Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Sci Total Environ ; 948: 174854, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032751

RESUMO

Coastal areas are affected by urban, industrial and agriculture pollutants runoff, wastewater and stormwater discharges, making this environment the final repository of chemical contaminants. These contaminants have the potential to spread out to the entire food chain, impacting marine life and the quality of their habitat. In this aspect, the concept of marine mammals as bioindicators provides an approach to the degree of contamination in the environment and to the identification and management of multiple sources of contaminants. The present study analyzed several elements like As, Ba, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V and Zn in liver tissue from two dolphin species: Sotalia guianensis, a near-threatened species, and the vulnerable Pontoporia blainvillei. In the study, we also investigated if dolphins (population) recorded using the heaviest urban areas have higher concentrations of contaminants in their tissues. Dolphin samples (n = 40 S. guianensis; n = 97 P. blainvillei) were collected by daily monitoring carried out by Santos Basin Beach Monitoring Project (PMP-BS), from stranded individuals found in São Paulo state. The Spearman's rank correlation showed distinct correlations in the accumulation of trace elements by both species, indicating different sources of exposure to the elements studied or distinct biochemical processes between species. Interspecific and intraspecific variations were observed, possibly related to the individual distribution and feeding habits. Correlations were observed between age and concentrations of trace elements, positive for Cd, Hg and Mo. Finally, our findings indicate high levels of Cu, Zn, and concentrations of As, V and Hg in fetuses, in particular, an analysis was performed on a fetus found inside a stranded individual, indicating placental transfer as the first route of exposure for some elements.


Assuntos
Bioacumulação , Golfinhos , Espécies em Perigo de Extinção , Monitoramento Ambiental , Oligoelementos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Oligoelementos/análise , Oligoelementos/metabolismo , Golfinhos/metabolismo , Feminino , Brasil , Troca Materno-Fetal
2.
Environ Pollut ; 359: 124559, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019312

RESUMO

Contaminant accumulation in organisms can be influenced by both biological traits and environmental conditions. However, delineating the main factors affecting contaminant burdens in organisms remains challenging. Here, we conducted an initial investigation into the impact of diet and habitat on the accumulation of short- (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in Indo-Pacific humpback dolphins (2003-2020, n = 128) from the Pearl River Estuary (PRE), a highly polluted estuary in China. The detected levels of SCCPs (5897 ± 3480 ng g-1 lw) and MCCPs (13,960 ± 8285 ng g-1 lw) in blubber samples of humpback dolphin are the highest among recorded values marine mammals. Both SCCPs and MCCPs exhibited biomagnification factor values exceeding 1, suggesting their biomagnification potential within the dolphins and their diet. Quantitative diet analysis using the dolphin fatty acid signatures revealed that humpback dolphins inhabiting the western PRE consumed a larger proportion of carnivorous fish than those from the eastern PRE. However, spatial analysis showed that humpback dolphins in the western PRE contained lower SCCP/MCCP concentrations than those from the eastern PRE. Based on these findings we suggest that, compared to diet differences, spatial variations of SCCPs/MCCPs in humpback dolphins may be predominantly influenced by their space-use strategies, as the eastern PRE is closer to the pollutant discharge source and transfer routes.


Assuntos
Golfinhos , Monitoramento Ambiental , Parafina , Poluentes Químicos da Água , Animais , Parafina/análise , Parafina/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Golfinhos/metabolismo , China , Estuários , Hidrocarbonetos Clorados/metabolismo , Hidrocarbonetos Clorados/análise , Ecossistema , Dieta/veterinária
3.
Bull Environ Contam Toxicol ; 112(6): 82, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822880

RESUMO

Mercury contamination has been aggravated by emerging environmental issues, such as climate change. Top predators present concerning Hg concentrations once this metal bioaccumulates and biomagnifies. This study evaluated total mercury (THg) concentrations in tissues of 43 franciscanas (Pontoporia blainvillei) from two populations: the Franciscana Management Area (FMA) IIb and FMA IIIa. Animals from FMA IIIa showed mean concentration 5-times and 2.5-times higher in the liver and kidney (4.73 ± 6.84 and 0.52 ± 0.51 µg.g-1, w.w., respectively) than individuals from FMA IIb (0.89 ± 1.04 and 0.22 ± 0.15 µg.g-1, w.w., respectively). This might be due to: (I) individuals sampled from FMA IIIa being larger and older, and/or (II) the area near FMA IIIa presents environmental features leading to higher THg availability. Coastal contamination can affect franciscanas' health and population maintenance at different levels depending on their life history and, therefore, it should be considered to guide specific conservation actions.


Assuntos
Golfinhos , Espécies em Perigo de Extinção , Monitoramento Ambiental , Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Mercúrio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Oceano Atlântico , Golfinhos/metabolismo , Fígado/metabolismo , Rim/metabolismo
4.
Environ Int ; 190: 108826, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925005

RESUMO

Given the increased extraction of trace elements for use by new and emerging technologies, monitoring the environmental fate and potential effects of these compounds within the aquatic environment has never been more critical. Here, hepatic trace element concentrations were assessed in a key sentinel predator, the common dolphin (Delphinus delphis), using a long-term dataset. Variation in concentrations were assessed in relation to other elements, time period, decomposition state, sex, age, total body length, sexual maturity and nutritional status, and cause of death. Additionally, mercury toxicity thresholds for evaluating risk were reviewed and employed. Concentrations of elements which bioaccumulate, THg, MeHg, Cd, and Pb, in addition to Se and V, were strongly correlated with age, and/or body length. An association was observed between Zn concentrations and disease status, with significantly higher concentrations measured in individuals that died from infectious disease, compared to other causes. Strong inter-elemental relationships were detected, namely between Hg and Se, MeHg and Se, Cd and Se, and Cu and Zn. While THg:Se molar ratio values were observed to increase with age and body length, approaching equimolarity. THg was largely comprised of inorganic Hg in older individuals, potentially bound to Se, therefore the effects from THg toxicity may possibly be less important than originally assumed. In contrast, higher MeHg:Hg ratio values were reported in juveniles, suggesting a poorer efficiency in demethylation and a higher sensitivity. The generation of data on proportions of hepatic MeHg and inorganic Hg is highly informative to both future toxicity threshold assessments within pollutant indicator assessments, and to understanding the ultimate fate of mercury in the marine web.


Assuntos
Monitoramento Ambiental , Oligoelementos , Poluentes Químicos da Água , Animais , Oligoelementos/análise , Oligoelementos/metabolismo , Poluentes Químicos da Água/análise , Golfinhos/metabolismo , Masculino , Feminino , Nível de Saúde , Fígado/metabolismo , Fígado/química , Mercúrio/metabolismo , Oceanos e Mares
5.
Mar Pollut Bull ; 205: 116598, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885576

RESUMO

The concerning of plastic pollution in different ecosystems has been worsened by the widespread presence. Phthalate esters (PAEs), plasticizers found in everyday products, can migrate into the environment, especially into the oceans. Researches on their effects on cetaceans are still rare. Metabolomics helps assess perturbations induced by exposure to PAEs, which act as persistent endocrine disruptors. Four PAEs (dimethyl phthalate - DMP, diethyl phthalate - DEP, dibutyl phthalate - DBP, and di(2-ethylhexyl phthalate - DEHP) were analyzed, along with cholesterol and fatty acid profiles of P. blainvillei's blubber samples collected in southern Brazil. The study reveals pervasive contamination by PAEs - especially DEHP, present in all samples - with positive correlations between DEP content and animal size and weight, as well as between the DEHP amount and the C17:1 fatty acid. These findings will be relevant to conservation efforts aimed at this threatened species and overall marine ecosystems.


Assuntos
Golfinhos , Monitoramento Ambiental , Ésteres , Metaboloma , Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Brasil , Ácidos Ftálicos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Ésteres/análise , Ésteres/metabolismo , Golfinhos/metabolismo , Tecido Adiposo/metabolismo , Dietilexilftalato/metabolismo , Plastificantes , Disruptores Endócrinos/análise , Masculino , Feminino , Dibutilftalato
6.
Mar Pollut Bull ; 203: 116455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735171

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds ubiquitous in the environment and known for their toxic, mutagenic, and carcinogenic effects. These compounds can bioaccumulate in the biota and be transferred through trophic webs. The franciscana dolphin (Pontoporia blainvillei), as top predators, can be an environmental sentinels. Thus, this study aimed to provide data about PAHs concentration in their hepatic tissue collected on the coast of Espírito Santo (Franciscana Management Area, FMA Ia), Rio de Janeiro (FMA IIa), and São Paulo states (FMA IIb), in Southeastern Brazil. PAHs were detected in 86 % of franciscana dolphins (n = 50). The highest ∑PAHsTotal median concentration was reported in FMA Ia followed by FMA IIb and FMA IIa (1055.6; 523.9, and 72.1 ng.g-1 lipid weight, respectively). Phenanthrene was detected in one fetus and two neonates, showing maternal transfer of PAHs in these dolphins. Evaluating PAHs with potential toxic effects is of utmost importance for the conservation of a threatened species.


Assuntos
Golfinhos , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Golfinhos/metabolismo , Oceano Atlântico , Brasil , Feminino
7.
Environ Toxicol Chem ; 43(6): 1260-1273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546224

RESUMO

Microplastics (<5 mm in diameter) are ubiquitous in the oceanic environment, yet microplastic accumulation in marine mammals is vastly understudied. In recent years, efforts have been made to document microplastic profiles in odontocetes. The objective of the present study was to describe and quantify microplastics in the gastrointestinal (GI) tracts of deceased odontocetes that stranded in the southeastern United States. Our study included 24 bottlenose dolphins (Tursiops truncatus), two pygmy sperm whales (Kogia breviceps), one pantropical spotted dolphin (Stenella attenuata), one short-snouted spinner dolphin (Stenella clymene), one Risso's dolphin (Grampus griseus), and one dwarf sperm whale (Kogia sima) obtained from stranding networks in Texas, Alabama, Florida, and Puerto Rico. Contents found in the GI tracts, namely, the stomach and portions of the intestinal tract, were subjected to a laboratory procedure to isolate microplastics. The physical characteristics of microparticles were analyzed with a stereomicroscope, and microplastics were classified by polymer type via Fourier-transform infrared spectroscopy. There was an average of 47.6 ± 41.4 microparticles, ranging from 1 to 193 items per stomach. More specifically, there was an average of 5.6 ± 4.7 microplastics per stomach. The predominant morphologies, colors, and polymer types were fibers, white-colored items, and polyester, respectively. This research contributes to the current knowledge of microplastic exposure in top marine mammal predators and sets the stage for further exploration into the associated risks of microplastics in odontocetes within the United States and worldwide. Environ Toxicol Chem 2024;43:1260-1273. © 2024 SETAC.


Assuntos
Monitoramento Ambiental , Trato Gastrointestinal , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Poluentes Químicos da Água/análise , Trato Gastrointestinal/metabolismo , Sudeste dos Estados Unidos , Baleias/metabolismo , Golfinhos/metabolismo
8.
Environ Sci Technol ; 58(1): 63-74, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38112512

RESUMO

The detrimental effects of bisphenol (BP) exposure are a concern for vulnerable species, Indo-Pacific humpback dolphins (Sousa chinensis). To investigate the characteristics of BP profiles and their adverse impact on humpback dolphins, we assessed the concentrations of six BPs, including bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol B (BPB), and bisphenol P (BPP) in blubber (n = 26) and kidney (n = 12) of humpback dolphins stranded in the Pearl River Estuary, China. BPS accounted for the largest proportion of the total bisphenols (∑BPs) in blubber (55%) and kidney (69%). The concentration of ∑BP in blubber was significantly higher than that in the kidney and liver. The EC50 values of five BPA alternatives were lower than those of BPA in humpback dolphin skin fibroblasts (ScSF) and human skin fibroblasts (HSF). ScSF was more sensitive to BPS, BPAF, BPB, and BPP than HSF. The enrichment pathway of BPA was found to be associated with inflammation and immune dysregulation, while BPP and BPS demonstrated a preference for genotoxicity. BPA, BPP, and BPS, which had risk quotients (RQs) > 1, were found to contribute to subhealth and chronic disease in humpback dolphins. According to the EC50-based risk assessment, BPS poses a higher health risk than BPA for humpback dolphins. This study successfully evaluated the risks of bisphenols in rare and endangered cetacean cell lines using a noninvasive method. More in vivo and in field observations are necessary to know whether the BPA alternatives are likely to be regrettable substitutions.


Assuntos
Golfinhos , Poluentes Químicos da Água , Animais , Humanos , Golfinhos/metabolismo , Poluentes Químicos da Água/toxicidade , China , Compostos Benzidrílicos/toxicidade
9.
Chemosphere ; 338: 139496, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451642

RESUMO

Mercury is a metal of toxicological importance that occurs naturally. However, its concentration can be affected by anthropogenic activities and has the potential to bioaccumulate and biomagnify in food webs. Thus, knowing how its concentration varies along the trophic levels allows us to understand its potential risks to the biota. The present study aimed to investigate mercury transfer through the Stenella frontalis food web in Ilha Grande Bay (IGB), Rio de Janeiro state, Brazil. Samples of muscle and liver of S. frontalis were obtained from carcasses (n = 8) found stranded in the IGB, and its potential prey species were collected in fishing landings in the same Bay (n = 145). Total mercury (THg) concentrations were determined by atomic absorption spectrometry, and the δ15N was determined by an isotope ratio mass spectrometer. To investigate how trophic transfer affects mercury contamination in biota, six linear models were applied between THg logarithmic concentrations and δ15N or trophic position (TP). The trophic magnification factor (TMF) was calculated from each model to estimate the trophic transfer. Mean THg concentration in S. frontalis was higher in the liver than in muscle, but no correlation was found with age and δ15N values. Instead, the hepatic and muscular THg concentrations positively correlated with the trophic position. In the summer, THg concentration, TP, and δ15N values in prey species varied significantly, as well as in the winter, except for THg concentration. All trophic transfer models were significant in both seasons, and the TMF >1. The present study showed that trophic transfer is an essential factor in mercury biomagnification in both seasons but is not the unique driver. Both δ15N and TP could explain mercury trophic transfer, but TP better integrates metabolic diversity and seasonality.


Assuntos
Golfinhos , Mercúrio , Stenella , Poluentes Químicos da Água , Animais , Mercúrio/análise , Stenella/metabolismo , Bioacumulação , Golfinhos/metabolismo , Brasil , Cadeia Alimentar , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-37510576

RESUMO

Organochlorine pesticides (OCP) are legacy anthropogenic compounds known to persist for several years in the environment. The continuous use of some OCP, such as DDT, after restrictions in developing countries are cause of concern, due to their deleterious effects to marine life and humans. Studies assessing OCP contamination in coastal environments are still scarce in South America and there is a need to understand the impacts from trophic chain accumulation of these pollutants in marine life. In this study, we have assessed OCP levels in muscle and liver and estimated the biomagnification factor in several upwelling system trophic chain members, including fish, squid, and marine mammal from Southeastern Brazil. DDT degradation product DDE was the OCP detected in the highest concentrations in Franciscana dolphins (Pontoporia blainvillei), 86.4 ng·g-1 wet weight, and fish muscle and liver. In general, higher OCP levels were found in liver than in muscle, except for croaker. Biomagnification factors (BMF) of OCP in the top predator P. blainvillei and the carnivorous cutlass fish (Trichiurus lepturus) were on average between 0.2 and 1.8. Continued OCP monitoring in this region is warranted to better understand the distribution and fate of these compounds over time, with the goal to establish strategies for the conservation of local dolphin species and to assess human health risks from local coastal region populations.


Assuntos
Golfinhos , Hidrocarbonetos Clorados , Perciformes , Praguicidas , Poluentes Químicos da Água , Animais , Humanos , DDT , Brasil , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Golfinhos/metabolismo , Peixes/metabolismo , Perciformes/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental
11.
Environ Pollut ; 333: 121935, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37263561

RESUMO

There is a need to understand the links between metals and nutrition for apex marine predators, which may be subject to different ecotoxicological effects at different life stages. We combined stomach content analyses (SCA), prey composition analysis (PCA), the Multidimensional Niche Framework (MNNF) with Bayesian multivariate ellipses, trace metal analysis and nicheROVER to investigate nutrition and trace metals across sex, age, and sexual maturity status in common dolphins (Delphinus delphis) from New Zealand. A broader prey composition niche breadth (SEAc) was estimated for immature compared to mature conspecifics, showing a higher degree of prey and nutrient generalism driven by protein (P) intake. Cd and Zn niche similarities suggests these metals were incorporated through similar prey in both immature and mature dolphins, whereas Hg and Se niche divergence indicates uptake occurred via different prey. Our multidisciplinary assessment demonstrated how nutrients and metal interactions differ in common dolphins depending upon sexual maturity. This approach has relevance when considering how marine pollution, environmental fluctuations and climate change may affect nutritional and trace metal interactions during different reproductive stages within marine predators.


Assuntos
Golfinhos Comuns , Golfinhos , Mercúrio , Oligoelementos , Animais , Golfinhos Comuns/metabolismo , Teorema de Bayes , Monitoramento Ambiental , Golfinhos/metabolismo , Mercúrio/análise , Oligoelementos/metabolismo
12.
Environ Sci Technol ; 57(25): 9298-9308, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37295780

RESUMO

Halogenated flame retardants (HFRs) are a large class of chemical additives intended to meet flammability safety requirements, and at present, they are ubiquitous in the environment. Herein, we conducted the target analysis and suspect screening of legacy and novel HFRs and their metabolites in the blubber of finless porpoises (Neophocaena phocaenoides; n = 70) and Indo-Pacific humpback dolphins (Sousa chinensis; n = 35) stranded in Hong Kong, a coastal city in the South China Sea, between 2013 and 2020. The average concentrations of total target HFRs (ΣHFRs) were 6.48 × 103 ± 1.01 × 104 and 1.40 × 104 ± 1.51 × 104 ng/g lipid weight in porpoises and dolphins, respectively. Significant decreasing temporal trends were observed in the concentrations of tetra-/penta-/hexa-bromodiphenyl ethers (tetra-/penta-/hexa-BDEs) in adult porpoises stranded from 2013-2015 to 2016-2020 (p < 0.05), probably because of their phasing out in China. No significant difference was found for the concentrations of decabromodiphenyl ether and hexabromocyclododecane, possibly due to their exemption from the ban in China until 2025 and 2021, respectively. Eight brominated compounds were additionally identified via suspect screening. A positive correlation was found between the concentrations of tetra-BDE and methyl-methoxy-tetra-BDE (Me-MeO-tetra-BDE) (p < 0.05), indicating that the metabolism of tetra-BDE may be a potential source of Me-MeO-tetra-BDE in marine mammals.


Assuntos
Golfinhos , Retardadores de Chama , Toninhas , Animais , Hong Kong , Retardadores de Chama/análise , Toninhas/metabolismo , Golfinhos/metabolismo , China , Éteres Difenil Halogenados/análise , Monitoramento Ambiental/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-37119961

RESUMO

Cetaceans exhibit physiological adaptations that allowed the transition to aquatic life, including a robust antioxidant defense system that prevents injury from repeated exposure to ischemia/reperfusion events associated with breath-hold diving. The signaling cascades that characterize ischemic inflammation in humans are well characterized. In contrast, cetaceans' molecular and biochemical mechanisms that confer tolerance to inflammatory events are poorly understood. Heme oxygenase (HO) is a cytoprotective protein with anti-inflammatory properties. HO catalyzes the first step in the oxidative degradation of heme. The inducible HO-1 isoform is regulated by various stimuli, including hypoxia, oxidant stress, and inflammatory cytokines. The objective of this study was to compare the response of HO-1 and cytokines to a proinflammatory challenge in leukocytes isolated from humans and bottlenose dolphins (Tursiops truncatus). We measured changes in HO activity, and abundance and expression of interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and heme oxygenase 1 (HMOX1) in leukocytes treated with lipopolysaccharide (LPS) for 24 and 48 h. HO activity increased (p < 0.05) in dolphin (48 h) but not human cells. TNF-α expression increased in human (24 h, 48 h), but not dolphin cells following LPS stimulation. LPS-induced cytokine expression was lower in dolphin than in human leukocytes, suggesting a blunted cytokine response in bottlenose dolphin leukocytes treated with LPS. Results suggest species-specific regulation of inflammatory cytokines in leukocytes treated with LPS, which may lead to differential responses to a pro-inflammatory challenge between marine and terrestrial mammals.


Assuntos
Citocinas , Golfinhos , Humanos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Golfinhos/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Interleucina-6/metabolismo , Leucócitos/metabolismo
14.
Chemosphere ; 323: 138237, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36863632

RESUMO

Organic contaminants with toxic effects, like the conventional brominated flame retardants (BFRs) and BFRs of emergent concern, and their synergistic effects with other micropollutants, can be an additional threat to delphinids. Rough-toothed dolphins (Steno bredanensis) populations strongly associated with coastal environments already face a potential risk of decline due to high exposure to organochlorine pollutants. Moreover, natural organobromine compounds are important indicators of the environment's health. Polybrominated diphenyl ethers (PBDEs), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB) and the methoxylated PBDEs (MeO-BDEs) were determined in the blubber of rough-toothed dolphins from three ecological populations from the Southwestern Atlantic Ocean (Southeastern, Southern and Outer Continental Shelf/Southern populations, SE, S, and OCS/S, respectively). The profile was dominated by the naturally produced MeO-BDEs (mainly 2'-MeO-BDE 68 and 6-MeO-BDE 47), followed by the anthropogenic BFRs PBDEs (mainly BDE 47). Median ΣMeO-BDE concentrations varied between 705.4 and 3346.0 ng g-1 lw among populations and ΣPBDE from 89.4 until 538.0 ng g-1 lw. Concentrations of anthropogenic organobromine compounds (ΣPBDE, BDE 99 and BDE 100) were higher in SE population than in OCS/S, indicating a coast - ocean gradient of contamination. Negative correlations were found between the concentration of the natural compounds and age, suggesting their metabolization and/or biodilution and maternal transference. Conversely, positive correlations were found between the concentrations of BDE 153 and BDE 154 and age, indicating low biotransformation capability of these heavy congeners. The levels of PBDEs found are concerning, particularly for SE population, because they are similar to concentrations known for the onset of endocrine disruption in other marine mammals and may be an additional threat to a population in a hotspot for chemical pollution.


Assuntos
Golfinhos , Retardadores de Chama , Poluentes Químicos da Água , Animais , Golfinhos/metabolismo , Éteres Difenil Halogenados/análise , Poluentes Químicos da Água/análise , Oceano Atlântico , Monitoramento Ambiental , Retardadores de Chama/análise
15.
Sci Total Environ ; 876: 163094, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996992

RESUMO

Food has consistently been shown to be an important source of exposure to environmental pollutants, drawing attention to the health risks of pollutants in marine mammals with high daily food intake. Here, the dietary exposure risks posed to the Indo-Pacific humpback dolphins from the Pearl River Estuary (PRE), China, by fourteen phthalate metabolites (mPAEs) were evaluated for the first time. On the basis of liquid chromatography-mass spectrometry (LC-MS/MS) analysis, the levels of ∑14mPAEs in ten main species of prey fish (n = 120) of dolphins ranged from 103.0 to 444.5 ng/g wet weight (ww), among which Bombay duck contained a significantly higher body burden of ∑14mPAEs than other prey species. Phthalic acid (PA), monooctyl phthalate (MnOP), monononyl phthalate (MNP), monoethyl phthalate (MEP), monoethylhexyl phthalate (MEHP), mono (5-carboxy-2-ethylpentyl) phthalate (MECPP), monobutyl phthalate (MBP), and monoisobutyl phthalate (MiBP) all had a trophic magnification factor (TMF) greater than unity, indicating the biomagnification potential of these mPAEs in the marine ecosystem of the PRE. A dietary exposure assessment based on the adjusted reference dose values of phthalates (PAEs) showed that bis (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) may pose a high (HQ > 1) and medium (0.01 < HQ < 1) risk to the dolphin adults and juveniles, respectively. Our results highlight the potential health risks of mPAEs to marine mammals through dietary routes.


Assuntos
Golfinhos , Poluentes Ambientais , Ácidos Ftálicos , Animais , Exposição Ambiental/análise , Golfinhos/metabolismo , Cromatografia Líquida , Ecossistema , Espectrometria de Massas em Tandem , Ácidos Ftálicos/análise , Poluentes Ambientais/análise , Peixes/metabolismo , Medição de Risco
16.
Eur J Neurosci ; 57(7): 1161-1179, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36514861

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease and the primary cause of disability and dependency among elderly humans worldwide. AD is thought to be a disease unique to humans although several other animals develop some aspects of AD-like pathology. Odontocetes (toothed whales) share traits with humans that suggest they may be susceptible to AD. The brains of 22 stranded odontocetes of five different species were examined using immunohistochemistry to investigate the presence or absence of neuropathological hallmarks of AD: amyloid-beta plaques, phospho-tau accumulation and gliosis. Immunohistochemistry revealed that all aged animals accumulated amyloid plaque pathology. In three animals of three different species of odontocete, there was co-occurrence of amyloid-beta plaques, intraneuronal accumulation of hyperphosphorylated tau, neuropil threads and neuritic plaques. One animal showed well-developed neuropil threads, phospho-tau accumulation and neuritic plaques, but no amyloid plaques. Microglia and astrocytes were present as expected in all brain samples examined, but we observed differences in cell morphology and numbers between individual animals. The simultaneous occurrence of amyloid-beta plaques and hyperphosphorylated tau pathology in the brains of odontocetes shows that these three species develop AD-like neuropathology spontaneously. The significance of this pathology with respect to the health and, ultimately, death of the animals remains to be determined. However, it may contribute to the cause(s) of unexplained live-stranding in some odontocete species and supports the 'sick-leader' theory whereby healthy conspecifics in a pod mass strand due to high social cohesion.


Assuntos
Doença de Alzheimer , Golfinhos , Doenças Neurodegenerativas , Idoso , Animais , Humanos , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Golfinhos/metabolismo , Placa Amiloide/metabolismo , Emaranhados Neurofibrilares/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo
17.
Environ Pollut ; 315: 120358, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36228850

RESUMO

The susceptibility to trace metals and legacy POPs is different between terrestrial and marine mammals. In this study, we established the first cell line from Indo-Pacific finless porpoises and compared the cellular responses of skin fibroblast cells from Pygmy killer whales, Pantropic spotted dolphins, Indo-Pacific finless porpoises, mice, and humans following exposure to copper, methylmercury, cadmium, PCB126, PCB153, and BDE47 to better understand the interspecies sensitivities of mammals to chemical pollutants. We conducted a risk assessment by comparing no-observed effect concentrations (NOEC), lowest-observed effect concentrations (LOEC), and half maximal effective concentrations (EC50) from cell viability assays and previously reported pollutant body burdens in mammals. Based on the in vitro data, Indo-Pacific finless porpoises were more sensitive to copper and methylmercury than other mammals. PCB153 exposure reduced cell viability in all mammals except humans, while PCB126 was more potent, with 13.33 µg/mL exposure reducing cell viability in all mammals. In contrast, BDE47 exposure reduced cell viability only in terrestrial mammals in addition to pantropic spotted dolphin. Based on the in vitro data and the natural context of metal concentrations, both methylmercury and cadmium posed a higher risk to cetaceans than human, while copper posed a lower risk to cetaceans. All three legacy POPs (PCB126, PCB153, and BDE47) posed minor risk to cetaceans for short-term exposure. This study demonstrated that a species-specific in vitro model may provide more accurate information on the potential risk of pollutants to mammals. However, due to the bioamplification of POPs and their potential impact on the endocrine system and immune system of cetaceans, risk assessment with long-term exposure with more in vitro models should be further studied.


Assuntos
Golfinhos , Poluentes Ambientais , Compostos de Metilmercúrio , Toninhas , Oligoelementos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Poluentes Químicos da Água/análise , Compostos de Metilmercúrio/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Cádmio/metabolismo , Toninhas/metabolismo , Golfinhos/metabolismo , Oligoelementos/toxicidade , Oligoelementos/metabolismo , Poluentes Ambientais/metabolismo , Fibroblastos
18.
PLoS One ; 16(8): e0250331, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460862

RESUMO

The goal of the current study was to create reference intervals and values for several common and one potential novel physiological indicators of animal welfare for four species of cetaceans. The subjects included 189 bottlenose dolphins (Tursiops truncatus), 27 Indo-Pacific bottlenose dolphins (Tursiops aduncus), eight Pacific white-sided dolphins (Lagenorhynchus obliquidens), and 13 beluga whales (Delphinapterus leucas) at Alliance of Marine Mammal Parks and Aquariums and/or Association of Zoos and Aquariums accredited facilities. During two sampling time periods between July and November of 2018 and between January and April of 2019, fecal samples were collected weekly for five weeks from all animals. Samples were processed and analyzed using enzyme immunoassay for fecal cortisol, aldosterone, and dehydroepiandrosterone (DHEA) metabolites. Linear mixed models were used to examine demographic and time factors impacting hormone metabolite concentrations. Age, sex, and time of year were all significant predictors for some of the models (p < 0.01). An iOS mobile application ZooPhysioTrak was created for easy access to species-specific reference intervals and values accounting for significant predictors. For facilities without access to this application, additional reference intervals and values were constructed without accounting for significant predictors. Information gained from this study and the use of the application can provide reference intervals and values to make informed management decisions for cetaceans in zoological facilities.


Assuntos
Aldosterona/análise , Beluga/metabolismo , Golfinho Nariz-de-Garrafa/metabolismo , Desidroepiandrosterona/metabolismo , Golfinhos/metabolismo , Hidrocortisona/análise , Fatores Etários , Animais , Desidroepiandrosterona/análise , Golfinhos/fisiologia , Fezes/química , Feminino , Hidrocortisona/metabolismo , Masculino , Valores de Referência , Estações do Ano , Fatores Sexuais
19.
PLoS One ; 16(8): e0250332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460864

RESUMO

This study reports comprehensive clinical pathology data for hematology, serum, and plasma biochemistry reference intervals for 174 apparently healthy common bottlenose dolphins (Tursiops truncatus) and reference values for 27 Indo-Pacific bottlenose dolphins (Tursiops aduncus), 13 beluga whales (Delphinapterus leucas), and 6 Pacific white-sided dolphins (Lagenorhynchus obliquidens) in zoos and aquariums accredited by the Alliance for Marine Mammal Parks and Aquariums and the Association of Zoos & Aquariums. Blood samples were collected as part of a larger study titled "Towards understanding the welfare of cetaceans in zoos and aquariums" (colloquially called the Cetacean Welfare Study). Two blood samples were collected following a standardized protocol, and two veterinarian examinations were conducted approximately six months apart between July to November 2018 and January to April 2019. Least square means, standard deviations, and 95% confidence intervals were calculated for hematology, serum, and plasma biochemical variables. Comparisons by age, gender, and month revealed statistically significant differences (p < 0.01) for several variables. Reference intervals and values were generated for samples tested at two laboratories for up to 56 hematologic, serum, and plasma biochemical variables. To apply these data, ZooPhysioTrak, an iOS mobile software application, was developed to provide a new resource for cetacean management. ZooPhysioTrak provides species-specific reference intervals and values based on user inputs of individual demographic and sample information. These data provide a baseline from which to compare hematological, serum, and plasma biochemical values in cetaceans in zoos and aquariums.


Assuntos
Beluga/sangue , Golfinho Nariz-de-Garrafa/sangue , Golfinhos/sangue , Fatores Etários , Animais , Animais de Zoológico/sangue , Golfinhos/metabolismo , Feminino , Masculino , Valores de Referência , Estações do Ano , Fatores Sexuais
20.
Commun Biol ; 4(1): 642, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059764

RESUMO

The development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


Assuntos
Envelhecimento/genética , Golfinhos/metabolismo , Baleias/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , DNA/genética , Metilação de DNA/genética , Golfinhos/genética , Epigênese Genética/genética , Epigenômica/métodos , Genoma , Filogenia , Baleias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...