Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
PLoS One ; 19(8): e0306124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39141629

RESUMO

Multidrug resistance (MDR) mechanisms in cancer cells are greatly influenced by glutathione transferase P1-1 (hGSTP1-1). The use of synthetic or natural compounds as hGSTP1-1 inhibitors is considered an effective approach to overcome MDR. Nine compounds consisting of coumarin-6-sulfonamide linked to chalcone derivatives were synthesized and evaluated for their ability to inhibit hGSTP1-1. Among the synthetic derivatives, compounds 5g, 5f, and 5a displayed the most potent inhibitory effect, with IC50 values of 12.2 ± 0.5 µΜ, 12.7 ± 0.7 and 16.3 ± 0.6, respectively. Kinetic inhibition analysis of the most potent molecule, 5g, showed that it behaves as a mixed-type inhibitor of the target enzyme. An in vitro cytotoxicity assessment of 5a, 5f, and 5g against the human prostate cancer cell lines DU-145 and PC3, as well as the breast cancer cell line MCF-7, demonstrated that compound 5g exhibited the most pronounced cytotoxic effect on all tested cell lines. Molecular docking studies were performed to predict the structural and molecular determinants of 5g, 5f, and 5a binding to hGSTP1-1. In agreement with the experimental data, the results revealed that 5g exhibited the lowest docking score among the three studied inhibitors as a consequence of shape complementarity, governed by van der Waals, hydrogen bonds and a π-π stacking interaction. These findings suggest that coumarin-chalcone hybrids offer new perspectives for the development of safe and efficient natural product-based sensitizers that can target hGSTP1-1 for anticancer purposes.


Assuntos
Cumarínicos , Glutationa S-Transferase pi , Simulação de Acoplamento Molecular , Sulfonamidas , Humanos , Cumarínicos/química , Cumarínicos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa S-Transferase pi/metabolismo , Sulfonamidas/química , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Chalcona/química , Chalcona/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Chalconas/química , Chalconas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Células MCF-7
2.
Clin Sci (Lond) ; 138(14): 883-900, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959295

RESUMO

Hypertension is a leading risk factor for disease burden worldwide. Vascular contraction and remodeling contribute to the development of hypertension. Glutathione S-transferase P1 (Gstp1) plays several critical roles in both normal and neoplastic cells. In this study, we investigated the effect of Gstp1 on hypertension as well as on vascular smooth muscle cell (VSMC) contraction and phenotypic switching. We identified the higher level of Gstp1 in arteries and VSMCs from hypertensive rats compared with normotensive rats for the first time. We then developed Adeno-associated virus 9 (AAV9) mediated Gstp1 down-regulation and overexpression in rats and measured rat blood pressure by using the tail-cuff and the carotid catheter method. We found that the blood pressure of spontaneously hypertensive rats (SHR) rose significantly with Gstp1 down-regulation and reduced apparently after Gstp1 overexpression. Similar results were obtained from the observations of 2-kidney-1-clip renovascular (2K1C) hypertensive rats. Gstp1 did not influence blood pressure of normotensive Wistar-Kyoto (WKY) rats and Sprague-Dawley (SD) rats. Further in vitro study indicated that Gstp1 knockdown in SHR-VSMCs promoted cell proliferation, migration, dedifferentiation and contraction, while Gstp1 overexpression showed opposite effects. Results from bioinformatic analysis showed that the Apelin/APLNR system was involved in the effect of Gstp1 on SHR-VSMCs. The rise in blood pressure of SHR induced by Gstp1 knockdown could be reversed by APLNR antagonist F13A. We further found that Gstp1 enhanced the association between APLNR and Nedd4 E3 ubiquitin ligases to induce APLNR ubiquitination degradation. Thus, in the present study, we discovered a novel anti-hypertensive role of Gstp1 in hypertensive rats and provided the experimental basis for designing an effective anti-hypertensive therapeutic strategy.


Assuntos
Pressão Sanguínea , Glutationa S-Transferase pi , Hipertensão , Músculo Liso Vascular , Ubiquitina-Proteína Ligases Nedd4 , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Ubiquitinação , Animais , Masculino , Ratos , Proliferação de Células , Glutationa S-Transferase pi/metabolismo , Glutationa S-Transferase pi/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética
3.
Sci Rep ; 14(1): 17691, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085384

RESUMO

Glucocorticoids (GCs) are known to stimulate pancreatic beta (ß)-cell apoptosis via several mechanisms, including oxidative stress. Our previous study suggested an increase in dexamethasone-induced pancreatic ß-cell apoptosis via a reduction of glutathione S-transferase P1 (GSTP1), which is an antioxidant enzyme. Imatinib, which is a tyrosine kinase inhibitor, also exerts antioxidant effect. This study aims to test our hypothesis that imatinib would prevent pancreatic ß-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress. Our results revealed that dexamethasone significantly increased apoptosis in INS-1 cells when compared to the control, and that imatinib significantly decreased INS-1 cell apoptosis induced by dexamethasone. Moreover, dexamethasone significantly increased superoxide production in INS-1 cells when compared to the control; however, imatinib, when combined with dexamethasone, significantly reduced superoxide production in INS-1 cells. Dexamethasone significantly decreased GSTP1, p-ERK1/2, and BCL2 protein expression, but significantly increased p-JNK, p-p38, and BAX protein expression in INS-1 cells-all compared to control. Importantly, imatinib significantly ameliorated the effect of dexamethasone on the expression of GSTP1, p-ERK1/2, p-JNK, p-p38 MAPK, BAX, and BCL2. Furthermore-6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), which is a GSTP1 inhibitor, neutralized the protective effect of imatinib against pancreatic ß-cell apoptosis induced by dexamethasone. In conclusion, imatinib decreases pancreatic ß-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress.


Assuntos
Apoptose , Dexametasona , Glutationa S-Transferase pi , Mesilato de Imatinib , Células Secretoras de Insulina , Estresse Oxidativo , Mesilato de Imatinib/farmacologia , Dexametasona/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Glutationa S-Transferase pi/metabolismo , Animais , Ratos , Linhagem Celular , Superóxidos/metabolismo
4.
Nanotechnology ; 35(34)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38788695

RESUMO

Although chlorambucil (CHL) is a long-established anticancer drug, the drug failure of CHL, mediated by the intracellular defense system consisting of glutathione (GSH) and GSH S-transferase pi (GST-pi), has significantly limited the application of CHL. To overcome this issue, we first designed a GSH-responsive small-molecule prodrug (EA-SS-CHL) by combining CHL and ethacrynic acid (EA). Subsequently, drug-loaded nanoparticles (ECPP) were formed by the self-assembly between EA-SS-CHL and amphiphilic PEG-PDLLA to improve the water solubility of the prodrug and its ability to target tumor sites. Upon exposure to high intracellular GSH concentration, EA-SS-CHL gradually degrades, leading to the release of EA and CHL. The presence of EA facilitates the depletion of GSH and inhibition of GST-pi, ultimately attenuating the detoxification of the intracellular defense system to CHL. Cytotoxicity studies and apoptosis assays demonstrate that ECPP exhibits higher therapeutic efficiency than CHL. Additionally,in vivotumor suppression effects and biocompatibility provide further evidence for the superiority of ECPP. This work presents a promising strategy to enhance the efficacy of CHL in cancer therapy.


Assuntos
Clorambucila , Ácido Etacrínico , Glutationa , Micelas , Pró-Fármacos , Clorambucila/farmacologia , Clorambucila/química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Glutationa/metabolismo , Humanos , Animais , Ácido Etacrínico/farmacologia , Ácido Etacrínico/química , Nanopartículas/química , Camundongos , Glutationa S-Transferase pi/metabolismo , Glutationa S-Transferase pi/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Polietilenoglicóis/química , Glutationa Transferase/metabolismo , Portadores de Fármacos/química , Liberação Controlada de Fármacos
5.
Arch Biochem Biophys ; 757: 110043, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789086

RESUMO

The oncogene and drug metabolism enzyme glutathione S-transferase P (GSTP) is also a GSH-dependent chaperone of signal transduction and transcriptional proteins with key role in liver carcinogenesis. In this study, we explored this role of GSTP in hepatocellular carcinoma (HCC) investigating the possible interaction of this protein with one of its transcription factor and metronome of the cancer cell redox, namely the nuclear factor erythroid 2-related factor 2 (Nrf2). Expression, cellular distribution, and function as glutathionylation factor of GSTP1-1 isoform were investigated in the mouse model of N-nitrosodiethylamine (DEN)-induced HCC and in vitro in human HCC cell lines. The physical and functional interaction of GSTP protein with Nrf2 and Keap1 were investigated by immunoprecipitation and gene manipulation experiments. GSTP protein increased its liver expression, enzymatic activity and nuclear levels during DEN-induced tumor development in mice; protein glutathionylation (PSSG) was increased in the tumor masses. Higher levels and a preferential nuclear localization of GSTP protein were also observed in HepG2 and Huh-7 hepatocarcinoma cells compared to HepaRG non-cancerous cells, along with increased basal and Ebselen-stimulated levels of free GSH and PSSG. GSTP activity inhibition with the GSH analogue EZT induced apoptotic cell death in HCC cells. Hepatic Nrf2 and c-Jun, two transcription factors involved in GSTP expression and GSH biosynthesis, were induced in DEN-HCC compared to control animals; the Nrf2 inhibitory proteins Keap1 and ß-TrCP also increased and oligomeric forms of GSTP co-immunoprecipitated with both Nrf2 and Keap1. Nrf2 nuclear translocation and ß-TrCP expression also increased in HCC cells, and GSTP transfection in HepaRG cells induced Nrf2 activation. In conclusion, GSTP expression and subcellular distribution are modified in HCC cells and apparently contribute to the GSH-dependent reprogramming of the cellular redox in this type of cancer directly influencing the transcriptional system Nrf2/Keap1.


Assuntos
Carcinoma Hepatocelular , Glutationa S-Transferase pi , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Hepáticas , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Animais , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Glutationa S-Transferase pi/metabolismo , Glutationa S-Transferase pi/genética , Masculino , Linhagem Celular Tumoral , Células Hep G2 , Glutationa/metabolismo
6.
Phytomedicine ; 128: 155403, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38564920

RESUMO

BACKGROUND: Cardiovascular disease is one of the main causes of global mortality, and there is an urgent need for effective treatment strategies. Gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) promotes the development of cardiovascular diseases, and shizukaol C, a natural sesquiterpene isolated from Chloranthus multistachys with various biological activities, might exhibit beneficial role in preventing TMAO-induced vascular inflammation. PURPOSE: The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of shizukaol C on TMAO-induced vascular inflammation. METHODS: The effect and underlying mechanism of shizukaol C on TMAO-induced adhesion molecules expression, bone marrow-derived macrophages (BMDM) adhesion to VSMC were evaluated by western blot, cell adhesion assay, co-immunoprecipitation, immunofluorescence assay, and quantitative Real-Time PCR, respectively. To verify the role of shizukaol C in vivo, TMAO-induced vascular inflammation model were established using guidewire-induced injury on mice carotid artery. Changes in the intima area and the expression of GSTpi, VCAM-1, CD68 were examined using haematoxylin-eosin staining, and immunofluorescence assay. RESULTS: Our data demonstrated that shizukaol C significantly suppressed TMAO-induced adhesion molecule expression and the bone marrow-derived macrophages (BMDM) adhesion in vascular smooth muscle cells (VSMC). Mechanically, shizukaol C inhibited TMAO-induced c-Jun N-terminal kinase (JNK)-nuclear factor-kappa B (NF-κB)/p65 activation, and the JNK inhibition was dependent on the shizukaol C-mediated glutathione-S-transferase pi (GSTpi) expression. By further molecular docking and protein-binding analysis, we demonstrated that shizukaol C directly binds to Keap1 to induce Nrf2 nuclear translocation and upregulated GSTpi expression. Consistently, our in vivo experiment showed that shizukaol C elevated the expression level of GSTpi in carotid arteries and alleviates TMAO-induced vascular inflammation. CONCLUSION: Shizukaol C exerts anti-inflammatory effects in TMAO-treated VSMC by targeting Keap1 and activating Nrf2-GSTpi signaling and resultantly inhibits the downstream JNK-NF-κB/p65 activation and VSMC adhesion, and alleviates TMAO-induced vascular inflammation in vivo, suggesting that shizukaol C may be a potential drug for treating TMAO-induced vascular diseases.


Assuntos
Inflamação , Músculo Liso Vascular , Sesquiterpenos , Animais , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Adesão Celular/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilaminas/farmacologia , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Glutationa S-Transferase pi/efeitos dos fármacos , Glutationa S-Transferase pi/metabolismo
7.
Int J Biol Macromol ; 266(Pt 2): 131006, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522696

RESUMO

Malignant tumors contribute significantly to human mortality. Chemotherapy is a commonly used treatment for tumors. However, due to the low selectivity of chemotherapeutic drugs, immune cells can be damaged during antitumor treatment, resulting in toxicity. Lipopolysaccharide (LPS) can stimulate immune cells to respond to foreign substances. Here, we found that 10 ng/mL LPS could induce tolerance to antitumor drugs in macrophages without altering the effect of the drugs on tumor cells. Differentially expressed genes (DEGs) were identified between cells before and after LPS administration using transcriptome sequencing and found to be mainly associated with ATP-binding cassette (ABC)-resistant transporters and glutathione S-transferase (GST). LPS was shown by qRT-PCR and western blotting to promote the expression of ABCC1, GSTT1, and GSTP1 by 38.3 %, 194.8 %, and 27.0 %. Furthermore, three inhibitors (inhibitors of GST, glutathione synthesis, and ABCC1) were used for further investigation, showing that these inhibitors reduced macrophage survival rates by 44.0 %, 52.3 %, and 43.3 %, while the intracellular adriamycin content increased by 28.9 %, 42.9 %, and 51.3 %, respectively. These findings suggest that the protective mechanism of LPS on macrophages is associated with increased GST activity, the consumption of glutathione, and increased expression of ABCC1 protein. Therefore, LPS has a potential role in enhancing immunity.


Assuntos
Lipopolissacarídeos , Macrófagos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos , Animais , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Células RAW 264.7 , Humanos , Glutationa/metabolismo , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Sobrevivência Celular/efeitos dos fármacos
8.
Toxicol Mech Methods ; 34(5): 517-526, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38293967

RESUMO

Fine particulate matter (PM2.5) increases the risks of lung cancer. Epigenetics provides a new toxicology mechanism for the adverse health effects of PM2.5. However, the regulating mechanisms of PM2.5 exposure on candidate gene DNA methylation changes in the development of lung cancer remain unclear. Abnormal expression of the glutathione S transferase (GST) gene is associated with cancer. However, the relationship between PM2.5 and DNA methylation-mediated GST gene expression is not well understood. In this study, we performed GST DNA methylation analysis and GST-related gene expression in human A549 cells exposed to PM2.5 (0, 50, 100 µg/mL, from Taiyuan, China) for 24 h (n = 4). We found that PM2.5 may cause DNA oxidative damage to cells and the elevation of GSTP1 promotes cell resistance to reactive oxygen species (ROS). The Kelch-1ike ECH-associated protein l (Keap1)/nuclear factor NF-E2-related factor 2 (Nrf2) pathway activates the GSTP1. The decrease in the DNA methylation level of the GSTP1 gene enhances GSTP1 expression. GST DNA methylation is associated with reduced levels of 5-methylcytosine (5mC), DNA methyltransferase 1 (DNMT1), and histone deacetylases 3 (HDAC3). The GSTM1 was not sensitive to PM2.5 stimulation. Our findings suggest that PM2.5 activates GSTP1 to defend PM2.5-induced ROS and 8-hydroxy-deoxyguanosine (8-OHdG) formation through the Keap1/Nrf2 signaling pathway and GSTP1 DNA methylation.


Assuntos
Metilação de DNA , Glutationa S-Transferase pi , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Material Particulado , Transdução de Sinais , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Metilação de DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Células A549 , Transdução de Sinais/efeitos dos fármacos , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade
9.
J Mol Recognit ; 36(9): e3050, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555623

RESUMO

The interactions of the classic phytohormones gibberellic acid (gibberellin A3 , GA3 ) and abscisic acid (dormin, ABA), which antagonistically regulate several developmental processes and stress responses in higher plants, with human placental glutathione S-transferase P1-1 (hpGSTP1-1), an enzyme that plays a role in endo- or xenobiotic detoxification and regulation of cell survival and apoptosis, were investigated. The inhibitory potencies of ABA and GA3 against hpGSTP1, as well as the types of inhibition and the kinetic parameters, were determined by making use of both enzyme kinetic graphs and SPSS nonlinear regression models. The structural basis for the interaction between hpGSTP1-1 and phytohormones was predicted with the aid of molecular docking simulations. The IC50 values of ABA and GA3 were 5.3 and 5.0 mM, respectively. Both phytohormones inhibited hpGSTP1-1 in competitive manner with respect to the cosubstrates GSH and CDNB. When ABA was the inhibitor at [CDNB]f -[GSH]v and at [GSH]f -[CDNB]v , Vm , Km , and Ki values were statistically estimated to be 205 ± 16 µmol/min-mg protein, 1.32 ± 0.18 mM, 1.95 ± 0.25 mM and 175 ± 6 µmol/min-mg protein, 0.85 ± 0.06 mM, 1.85 ± 0.16 mM, respectively. On the other hand, the kinetic parameters Vm , Km , and Ki obtained with GA3 at [CDNB]f -[GSH]v and at [GSH]f -[CDNB]v were found to be 303 ± 14 µmol/min-mg protein, 1.77 ± 0.13 mM, 3.38 ± 0.26 mM and 249 ± 7 µmol/min-mg protein, 1.43 ± 0.07 mM, 2.89 ± 0.19 mM, respectively. Both phytohormones had the potential to engage in hydrogen-bonding and electrostatic interactions with the key residues that line the G- and H-sites of the enzyme's catalytic center. Inhibitory actions of ABA/GA3 on hpGSTP1-1 may guide medicinal chemists through the structure-based design of novel antineoplastic agents. It should be noted, however, that the same interactions may also render fetuses vulnerable to the potentially toxic effects of xenobiotics and noxious endobiotics.


Assuntos
Giberelinas , Placenta , Humanos , Gravidez , Feminino , Placenta/metabolismo , Giberelinas/farmacologia , Simulação de Acoplamento Molecular , Reguladores de Crescimento de Plantas/farmacologia , Glutationa/metabolismo , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Cinética
10.
Cell Death Dis ; 14(7): 463, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491277

RESUMO

Lactic acidosis is a feature of solid tumors and plays fundamental role(s) rendering cancer cells to adapt to diverse metabolic stresses, but the mechanism underlying its roles in redox homeostasis remains elusive. Here we show that G6PD is phosphorylated at tyrosine 249/322 by the SRC through the formation of a GSTP1-G6PD-SRC complex. Lactic acid attenuates this formation and the phosphorylation of G6PD by non-covalently binding with GSTP1. Furthermore, lactic acid increases the activity of G6PD and facilitates the PPP (NADPH production) through its sensor GSTP1, thereby exhibiting resistance to reactive oxygen species when glucose is scarce. Abrogating a GSTP1-mediated lactic acid signaling showed attenuated tumor growth and reduced resistance to ROS in breast cancer cells. Importantly, positive correlations between immuno-enriched SRC protein and G6PD Y249/322 phosphorylation specifically manifest in ER/PR positive or HER negative types of breast cancer. Taken together, these results suggest that GSTP1 plays a key role in tumor development by functioning as a novel lactate sensor.


Assuntos
Ácido Láctico , Neoplasias , Humanos , Carcinogênese , Transformação Celular Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Oxirredução , Glucosefosfato Desidrogenase/metabolismo , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo
11.
Cancer Prev Res (Phila) ; 16(8): 449-460, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347938

RESUMO

Glutathione S-transferase pi 1 (GSTP1) is lowly expressed in normal prostate luminal cells and becomes induced in most proliferative inflammatory atrophy (PIA) lesions. GSTP1 becomes silenced in prostatic intraepithelial neoplasia (PIN) and prostate adenocarcinoma (CaP) via cytosine-phospho-guanine (CpG) island promoter hypermethylation. However, GSTP1 methylation patterns in PIA and PIN, and their relationship to patterns in CaP are poorly understood. We used bisulfite genomic sequencing to examine patterns of GSTP1 promoter CpG island methylation in laser capture microdissected benign, PIA, PIN, and CaP regions from 32 subjects that underwent radical prostatectomy. We analyzed 908 sequence clones across 24 normal epithelium, 37 PIA, 18 PIN, and 23 CaP regions, allowing assessment of 34,863 CpG sites with allelic phasing. Normal and PIA lesions were mostly unmethylated with 0.52 and 1.3% of total CpG sites methylated, respectively. PIN and CaP lesions had greater methylation with 24% and 51% of total CpG sites methylated, respectively. The degree of GSTP1 methylation showed progression from PIA << PIN < CaP. PIN lesions showed more partial methylation compared with CaP lesions. Partially methylated lesions were enriched for methylation changes at AP1 and SP1 transcription factor binding sites. These results demonstrate that methylation density in the GSTP1 CpG island in PIN was intermediate relative to that in normal prostate epithelium/PIA and CaP lesions. These results are consistent with gradual spreading of DNA methylation centered at the SP1/AP1 transcription factor binding sites in precursor lesions, with subsequent spreading of methylation across the entire CpG island in transition to CaP. PREVENTION RELEVANCE: DNA hypermethylation at the GSTP1 promoter progressively spreads from being unmethylated in normal prostate to intermediate levels in precursor lesions to extensive methylation in cancer. This molecular progression of GSTP1 promoter methylation patterns in early prostate carcinogenesis could be useful for identification and interception of prostate cancer precursors.


Assuntos
Neoplasia Prostática Intraepitelial , Neoplasias da Próstata , Masculino , Humanos , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Metilação de DNA , Ilhas de CpG/genética , Glutationa Transferase/genética , Neoplasias da Próstata/patologia , Neoplasia Prostática Intraepitelial/genética , Neoplasia Prostática Intraepitelial/patologia
12.
Biomolecules ; 13(4)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189361

RESUMO

Multidrug resistance is a significant barrier that makes anticancer therapies less effective. Glutathione transferases (GSTs) are involved in multidrug resistance mechanisms and play a significant part in the metabolism of alkylating anticancer drugs. The purpose of this study was to screen and select a lead compound with high inhibitory potency against the isoenzyme GSTP1-1 from Mus musculus (MmGSTP1-1). The lead compound was selected following the screening of a library of currently approved and registered pesticides that belong to different chemical classes. The results showed that the fungicide iprodione [3-(3,5-dichlorophenyl)-2,4-dioxo-N-propan-2-ylimidazolidine-1-carboxamide] exhibited the highest inhibition potency (ΙC50 = 11.3 ± 0.5 µΜ) towards MmGSTP1-1. Kinetics analysis revealed that iprodione functions as a mixed-type inhibitor towards glutathione (GSH) and non-competitive inhibitor towards 1-chloro-2,4-dinitrobenzene (CDNB). X-ray crystallography was used to determine the crystal structure of MmGSTP1-1 at 1.28 Å resolution as a complex with S-(p-nitrobenzyl)glutathione (Nb-GSH). The crystal structure was used to map the ligand-binding site of MmGSTP1-1 and to provide structural data of the interaction of the enzyme with iprodione using molecular docking. The results of this study shed light on the inhibition mechanism of MmGSTP1-1 and provide a new compound as a potential lead structure for future drug/inhibitor development.


Assuntos
Glutationa S-Transferase pi , Glutationa Transferase , Animais , Camundongos , Glutationa S-Transferase pi/química , Glutationa S-Transferase pi/metabolismo , Simulação de Acoplamento Molecular , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Isoenzimas/metabolismo , Cinética
13.
Free Radic Biol Med ; 204: 54-67, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105420

RESUMO

Mitochondrial dysfunction is a fundamental challenge in myocardial injury. Ginsenoside Rg1 (Rg1) is a bioactive compound with pharmacological potential for cardiac protection. Optic atrophy 1 (OPA1) acts as a mitochondrial inner membrane protein that contributes to the structural integrity and function of mitochondria. This study investigated the protective role of Rg1 in septic cardiac injury from the perspective of OPA1 stability. Rg1 protected cardiac contractive function against endotoxin injury in mice by maintaining mitochondrial cristae structure. In cardiomyocytes, lipopolysaccharide (LPS) evoked mitochondrial fragmentation and destruction of mitochondrial biogenesis, which were prevented by Rg1, possibly due to the preservation of the integrity of cristae structure. In support, the beneficial effects of Rg1 on cardioprotection and mitochondrial biogenesis were diminished by OPA1 deficiency subjected to the LPS challenge. Mechanistically, LPS stimulation triggered intracellular glutathione destabilization that promoted S-glutathionylation of OPA1 at Cys551, leading to the dissociation of OPA1-Mitofilin. Rg1 interacted with Glutathione S-transferase pi (GSTP1) to inhibit its mediated S-glutathionylation of OPA1, thereby promoting OPA1-Mitofilin interaction and protecting mitochondrial cristae structure. These findings suggest that GSTP1/OPA1 axis may be a beneficial strategy for the treatment of myocardial injury, and expand the clinical application of Rg1.


Assuntos
Atrofia Óptica Autossômica Dominante , Animais , Camundongos , Glutationa S-Transferase pi/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119450, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871745

RESUMO

PURPOSE: Oxidative stress-induced apoptosis of lens epithelial cells (LECs) contributes to the pathogenesis of age-related cataract (ARC). The purpose of this research is to underlie the potential mechanism of E3 ligase Parkin and its oxidative stress-associated substrate in cataractogenesis. METHODS: The central anterior capsules were obtained from patients with ARC, Emory mice, and corresponding controls. SRA01/04 cells were exposed to H2O2 combined with cycloheximide (a translational inhibitor), MG-132 (a proteasome inhibitor), chloroquine (an autophagy inhibitor), Mdivi-1 (a mitochondrial division inhibitor), respectively. Co-immunoprecipitation was employed to detect protein-protein interactions and ubiquitin-tagged protein products. Levels of proteins and mRNA were evaluated by western blotting and quantitative RT-PCR assays. RESULTS: Glutathione-S-transferase P1 (GSTP1) was identified as a novel Parkin substrate. Compared with corresponding controls, GSTP1 was significantly decreased in the anterior lens capsules obtained from human cataracts and Emory mice. Similarly, GSTP1 was declined in H2O2-stimulated SRA01/04 cells. Ectopic expression of GSTP1 mitigated H2O2-induced apoptosis, whereas silencing GSTP1 aggregated apoptosis. In addition, H2O2 stimulation and Parkin overexpression could promote the degradation of GSTP1 through the ubiquitin-proteasome system, autophagy-lysosome pathway, and mitophagy. After co-transfection with Parkin, the non-ubiquitinatable GSTP1 mutant maintained its anti-apoptotic function, while wildtype GSTP1 failed. Mechanistically, GSTP1 might promote mitochondrial fusion through upregulating Mitofusins 1/2 (MFN1/2). CONCLUSION: Oxidative stress induces LECs apoptosis via Parkin-regulated degradation of GSTP1, which may provide potential targets for ARC therapy.


Assuntos
Catarata , Glutationa Transferase , Humanos , Camundongos , Animais , Glutationa Transferase/genética , Peróxido de Hidrogênio/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Catarata/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Ubiquitina/metabolismo , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo
15.
Adv Sci (Weinh) ; 10(7): e2205262, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709476

RESUMO

Glutathione S-transferase pi (GSTP1), a phase II detoxification enzyme, is known to be overexpressed and mediates chemotherapeutic resistance in lung cancer. However, whether GSTP1 supports cancer stem cells (CSCs) and the underlying mechanisms in lung adenocarcinoma (LUAD) remain largely unknown. This study unveiled that GSTP1 is upregulated in lung CSCs and supports tumor self-renewal, metastasis, and resistance to targeted tyrosine kinase inhibitors of LUAD both in vitro and in vivo. Mechanistically, CaMK2A (calcium/calmodulin-dependent protein kinase 2 isoform A)/NRF2 (nuclear factor erythroid 2-related factor 2)/GSTP1 is uncovered as a regulatory axis under hypoxia. CaMK2A increased GSTP1 expression through phosphorylating the Sersine558 residue of NRF2 and promoting its nuclear translocation, a novel mechanism for NRF2 activation apart from conventional oxidization-dependent activation. Upregulation of GSTP1 in turn suppressed reactive oxygen species levels and supported CSC phenotypes. Clinically, GSTP1 analyzed by immunohistochemistry is upregulated in a proportion of LUAD and serves as a prognostic marker for survival. Using patient-derived organoids from an ALK-translocated LUAD, the therapeutic potential of a specific GSTP1 inhibitor ezatiostat in combination treatment with the ALK inhibitor crizotinib is demonstrated. This study demonstrates GSTP1 to be a promising therapeutic target for long-term control of LUAD through targeting CSCs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Fator 2 Relacionado a NF-E2 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Receptores Proteína Tirosina Quinases
16.
Redox Biol ; 59: 102568, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563536

RESUMO

Glutathione-S-transferases (GSTs) are phase II detoxification isozymes that conjugate glutathione (GSH) to xenobiotics and also suppress redox stress. It was suggested that GSTs have evolved not to enhance their GSH affinity, but to better interact with and metabolize cytotoxic nitric oxide (NO). The interactions between NO and GSTs involve their ability to bind and store NO as dinitrosyl-dithiol iron complexes (DNICs) within cells. Additionally, the association of GSTP1 with inducible nitric oxide synthase (iNOS) results in its inhibition. The function of NO in vasodilation together with studies associating GSTM1 or GSTT1 null genotypes with preeclampsia, additionally suggests an intriguing connection between NO and GSTs. Furthermore, suppression of c-Jun N-terminal kinase (JNK) activity occurs upon increased levels of GSTP1 or NO that decreases transcription of JNK target genes such as c-Jun and c-Fos, which inhibit apoptosis. This latter effect is mediated by the direct association of GSTs with MAPK proteins. GSTP1 can also inhibit nuclear factor kappa B (NF-κB) signaling through its interactions with IKKß and Iκα, resulting in decreased iNOS expression and the stimulation of apoptosis. It can be suggested that the inhibitory activity of GSTP1 within the JNK and NF-κB pathways may be involved in crosstalk between survival and apoptosis pathways and modulating NO-mediated ROS generation. These studies highlight an innovative role of GSTs in NO metabolism through their interaction with multiple effector proteins, with GSTP1 functioning as a "good Samaritan" within each pathway to promote favorable cellular conditions and NO levels.


Assuntos
NF-kappa B , Óxido Nítrico , Óxido Nítrico/metabolismo , Glutationa Transferase/metabolismo , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Óxidos de Nitrogênio , Glutationa
17.
Biomed Pharmacother ; 154: 113529, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36030586

RESUMO

Osteoporosis a common disease in postmenopausal women which contains significant impact on the living quality of women. With the aging of the population, the number of patients suffer from osteoporosis has shown a significant increase. Given the limitations of clinical drugs for the treatment of osteoporosis, natural extracts with small side effects have a great application prospect in the treatment of osteoporosis. Praeruptorin B (Pra-B), is one of the main components found in the roots of Peucedanum praeruptorum Dunn and exhibits anti-inflammatory effects. However, there is no research on the influence of Pra-B on osteoporosis. Here, we showed that Pra-B can dose-dependently suppress osteoclastogenesis without cytotoxicity. Receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-induced the nuclear import of P65 was inhibited by Pra-B, which indicated the suppressive effect of Pra-B on NF-κB signaling. Further, Pra-B enhanced the expression of Glutathione S-transferase Pi 1 (GSTP1) and promoted the S-glutathionylation of IKKß to inhibit the nuclear translocation of P65. Moreover, in vivo experiments showed that Pra-B considerably attenuated the bone loss in ovariectomy (OVX)-induced mice. Collectively, our studies revealed that Pra-B suppress the NF-κB signaling targeting GSTP1 to rescued RANKL-induced osteoclastogenesis in vitro and OVX-induced bone loss in vivo, supporting the potential of Pra-B for treating osteoporosis in the future.


Assuntos
Quinase I-kappa B , Osteoporose , Animais , Diferenciação Celular , Cumarínicos , Feminino , Glutationa S-Transferase pi/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Camundongos , NF-kappa B/metabolismo , Osteoclastos , Osteogênese , Osteoporose/metabolismo , Ovariectomia , Ligante RANK/metabolismo , Ligante RANK/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-35153270

RESUMO

Glutathione-S transferase P1 (GSTP1) is one of the glutathione-S transferase isozymes that belong to a family of phase II metabolic isozymes. The unique feature of GSTP1 compared with other GST isozymes is its relatively high expression in malignant tissues. Thus, clinically, GSTP1 serves as a tumor marker and as a refractory factor against certain types of anticancer drugs through its primary function as a detoxifying enzyme. Additionally, recent studies have identified a chaperone activity of GSTP1 involved in the regulation the function of various intracellular proteins, including factors of the growth signaling pathway. In this review, we will first describe the function of GSTP1 and then extend the details onto its role in the mitogen-activated protein kinase signal pathway, referring to the results of our recent study that proposed a novel autocrine signal loop formed by the CRAF/GSTP1 complex in mutated KRAS and BRAF cancers. Finally, the possibilities of new therapeutic approaches for these cancers by targeting this complex will be discussed.


Assuntos
Antineoplásicos , Glutationa S-Transferase pi , Linhagem Celular Tumoral , Glutationa , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase
19.
Mol Biol Rep ; 49(2): 1655-1659, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34623592

RESUMO

BACKGROUND: Glutathione S-transferase Pi (GSTP1) enzyme has a major antioxidant effect on the central nervous system (CNS), where it acts against oxidative damage, an established risk factor for amyotrophic lateral sclerosis (ALS). Hence, the purpose of this study was to evaluate a possible relationship between GSTP1 rs1695 polymorphism and the survival rate of male ALS patients, which is the gender more affected by the disease. METHODS AND RESULTS: A case-control study was performed with 56 male ALS patients and 70 healthy male individuals from Midwestern Brazil, which were age-adjusted. GSTP1 rs1695 polymorphism molecular analysis was carried out with restriction fragment length polymorphism. The relationship between ALS patients and GSTP1 rs1695 polymorphism was analyzed using cumulative survival rate as the major outcome, where differences in survival were evaluated through the log-rank test. Our results revealed that mutant genotype (G/G) did not influence the cumulative survival rate of male ALS patients regarding the age of diagnosis (p = 0.5) and time from symptom to diagnosis (p = 0.3). On the other hand, mutant carriers exhibited a significant survival of fewer than 25 months compared to A/A and A/G genotypes that survive more than 100 months (p = 7-E10) in comparison with symptom onset to outcome (p = 0.00006). CONCLUSIONS: In summary, our findings revealed that mutant genotype carriers' male patients had a reduced lifetime, which probably may be resulted from oxidative stress exposure in CNS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Glutationa S-Transferase pi/metabolismo , Adulto , Esclerose Lateral Amiotrófica/metabolismo , Brasil/epidemiologia , Estudos de Casos e Controles , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Genótipo , Glutationa S-Transferase pi/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
20.
Biotech Histochem ; 97(5): 317-321, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34547977

RESUMO

The association of glutathione S-transferase (GST) enzymes with vitiligo is inconclusive. To evaluate tissue expressions of GST isoenzymes in vitiligo patients and to compare these expressions with healthy controls, we used 26 active depigmented patches on the trunk of vitiligo patients and 20 healthy sex and age matched controls. Punch biopsies were taken from the lesioned or normal skin. Tissue expression of GST isoenzymes were analyzed immunohistochemically. Tissue expression of GSTT1, GSTA1 and GSTP1 was significantly higher in the patient group than controls. Tissue expression of GSTM1 was not significantly different between the two groups. The increased tissue expression of GSTT1, GSTA1 and GSTP1 may represent a response to excess free radical formation in vitiligo and may support the role of oxidative stress in the pathogenesis of vitiligo.


Assuntos
Isoenzimas , Vitiligo , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Glutationa S-Transferase pi/genética , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Polimorfismo Genético , Vitiligo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...