and redox status were evaluated under saturating conditions and after 48 h starvation (glucose 2.5 mM, glutamine 0.5 mM). The Seahorse technology was used to estimate adenosine triphosphate (ATP)-linked and ATP-independent oxygen consumption rate (OCR) as well as proton efflux rate (PER). 18F-fluoro-deoxy-glucose (FDG) uptake was evaluated through the LigandTracer device. Proliferation rate was estimated by the carboxyfluorescein-diacetate-succinimidyl ester (CFSE) staining, while cell viability by the propidium iodide exclusion assay. RESULTS: Starvation reduced the proliferation rate of MCF-7 cells without affecting their viability. It also decreased lactate release and PER. Overall OCR was left unchanged although ATP-synthase dependent fraction was increased under nutrient shortage. Glutaminolysis inhibition selectively impaired the ATP-independent and the oligomycin-sensitive OCR in control and starved cultures, respectively. The combined nutrient shortage decreased the cytosolic and mitochondrial markers of redox stress. It also left unchanged the expression of the reticular unfolded protein marker GRP78. By contrast, starvation decreased the expression of hexose-6P-dehydrogenase (H6PD) thus decreasing the glucose flux through the ER-PPP as documented by the profound impairment in the uptake rate of FDG. CONCLUSIONS: When combined with glucose deprivation, glutamine shortage does not elicit the expected enhancement of ROS generation in the studied breast cancer cell line. Combined with the decreased activity of ER-PPP, this observation suggests that glutamine interferes with the reticular glucose metabolism to regulate the cell redox balance.


Assuntos
Neoplasias da Mama , Chaperona BiP do Retículo Endoplasmático , Glucose , Glutamina , Humanos , Glutamina/metabolismo , Glucose/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Células MCF-7 , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Consumo de Oxigênio , Oxirredução , Sobrevivência Celular/efeitos dos fármacos
10.
Clin Exp Med ; 24(1): 152, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970690

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer characterized by metabolic reprogramming. Glutamine metabolism is pivotal in metabolic reprogramming, contributing to the significant heterogeneity observed in ccRCC. Consequently, developing prognostic markers associated with glutamine metabolism could enhance personalized treatment strategies for ccRCC patients. This study obtained RNA sequencing and clinical data from 763 ccRCC cases sourced from multiple databases. Consensus clustering of 74 glutamine metabolism related genes (GMRGs)- profiles stratified the patients into three clusters, each of which exhibited distinct prognosis, tumor microenvironment, and biological characteristics. Then, six genes (SMTNL2, MIOX, TMEM27, SLC16A12, HRH2, and SAA1) were identified by machine-learning algorithms to develop a predictive signature related to glutamine metabolism, termed as GMRScore. The GMRScore showed significant differences in clinical prognosis, expression profile of immune checkpoints, abundance of immune cells, and immunotherapy response of ccRCC patients. Besides, the nomogram incorporating the GMRScore and clinical features showed strong predictive performance in prognosis of ccRCC patients. ALDH18A1, one of the GRMGs, exhibited elevated expression level in ccRCC and was related to markedly poorer prognosis in the integrated cohort, validated by proteomic profiling of 232 ccRCC samples from Fudan University Shanghai Cancer Center (FUSCC). Conducting western blotting, CCK-8, transwell, and flow cytometry assays, we found the knockdown of ALDH18A1 in ccRCC significantly promoted apoptosis and inhibited proliferation, invasion, and epithelial-mesenchymal transition (EMT) in two human ccRCC cell lines (786-O and 769-P). In conclusion, we developed a glutamine metabolism-related prognostic signature in ccRCC, which is tightly linked to the tumor immune microenvironment and immunotherapy response, potentially facilitating precision therapy for ccRCC patients. Additionally, this study revealed the key role of ALDH18A1 in promoting ccRCC progression for the first time.


Assuntos
Carcinoma de Células Renais , Glutamina , Neoplasias Renais , Microambiente Tumoral , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Glutamina/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Prognóstico , Linhagem Celular Tumoral , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Nomogramas , Pessoa de Meia-Idade , Apoptose , Perfilação da Expressão Gênica
11.
Cardiovasc Diabetol ; 23(1): 240, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978031

RESUMO

BACKGROUND: Metabolism is increasingly recognized as a key regulator of the function and phenotype of the primary cellular constituents of the atherosclerotic vascular wall, including endothelial cells, smooth muscle cells, and inflammatory cells. However, a comprehensive analysis of metabolic changes associated with the transition of plaque from a stable to a hemorrhaged phenotype is lacking. METHODS: In this study, we integrated two large mRNA expression and protein abundance datasets (BIKE, n = 126; MaasHPS, n = 43) from human atherosclerotic carotid artery plaque to reconstruct a genome-scale metabolic network (GEM). Next, the GEM findings were linked to metabolomics data from MaasHPS, providing a comprehensive overview of metabolic changes in human plaque. RESULTS: Our study identified significant changes in lipid, cholesterol, and inositol metabolism, along with altered lysosomal lytic activity and increased inflammatory activity, in unstable plaques with intraplaque hemorrhage (IPH+) compared to non-hemorrhaged (IPH-) plaques. Moreover, topological analysis of this network model revealed that the conversion of glutamine to glutamate and their flux between the cytoplasm and mitochondria were notably compromised in hemorrhaged plaques, with a significant reduction in overall glutamate levels in IPH+ plaques. Additionally, reduced glutamate availability was associated with an increased presence of macrophages and a pro-inflammatory phenotype in IPH+ plaques, suggesting an inflammation-prone microenvironment. CONCLUSIONS: This study is the first to establish a robust and comprehensive GEM for atherosclerotic plaque, providing a valuable resource for understanding plaque metabolism. The utility of this GEM was illustrated by its ability to reliably predict dysregulation in the cholesterol hydroxylation, inositol metabolism, and the glutamine/glutamate pathway in rupture-prone hemorrhaged plaques, a finding that may pave the way to new diagnostic or therapeutic measures.


Assuntos
Doenças das Artérias Carótidas , Ácido Glutâmico , Glutamina , Macrófagos , Redes e Vias Metabólicas , Fenótipo , Placa Aterosclerótica , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Ruptura Espontânea , Artérias Carótidas/patologia , Artérias Carótidas/metabolismo , Metabolômica , Bases de Dados Genéticas , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Metabolismo Energético , Conjuntos de Dados como Assunto , Masculino
12.
Biochem Biophys Res Commun ; 727: 150308, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968769

RESUMO

Excessive autophagy may lead to degradation and damage of alveolar epithelial cells after lung transplantation, eventually leading to alveolar epithelial cell loss, affecting the structural integrity and function of alveoli. Glutamine (Gln), a nutritional supplement, regulates autophagy through multiple signaling pathways. In this study, we explored the protective role of Gln on alveolar epithelial cells by inhibiting autophagy. In vivo, a rat orthotopic lung transplant model was carried out to evaluate the therapeutic effect of glutamine. Ischemia/reperfusion (I/R) induced alveolar collapse, edema, epithelial cell apoptosis, and inflammation, which led to a reduction of alveolar physiological function, such as an increase in peak airway pressure, and a decrease in lung compliance and oxygenation index. In comparison, Gln preserved alveolar structure and function by reducing alveolar apoptosis, inflammation, and edema. In vitro, a hypoxia/reoxygenation (H/R) cell model was performed to simulate IR injury on mouse lung epithelial (MLE) cells and human lung bronchus epithelial (Beas-2B) cells. H/R impaired the proliferation of epithelial cells and triggered cell apoptosis. In contrast, Gln normalized cell proliferation and suppressed I/R-induced cell apoptosis. The activation of mTOR and the downregulation of autophagy-related proteins (LC3, Atg5, Beclin1) were observed in Gln-treated lung tissues and alveolar epithelial cells. Both in vivo and in vitro, rapamycin, a classical mTOR inhibitor, reversed the beneficial effects of Gln on alveolar structure and function. Taken together, Glnpreserved alveolar structure and function after lung transplantation by inhibiting autophagy.


Assuntos
Autofagia , Glutamina , Transplante de Pulmão , Alvéolos Pulmonares , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Autofagia/efeitos dos fármacos , Animais , Glutamina/metabolismo , Glutamina/farmacologia , Masculino , Humanos , Camundongos , Ratos , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia
13.
Adv Pharmacol ; 100: 157-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034051

RESUMO

The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.


Assuntos
Diazo-Oxo-Norleucina , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Diazo-Oxo-Norleucina/farmacologia , Diazo-Oxo-Norleucina/uso terapêutico , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glutamina/metabolismo
14.
Nat Commun ; 15(1): 5620, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965208

RESUMO

Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.


Assuntos
Neoplasias da Mama , Proteína Semelhante a ELAV 1 , Glutaminase , Glutaminase/metabolismo , Glutaminase/genética , Glutaminase/antagonistas & inibidores , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Processamento Alternativo , Proliferação de Células , Glutamina/metabolismo , Estabilidade de RNA
15.
J Enzyme Inhib Med Chem ; 39(1): 2367129, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39051546

RESUMO

Metabolic abnormalities are an important feature of tumours. The glutamine-arginine-proline axis is an important node of cancer metabolism and plays a major role in amino acid metabolism. This axis also acts as a scaffold for the synthesis of other nonessential amino acids and essential metabolites. In this paper, we briefly review (1) the glutamine addiction exhibited by tumour cells with accelerated glutamine transport and metabolism; (2) the methods regulating extracellular glutamine entry, intracellular glutamine synthesis and the fate of intracellular glutamine; (3) the glutamine, proline and arginine metabolic pathways and their interaction; and (4) the research progress in tumour therapy targeting the glutamine-arginine-proline metabolic system, with a focus on summarising the therapeutic research progress of strategies targeting of one of the key enzymes of this metabolic system, P5CS (ALDH18A1). This review provides a new basis for treatments targeting the metabolic characteristics of tumours.


Assuntos
Arginina , Glutamina , Neoplasias , Prolina , Humanos , Glutamina/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Prolina/metabolismo , Prolina/química , Arginina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Estrutura Molecular , Animais
16.
NPJ Syst Biol Appl ; 10(1): 77, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025861

RESUMO

Energy metabolism is crucial for all living cells, especially during fast growth or stress scenarios. Many cancer and activated immune cells (Warburg effect) or yeasts (Crabtree effect) mostly rely on aerobic glucose fermentation leading to lactate or ethanol, respectively, to generate ATP. In recent years, several mathematical models have been proposed to explain the Warburg effect on theoretical grounds. Besides glucose, glutamine is a very important substrate for eukaryotic cells-not only for biosynthesis, but also for energy metabolism. Here, we present a minimal constraint-based stoichiometric model for explaining both the classical Warburg effect and the experimentally observed respirofermentation of glutamine (WarburQ effect). We consider glucose and glutamine respiration as well as the respective fermentation pathways. Our resource allocation model calculates the ATP production rate, taking into account enzyme masses and, therefore, pathway costs. While our calculation predicts glucose fermentation to be a superior energy-generating pathway in human cells, different enzyme characteristics in yeasts reduce this advantage, in some cases to such an extent that glucose respiration is preferred. The latter is observed for the fungal pathogen Candida albicans, which is a known Crabtree-negative yeast. Further, optimization results show that glutamine is a valuable energy source and important substrate under glucose limitation, in addition to its role as a carbon and nitrogen source of biomass in eukaryotic cells. In conclusion, our model provides insights that glutamine is an underestimated fuel for eukaryotic cells during fast growth and infection scenarios and explains well the observed parallel respirofermentation of glucose and glutamine in several cell types.


Assuntos
Metabolismo Energético , Fermentação , Glucose , Glutamina , Modelos Biológicos , Neoplasias , Glutamina/metabolismo , Metabolismo Energético/fisiologia , Humanos , Neoplasias/metabolismo , Glucose/metabolismo , Fermentação/fisiologia , Candida albicans/metabolismo , Trifosfato de Adenosina/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
Nutrients ; 16(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39064744

RESUMO

BACKGROUND: Sarcopenia, characterized by degenerative skeletal muscle loss, is increasingly linked to poor surgical outcomes. Glutamine, an immune-modulating formula, may stimulate muscle protein synthesis and inhibit degradation. We used the psoas major muscle area (PMMA) at the third lumbar vertebra, normalized for height (PMMA index), as a skeletal muscle indicator. This study investigates whether perioperative glutamine supplementation mitigates psoas muscle atrophy. METHODS: We enrolled gastric adenocarcinoma (GA) patients undergoing gastrectomy. Computed tomography assessed the psoas muscle short axis. Muscle atrophy was estimated by changes between preoperative and three-month post-gastrectomy scans. Perioperative glutamine supplementation (PGS) comprised five-day parenteral plus one-month oral use. Propensity score matching minimized potential bias. A linear regression model predicted the association. RESULTS: Of 516 patients analyzed (2016-2019), 100 (19.4%) received PGS. After propensity score matching, each group contained 97 cases. The PGS group showed a significantly higher median PMMA index change than the non-PGS group (0.3 vs. -0.3 cm2/m2, p = 0.004). Multivariate analysis revealed that PGS was significantly associated with increased PMMA index (coefficient = 0.60; 95% CI: 0.19-1.01; p = 0.005). CONCLUSIONS: PGS may help restore psoas muscle atrophy in GA patients undergoing gastrectomy. The underlying mechanisms likely relate to glutamine's role in protein metabolism and immune function. Further studies are needed to elucidate these mechanisms fully.


Assuntos
Adenocarcinoma , Suplementos Nutricionais , Gastrectomia , Glutamina , Atrofia Muscular , Músculos Psoas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/cirurgia , Masculino , Feminino , Gastrectomia/métodos , Glutamina/administração & dosagem , Adenocarcinoma/cirurgia , Idoso , Pessoa de Meia-Idade , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Sarcopenia , Assistência Perioperatória/métodos , Pontuação de Propensão
18.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062801

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent primary liver malignancy and is a major cause of cancer-related mortality in the world. This study aimed to characterize glutamine amino acid transporter expression profiles in HCC compared to those of normal liver cells. In vitro and in vivo models of HCC were studied using qPCR, whereas the prognostic significance of glutamine transporter expression levels within patient tumors was analyzed through RNAseq. Solute carrier (SLC) 1A5 and SLC38A2 were targeted through siRNA or gamma-p-nitroanilide (GPNA). HCC cells depended on exogenous glutamine for optimal survival and growth. Murine HCC cells showed superior glutamine uptake rate than normal hepatocytes (p < 0.0001). HCC manifested a global reprogramming of glutamine transporters compared to normal liver: SLC38A3 levels decreased, whereas SLC38A1, SLC7A6, and SLC1A5 levels increased. Also, decreased SLC6A14 and SLC38A3 levels or increased SLC38A1, SLC7A6, and SLC1A5 levels predicted worse survival outcomes (all p < 0.05). Knockdown of SLC1A5 and/or SLC38A2 expression in human Huh7 and Hep3B HCC cells, as well as GPNA-mediated inhibition, significantly decreased the uptake of glutamine; combined SLC1A5 and SLC38A2 targeting had the most considerable impact (all p < 0.05). This study revealed glutamine transporter reprogramming as a novel hallmark of HCC and that such expression profiles are clinically significant.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Glutamina , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Humanos , Animais , Prognóstico , Camundongos , Linhagem Celular Tumoral , Glutamina/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Masculino , Feminino , Proteínas de Transporte , Sistema ASC de Transporte de Aminoácidos
19.
Vet Med Sci ; 10(4): e1536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016357

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes severe inflammatory response, respiratory disease and sow reproductive failure. Quercetin is among the widely occurring polypheno found abundantly in nature. Quercetin has anti-inflammatory, anti-oxidative and anti-viral properties. OBJECTIVES: This study aimed to explore the effect and mechanism of quercetin on PRRSV-induced inflammation in MARC-145 cells. METHODS: Observing the cytopathic effect and measurements of inflammatory markers in MARC-145 cells collectively demonstrate that quercetin elicits a curative effect on PRRSV-induced inflammation. Liquid chromatography-mass spectrometry was further used for a non-targeted metabolic analysis of the role of quercetin in the metabolic regulation of PRRSV inflammation in MARC-145 cells. RESULTS: It was shown that quercetin attenuated PRRSV-induced cytopathy in MARC-145 cells. Quercetin treatment inhibited PRRSV replication in MARC-145 cells in a dose-dependent manner. We also found that quercetin inhibited PRRSV-induced mRNA expression and secretion levels of tumour necrosis factor-α, interleukin 1ß and interleukin 6. Metabolomics analysis revealed that quercetin ameliorated PRRSV-induced inflammation. Pathway analysis results revealed that PRRSV-induced pathways including arachidonic acid metabolism, linoleic acid, glycerophospholipid and alanine, aspartate and glutamate metabolism were suppressed by quercetin. Moreover, we confirmed that quercetin inhibited the activation of NF-κB/p65 pathway, probably by attenuating PLA2, ALOX and COX mRNA expression. CONCLUSIONS: These results provide a crucial insight into the molecular mechanism of quercetin in alleviating PRRSV-induced inflammation.


Assuntos
Ácido Araquidônico , Glutamina , Inflamação , Vírus da Síndrome Respiratória e Reprodutiva Suína , Quercetina , Quercetina/farmacologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Animais , Linhagem Celular , Inflamação/virologia , Inflamação/tratamento farmacológico , Glutamina/metabolismo , Glutamina/farmacologia , Ácido Araquidônico/metabolismo , Suínos , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Chlorocebus aethiops
20.
Clin Respir J ; 18(7): e13799, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987867

RESUMO

BACKGROUND: Mitochondrial ribosomal protein L35 (MRPL35) has been reported to contribute to the growth of non-small cell lung cancer (NSCLC) cells. However, the functions and mechanisms of MRPL35 on glutamine metabolism in NSCLC remain unclear. METHODS: The detection of mRNA and protein of MRPL35, ubiquitin-specific protease 39 (USP39), and solute carrier family 7 member 5 (SLC7A5) was conducted using qRT-PCR and western blotting. Cell proliferation, apoptosis, and invasion were evaluated using the MTT assay, EdU assay, flow cytometry, and transwell assay, respectively. Glutamine metabolism was analyzed by detecting glutamine consumption, α-ketoglutarate level, and glutamate production. Cellular ubiquitination analyzed the deubiquitination effect of USP39 on MRPL35. An animal experiment was conducted for in vivo analysis. RESULTS: MRPL35 was highly expressed in NSCLC tissues and cell lines, and high MRPL35 expression predicted poor outcome in NSCLC patients. In vitro analyses suggested that MRPL35 knockdown suppressed NSCLC cell proliferation, invasion, and glutamine metabolism. Moreover, MRPL35 silencing hindered tumor growth in vivo. Mechanistically, USP39 stabilized MRPL35 expression by deubiquitination and then promoted NSCLC cell proliferation, invasion, and glutamine metabolism. In addition, MRPL35 positively affected SLC7A5 expression in NSCLC cells in vitro and in vivo. Moreover, the anticancer effects of MRPL35 silencing could be rescued by SLC7A5 overexpression in NSCLC cells. CONCLUSION: MRPL35 expression was stabilized by USP39-induced deubiquitination in NSCLC cells, and knockdown of MRPL35 suppressed NSCLC cell proliferation, invasion, and glutamine metabolism in vitro and impeded tumor growth in vivo by upregulating SLC7A5, providing a promising therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Glutamina , Neoplasias Pulmonares , Invasividade Neoplásica , Regulação para Cima , Animais , Feminino , Humanos , Masculino , Camundongos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...