Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.221
Filtrar
1.
Genes (Basel) ; 15(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39202347

RESUMO

Polyploid wheats include a group of tetraploids known as Timopheevii (AuAuGG), which are represented by two subspecies: Triticum timopheevii ssp. timopheevii (cultivated) and Triticum timopheevii ssp. araraticum (wild). The combined use of electrophoretic (SDS-PAGE) and chromatographic (RP-HPLC) techniques carried out on high-molecular-weight glutenin subunits (HMW-GSs) permitted the association of different x- and y-type subunits to the A and G genomes and the assessment of allelic variation present at corresponding loci. The results also revealed that in both subspecies, accessions are present that possess expressed y-type subunits at the Glu-A1 locus. Genes corresponding to these subunits were amplified and amplicons corresponding to x- and y-type genes associated with the A genome were detected in all accessions, including those without expressed x- and y-type subunits. The comparison with genes of polyploid wheats confirmed the structural characteristics of typical y-type genes, with the presence of seven cysteine residues and with hexapeptide and nonapeptide repeat motifs. The identification of wild and cultivated T. timopheevii with both x- and y-type glutenin subunits at the Glu-A1 and Glu-G1 loci represents a useful source for the modification of the allelic composition of HMW-GSs in cultivated wheats with the ultimate objective of improving technological properties.


Assuntos
Glutens , Triticum , Glutens/genética , Glutens/química , Triticum/genética , Peso Molecular , Alelos , Poliploidia , Subunidades Proteicas/genética , Subunidades Proteicas/química
2.
Carbohydr Polym ; 342: 122414, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048204

RESUMO

This study aims to understand the molecular and supramolecular transformations of wheat endosperm biopolymers during bread-making, and their implications to fabricate self-standing films from stale white bread. A reduction in the Mw of amylopectin (51.8 × 106 vs 425.1 × 106 g/mol) and water extractable arabinoxylans WEAX (1.79 × 105 vs 7.63 × 105 g/mol), and a decrease in amylose length (245 vs 748 glucose units) was observed after bread-baking. The chain length distribution of amylopectin and the arabinose-to-xylose (A/X) ratio of WEAX remained unaffected during bread-making, suggesting that heat- or/and shear-induced chain scission is the mechanism responsible for molecular fragmentation. Bread-making also resulted in more insoluble cell wall residue, featured by water unextractable arabinoxylan of lower A/X and Mw, along with the formation of a gluten network. Flexible and transparent films with good light-blocking performance (<30 % transmittance) and DPPH-radical scavenging capacity (~8.5 %) were successfully developed from bread and flour. Bread films exhibited lower hygroscopicity, tensile strength (2.7 vs 8.5 MPa) and elastic modulus (67 vs 501 MPa) than flour films, while having a 6-fold higher elongation at break (10.0 vs 61.2 %). This study provides insights into the changes in wheat biopolymers during bread-making and sets a precedent for using stale bread as composite polymeric materials.


Assuntos
Amilopectina , Pão , Farinha , Triticum , Xilanos , Triticum/química , Pão/análise , Farinha/análise , Biopolímeros/química , Xilanos/química , Amilopectina/química , Resistência à Tração , Arabinose/química , Xilose/química , Glutens/química
3.
Int J Biol Macromol ; 276(Pt 1): 133640, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38969047

RESUMO

The potential of using emulsion gels stabilized by binary plant protein nanoparticle mixtures for the encapsulation and delivery of lipophilic nutraceuticals was evaluated. The particle characteristics, physical stability, water diffusivity, microrheology, large amplitude oscillating shear (LAOS) properties, and in vitro digestion of emulsion gels prepared by different ratios of hydrolyzed rice glutelin fibrils (HRGFs) and pea protein nanoparticle (PNP) were characterized. The emulsion gel with P/H = 2:1 (0.84 µm) exhibited the best storage stability and freeze-thaw stability, as seen by the smaller oil droplet size (1.02 and 1.42 µm, respectively). Low-field pulsed NMR indicated that the majority of water in samples was highly mobile. All the samples were predominantly elastic-like materials. The P/H 2:1 emulsion gel had the lowest FI value (6.21 × 10-4 Hz), the highest MVI value (5.57 s/nm2), G'/ G″ values and enclosed area, showing that it had denser 3D network structures, higher stiffness values, and a high sensitivity to changes in strain. Additionally, P/H 2:1 emulsion gel had a relatively high lipid digestibility (96.1 %), curcumin bioaccessibility (58.9 %), and curcumin stability (94.2 %). This study showed that emulsion gels stabilized by binary protein nanoparticle mixtures (PNP/HRGF) have potential as edible delivery systems for lipophilic nutraceuticals.


Assuntos
Curcumina , Emulsões , Géis , Glutens , Nanopartículas , Oryza , Proteínas de Ervilha , Curcumina/química , Curcumina/farmacologia , Emulsões/química , Nanopartículas/química , Proteínas de Ervilha/química , Oryza/química , Glutens/química , Géis/química , Hidrólise , Tamanho da Partícula , Reologia , Composição de Medicamentos
4.
Proc Natl Acad Sci U S A ; 121(28): e2407066121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959038

RESUMO

Mammalian transglutaminases, a family of Ca2+-dependent proteins, are implicated in a variety of diseases. For example, celiac disease (CeD) is an autoimmune disorder whose pathogenesis requires transglutaminase 2 (TG2) to deamidate select glutamine residues in diet-derived gluten peptides. Deamidation involves the formation of transient γ-glutamyl thioester intermediates. Recent studies have revealed that in addition to the deamidated gluten peptides themselves, their corresponding thioester intermediates are also pathogenically relevant. A mechanistic understanding of this relevance is hindered by the absence of any structure of Ca2+-bound TG2. We report the X-ray crystallographic structure of human TG2 bound to an inhibitory gluten peptidomimetic and two Ca2+ ions in sites previously designated as S1 and S3. Together with additional structure-guided experiments, this structure provides a mechanistic explanation for how S1 regulates formation of an inhibitory disulfide bond in TG2, while also establishing that S3 is essential for γ-glutamyl thioester formation. Furthermore, our crystallographic findings and associated analyses have revealed that i) two interacting residues, H305 and E363, play a critical role in resolving the thioester intermediate into an isopeptide bond (transamidation) but not in thioester hydrolysis (deamidation); and ii) residues N333 and K176 stabilize preferred TG2 substrates and inhibitors via hydrogen bonding to nonreactive backbone atoms. Overall, the intermediate-state conformer of TG2 reported here represents a superior model to previously characterized conformers for both transition states of the TG2-catalyzed reaction.


Assuntos
Cálcio , Proteínas de Ligação ao GTP , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Transglutaminases/metabolismo , Transglutaminases/química , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Humanos , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/química , Cristalografia por Raios X , Glutens/metabolismo , Glutens/química , Modelos Moleculares , Conformação Proteica , Doença Celíaca/metabolismo , Ligação Proteica
5.
Food Chem ; 458: 140256, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959802

RESUMO

This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.


Assuntos
Pão , Glutens , Reologia , Saccharomyces cerevisiae , Selênio , Glutens/química , Glutens/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Selênio/química , Selênio/metabolismo , Selênio/análise , Pão/análise , Farinha/análise , Triticum/química , Triticum/metabolismo , Suplementos Nutricionais/análise
6.
Food Chem ; 458: 140238, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38968705

RESUMO

Corynebacterium glutamicum was used to ferment wheat gluten hydrolysates (WGHs) to prepare flavour base. This study investigated the effect of hydrolysis degrees (DHs) and fermentation time on flavour of WGHs. During fermentation, the contents of amino nitrogen, total acid and small peptides increased, while the protein and pH value decreased. Succinic acid, GMP, and Glu were the prominent umami substances in fermented WGHs. The aromas of WGHs with different DHs could be distinguished by electronic nose and GC-IMS. Based on OAV of GC-MS, hexanal was the main compound in WGHs, while phenylethyl alcohol and acetoin were dominant after fermentation. WGHs with high DHs accumulated more flavour metabolites. Correlation analysis showed that small peptides (<1 kDa) could promote the formation of flavour substances, and Asp was potentially relevant flavour precursor. This study indicated that fermented WGHs with different DHs can potentially be used in different food applications based on flavour profiles.


Assuntos
Corynebacterium glutamicum , Fermentação , Aromatizantes , Glutens , Triticum , Glutens/metabolismo , Glutens/química , Glutens/análise , Triticum/química , Triticum/metabolismo , Triticum/microbiologia , Aromatizantes/metabolismo , Aromatizantes/química , Hidrólise , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/química , Odorantes/análise , Paladar
7.
Int J Biol Macromol ; 276(Pt 1): 133780, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992525

RESUMO

The properties and structure of gluten protein with different deacetylation degrees of konjac glucomannan (KGM) were investigated, in an attempt to improve the quality of gluten protein in flour products. Results showed that deacetylated KGM (DKGM) could improve the textural properties and enhance the thermal stability of gluten protein. DKGM increased the water holding capacity and shortened the T2 relaxation time of gluten after removing some acetyl groups. As the deacetylation degree increased, the hardness and adhesiveness of gluten gels gradually increased, while the springiness decreased. In addition, the presence of DKGM promoted the conversion from free sulfhydryl to disulfide bonds and increased the ß-sheet content in gluten protein. The low-deacetylation KGM decreased the surface hydrophobicity and fluorescence intensity of gluten protein, and the microstructures of gluten gels became more compact. Compared with gluten protein-KGM complex gel, the degradation temperature of gluten protein-DKGM complex gels was observed to increase by >3 °C. Overall, the low-deacetylation KGM was beneficial for improving the physicochemical properties and maintaining the network structure of gluten protein. This study provides valuable references and practical insights to improve gluten quality in the flour industry.


Assuntos
Glutens , Mananas , Triticum , Mananas/química , Glutens/química , Triticum/química , Acetilação , Interações Hidrofóbicas e Hidrofílicas , Temperatura , Farinha/análise
8.
Int J Biol Macromol ; 276(Pt 1): 133778, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992541

RESUMO

Pickering emulsions with good freeze-thaw stability are essential in frozen food applications. This study developed a high freeze-thaw stabilized soy protein isolate (SPI)-maltose (M) Pickering emulsion and applied it to frozen doughs to investigate and reveal its impacts on the processing properties of the frozen dough. The results showed that after the freeze-thaw cycle, with a volume ratio of 1:2 of SPI to M, the appropriate amount of M changed the structure of SPI. This resulted in the Pickering emulsion prepared by the SPI exhibiting the least droplet coalescence and the best freeze-thaw stability. The results of dough rheological properties, textural properties, and binding capacity with water demonstrated that Pickering emulsions effectively inhibited the loss of gluten protein network structure in the dough after freeze treatment and increased the binding capacity of gluten proteins with starch and water in the dough. The best results were obtained with the incorporation of 3 % SPI-M high freeze-thaw stability, where the amount of bound water following three freeze-thaw cycles was 4.27 times higher than in doughs without Pickering emulsion. Overall, this study is significant for enhancing the freeze-thaw stability of Pickering emulsions stabilized by proteins and providing a new application route for Pickering emulsions.


Assuntos
Emulsões , Congelamento , Maltose , Proteínas de Soja , Emulsões/química , Proteínas de Soja/química , Maltose/química , Reologia , Água/química , Farinha , Glutens/química
9.
Food Chem ; 460(Pt 1): 140491, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047483

RESUMO

The effect of the released amount and bitterness threshold of bitter peptides on the sensory properties of different wheat gluten hydrolysates (WGHs) after hydrolysis was investigated. The results showed that the endo-activity of the enzyme promoted the release of bitter peptides, leading to enhanced bitterness intensity in WGHs. With the increase in degree of hydrolysis (DH), the bitter threshold of bitter peptides became the main reason affecting bitterness of the WGHs. Proteax exerted the strong exo-activity at the DH of 20%, which could reduce bitterness of Pro-16 hydrolysates. The reason for debittering was the reduction in the content with molecular weights (MWs) of 500-1000 Da and the decrease of surface hydrophobicity (SH) in the Pro-20 M hydrolysates, which led to the increase of the bitterness threshold of bitter peptide. Meanwhile, HPLC-MS/MS analysis demonstrated the reduced proportion of C-terminal hydrophobic amino acids (HAAs) in Pro-20 M extracts verifying the cause of debittering.


Assuntos
Glutens , Peptídeos , Paladar , Triticum , Glutens/química , Hidrólise , Triticum/química , Peptídeos/química , Peptídeos/isolamento & purificação , Humanos , Espectrometria de Massas em Tandem , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Biocatálise
10.
Food Chem ; 460(Pt 1): 140568, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053275

RESUMO

This work deals with the study on the protein extractability of biscuits incurring different percentages of roasted peanut flour. The presence of two different flours influenced the rate of protein aggregation and protein extractability, according to the percentage of roasted peanut flour added to the formulation and assessing these features by testing the use of two buffers. Results showed that gluten network arrangement of biscuits was influenced by the flours mixture besides the baking, with possible different protein organizations. Protein extractability was affected, underlining a higher content of protein aggregates at high molecular weight especially with the addition of 20% of peanut flour, characterized by hydrophobic and reducible covalent bonds, as suggested by the higher extractability obtained with the buffer with chaotropic and reducing agents. These results suggested a possible induced supramolecular protein organization in these products, which could affect the immunoreactivity of the main allergens occurred in the formulation.


Assuntos
Arachis , Farinha , Agregados Proteicos , Arachis/química , Arachis/imunologia , Farinha/análise , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Pão/análise , Alérgenos/imunologia , Alérgenos/química , Alérgenos/análise , Glutens/química , Glutens/análise
11.
Int J Biol Macromol ; 277(Pt 4): 134282, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084446

RESUMO

It has been demonstrated that ferulic acid (FA) can be effectively encapsulated using wheat gluten amyloid fibrils (AF) and chitosan (CS) in a double network hydrogel (DN) form, with cross-linking mediated by Genipin (GP). Within this system, the DN comprising gluten AF-FA and CS-FA exhibited optimal loading metrics at a formulation designated as DN8, achieving a load efficiency of 88.5 % and a load capacity of 0.78 %. Analysis through fluorescence quenching confirmed that DN8 harbored the highest quantity of FA. Fourier-transform infrared spectroscopy (FTIR) further verified a significant increase in ß-sheet content post-hydrogel formation, enhancing the binding capacity for FA. Rheological assessments indicated a transition from solution to gel, delineating the phase state of the DN. Comprehensive in vitro digestion studies revealed that DN8 provided superior sustained release properties, exhibited the highest total antioxidant capacity, and displayed potent inhibitory activities against angiotensin I converting enzyme (ACE) and acetylcholinesterase (Ach-E). Additionally, the DN significantly bolstered the stability of FA against photothermal degradation. Collectively, these findings lay foundational insights for the advancement of the wheat gluten AF-based delivery system for bioactive compounds and provided a theoretical basis for the development of functional foods.


Assuntos
Amiloide , Quitosana , Ácidos Cumáricos , Portadores de Fármacos , Glutens , Hidrogéis , Triticum , Quitosana/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Glutens/química , Hidrogéis/química , Hidrogéis/farmacologia , Triticum/química , Amiloide/química , Portadores de Fármacos/química , Antioxidantes/química , Antioxidantes/farmacologia , Reologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Liberação Controlada de Fármacos
12.
J Food Sci ; 89(7): 4298-4311, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957101

RESUMO

This study explored the mechanism of l-lysine intervention in wheat gluten protein (WG) gel formation under a microwave (MW) field. The results showed that the MW treatment had higher ζ-potential values at the same heating rate. After adding l-lysine, the solution conductivity and dielectric loss were significantly increased. Moreover, the WG gel strength enhanced 4.40% under the MW treatment. The Fourier spectra showed that the α-helix content was decreased 13.78% with the addition of lysine. The ultraviolet absorption spectra and fluorescence spectra indicated that MW irradiation impacted the interactions between WG molecules more effectively than the water bath heating, promoting the denaturation and unfolding of the protein structure. In addition, scanning electron microscopy analysis showed that the incorporation of lysine promoted an ordered network structure formation of the protein, which enhanced the gel properties. This indicated that the zwitterion of l-lysine played a regulatory role in the aggregation of proteins in the MW field.


Assuntos
Glutens , Lisina , Micro-Ondas , Triticum , Lisina/química , Triticum/química , Glutens/química , Agregados Proteicos , Proteínas de Plantas/química , Temperatura Alta , Géis/química
13.
Int J Biol Macromol ; 272(Pt 2): 132773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823746

RESUMO

The structure and physicochemical properties of the complex system of peanut protein and gluten with different concentrations (0 %, 0.5 %, 1 %, and 2 %) of carboxymethyl cellulose (CMC) or sodium alginate (SA) under high-moisture extrusion were studied. The water absorption index and low-field nuclear magnetic resonance showed that adding 0.5 % SA could significantly improve the water uniformity of peanut protein extrudates, while the increase in water absorption was not significant. The texture properties showed that adding CMC or SA increased the hardness, vertical shearing force, and parallel shearing force of the system. Furthermore, adding 0.5 % SA increased approximately 33 % and 75.2 % of the tensile distance and strength of the system, respectively. The secondary structure showed that CMC or SA decreased the proportion of α-helix, ß-turn, and random coil, while increased ß-sheet proportion. The results of hydrophobicity, unextractable protein, and endogenous fluorescence revealed that CMC and SA reduced the surface hydrophobicity of the system and caused fluorescence quenching in the system. Additionally, it was found that CMC generally increased the free sulfhydryl group content, while SA exhibited the opposite effect.


Assuntos
Arachis , Coloides , Glutens , Proteínas de Plantas , Polissacarídeos , Triticum , Glutens/química , Arachis/química , Coloides/química , Proteínas de Plantas/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Triticum/química , Fenômenos Químicos , Água/química , Interações Hidrofóbicas e Hidrofílicas , Carboximetilcelulose Sódica/química , Resistência à Tração , Alginatos/química , Alginatos/farmacologia
14.
Biomacromolecules ; 25(7): 3976-3989, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38829254

RESUMO

We study the efficiency of several asymmetrical flow field-flow fractionation (AF4) techniques to investigate self-associating wheat gluten proteins. We compare the use of a denaturing buffer including sodium dodecyl sulfate (SDS) and a mild chaotropic solvent, water/ethanol, as the eluent, on a model gluten sample. Through a thorough analysis of the data obtained from coupled light scattering detectors and with the identification of molecular composition of the eluted protein, we evidence coelution events in several conditions. We show that the focus step used in conventional AF4 with the SDS buffer leads to the formation of aggregates that coelute with monomeric proteins. By contrast, a frit-inlet device enables the fractionation of individual wheat proteins in the SDS buffer. Interestingly conventional AF4, using water/ethanol as eluent, is an effective method for fractionating gluten proteins and their complex dynamic assemblies, which involve weak forces and are composed of both monomeric and polymeric proteins.


Assuntos
Fracionamento por Campo e Fluxo , Glutens , Dodecilsulfato de Sódio , Triticum , Fracionamento por Campo e Fluxo/métodos , Glutens/química , Triticum/química , Dodecilsulfato de Sódio/química , Proteínas de Plantas/química
15.
Int J Biol Macromol ; 273(Pt 1): 133081, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866275

RESUMO

To reduce the release of volatile organic compounds (VOCs) from formaldehyde-based adhesives at the source, the use of low-toxicity and biodegradable glyoxal instead of formaldehyde for the preparation of novel urea-glyoxal resins is a simple and promising strategy. The limited water resistance and adhesive strength of the new urea-glyoxal resins (UG) restrict their extensive application. This study prepared a high-performance, water-resistant WP-UG wood adhesive by combining UG prepolymer with wheat gluten protein (WP). FTIR, XRD, and XPS confirmed the existence of a chemical reaction between the two components, and thermal analysis showed that WP-UG plywood had better thermal stability. Evaluation of the gluing properties revealed that the dry and wet strengths of WP-UG adhesive bonded plywood reached 1.39 and 0.87 MPa, respectively, which were significantly higher than those of UG resin by 35 % and 314 %. The bond strength increased from 0 to 0.89 MPa after immersion in water at 63 °C for 3 h. The results indicated that the introduction of WP promoted the formation of a more complex and tightly packed crosslinking network and developed a glyoxal-based adhesive with high bond strength and water resistance. This study provides a new green pathway for novel urea-formaldehyde binders to replace harmful formaldehyde-based binders, which helps to increase their potential application value in the wood industry.


Assuntos
Adesivos , Glutens , Glioxal , Triticum , Ureia , Água , Glioxal/química , Adesivos/química , Glutens/química , Água/química , Triticum/química , Ureia/química , Formaldeído/química , Madeira/química
16.
Food Chem ; 455: 139760, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824734

RESUMO

In this study, six types of amino acids (Ala, Phe, Glu, Gly, Ser, and Lys) were combined with glucose to produce Maillard reaction products (MRPs) named G-Ala, G-Phe, G-Glu, G-Gly, G-Ser and G-Lys. The effect of MRPs on bread staling was evaluated through texture and sensory analyses during storage. Furthermore, the study comprehensively analyzed the anti-staling mechanisms of MRPs by examining moisture content, starches, and gluten network changes. The results indicated that G-Gly and G-Glu delayed bread staling, with G-Gly showing the most significant effect. Compared with control, the staling rate and starch crystallinity of G-Gly bread decreased by 24.07% and 7.70%, respectively. Moreover, G-Gly increased the moisture content (3.48%), weakly bound water mobility (0.77%), and α-helix content (1.00%) of bread. Component identification and partial least squares regression further confirmed the aldonic acid, heterocyclic acids and heterocyclic ketones in MRPs inhibit water evaporation, gluten network loosening, and starch degradation, thereby delaying bread staling.


Assuntos
Pão , Glucose , Glutens , Reação de Maillard , Amido , Água , Pão/análise , Amido/química , Glutens/química , Glucose/química , Água/química , Aminoácidos/química , Humanos , Triticum/química , Manipulação de Alimentos , Paladar
17.
Int J Biol Macromol ; 274(Pt 2): 133256, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908629

RESUMO

Aiming to investigate the changes and effects of different particle sizes of wheat A/B starch during dough fermentation, the present study reconstituted A/B starch fractions in ratios of 100:0, 75:25, 50:50, 25:75, and 0:100, further blended with gluten and subjected to slight (20 min), medium (30 min), and high (60 min) fermentation processes by yeasts. Results showed that fermentation gas production promoted gluten network extension, inducing starch granule exposure and dough surface roughness. Also, fermentation fractured protein intermolecular disulfide bonds and decreased α-helix and ß-folded structure content, contributing to GMP, LPP, and SPP content decreases. Moreover, moderately increasing the B-starch ratio in the dough can improve gluten network stability, continuity, and air-holding capacity. The 25A-75B steam bread exhibited optimal processing suitability (better morphology, texture, and quality) due to its higher GMP and polymer protein content with lower free sulfhydryl and monomeric protein content. Further, conformational relationships indicated the key indicators influencing dough products' properties were free sulfhydryl content, GMP content, protein molecular weight distribution, and secondary structure. The obtained findings contributed to understanding the effect of wheat starch granule size distribution on dough processing behavior, and future targeted breeding for wheat cultivars with high B-starch content for improved fermentation pasta product qualities.


Assuntos
Pão , Fermentação , Amido , Triticum , Triticum/química , Triticum/metabolismo , Amido/química , Amido/metabolismo , Pão/análise , Farinha/análise , Glutens/química , Tamanho da Partícula , Manipulação de Alimentos/métodos , Estrutura Molecular
18.
Food Chem ; 458: 140227, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943950

RESUMO

Some wheat-based foods require different doses of oil to moderate quality of dough during processing and the influence mechanisms remain unclear. Therefore, the effect of rapeseed oil addition on physicochemical characteristics and fine structure of dough and underlying mechanism were elucidated by rheometer, scanning microscope and molecular spectroscopic method. Results showed that compared with native dough (without exogenous rapeseed oil), the addition of rapeseed oil changed the fine structure, improved extensibility, but reduced viscoelasticity of the dough. Moreover, high addition especially 20 wt% oil (based on wheat flour) significantly changed gelatinization and retrogradation behaviors of the dough, whilst disrupted gluten network and increased random coil content (32.1%) of dough except that decreased its α-helix (21.2%), ß-sheet (23.1%), disulfide bond (7.9 µmol/g) compared with native dough which were 16.3%, 29.2%, 33.1%, 11.0 µmol/g, respectively. Results in the study could provide a certain understanding for application of vegetable oils in wheat-based products.


Assuntos
Farinha , Ácido Oleico , Óleo de Brassica napus , Reologia , Triticum , Triticum/química , Óleo de Brassica napus/química , Farinha/análise , Ácido Oleico/química , Viscosidade , Pão/análise , Glutens/química , Óleos de Plantas/química
19.
Food Chem ; 456: 139984, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38876063

RESUMO

To improve the stability of anthocyanins and techno-functionality of purple and blue wheat, the selectively hydrolyzed soy protein (reduced glycinin, RG) and ß-conglycinin (7S) were prepared and their enhanced effects were comparatively investigated. The anthocyanins in purple wheat showed higher stability compared to that of the blue wheat during breadmaking. The cyanidin-3-O-glucoside and cyanidin-3-O-rutincoside in purple wheat and delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside in blue wheat were better preserved by RG. Addition of RG and 7S enhanced the quality of steamed bread made from colored and common wheat, with RG exhibited a more prominent effect. RG and 7S suppressed the gelatinization of starch and improved the thermal stability. Both RG and 7S promoted the unfolding process of gluten proteins and facilitated the subsequent crosslinking of glutenins and gliadins by disulfide bonds. Polymerization of α- and γ-gliadin into glutenin were more evidently promoted by RG, which contributed to the improved steamed bread quality.


Assuntos
Antocianinas , Pão , Proteínas de Soja , Triticum , Triticum/química , Pão/análise , Antocianinas/química , Proteínas de Soja/química , Hidrólise , Manipulação de Alimentos , Cor , Globulinas/química , Vapor , Farinha/análise , Culinária , Glutens/química , Temperatura Alta
20.
Int J Biol Macromol ; 274(Pt 1): 133223, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897509

RESUMO

The coarse texture and difficulty in processing dietary fiber (DF) in cereal bran have become limiting factors for the development of the whole cereal grain (WCG) food industry. To promote the development of the WCG industry, this review comprehensively summarizes the various forms and structures of cereal DF, including key features such as molecular weight, chain structure, and substitution groups. Different modification methods for changing the chemical structure of DF and their effects on the modification methods on physicochemical properties and biological activities of DF are discussed systematically. Furthermore, the review focusses on exploring the interactions between DF and dough components and discusses the effects on the gluten network structure, starch gelatinization and retrogradation, fermentation, glass transition, gelation, and rheological and crystalline characteristics of dough. Additionally, opportunities and challenges regarding the further development of DF for the flour products are also reviewed. The objective of this review is to establish a comprehensive foundation for the precise modification of cereal DF, particularly focusing on its application in dough-related products, and to advance the development and production of WCG products.


Assuntos
Fibras na Dieta , Grão Comestível , Grãos Integrais , Grão Comestível/química , Grãos Integrais/química , Manipulação de Alimentos/métodos , Farinha/análise , Reologia , Glutens/química , Fermentação , Amido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...