Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.363
Filtrar
1.
World J Microbiol Biotechnol ; 40(9): 260, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967730

RESUMO

This study aimed to isolate and characterize a native strain of Beauveria bassiana, coded as Bv065, showcasing its potential as a biological control agent targeting the palm weevil Dynamis borassi. Originating from a naturally infected D. borassi specimen collected in southwestern Colombia, the fungus underwent molecular identification and was identified as B. bassiana, exhibiting high sequence similarity with known reference strains. The physiological characterization revealed that Bv065 thrived within a temperature range of 25 to 30 °C and a pH range of 6 to 9. Moreover, the key carbon sources that allow optimal growth of the strain were identified through metabolic profiling, including sucrose, D-mannose, and γ-amino-butyric acid. These findings offer strategic insights for scalability and formulation methodologies. Additionally, enzymatic analyses unveiled robust protease activity within Bv065, crucial for catalysing insect cuticle degradation and facilitating host penetration, thus accentuating its entomopathogenic potential. Subsequent evaluations exposed Bv065's pathogenicity against D. borassi, causing significant mortality within nine days of exposure, albeit exhibiting limited effectiveness against Rhynchophorus palmarum. This study underscores the importance of understanding optimal growth conditions and metabolic preferences of B. bassiana strains for developing effective biopesticides. The findings suggest Bv065 as a promising candidate for integrated pest management strategies in neotropical regions, particularly for controlling palm weevil infestations in coconut and peach palm cultivation. Future research avenues include refining mass production methodologies, formulating novel delivery systems, and conducting comprehensive field efficacy trials to unlock the full potential of Bv065 in fostering sustainable pest management practices. Overall, this study contributes to the growing body of knowledge on entomopathogenic fungi and their pivotal role in biological control, offering nuanced perspectives on eco-friendly alternatives to conventional insecticidal interventions.


Assuntos
Beauveria , Controle Biológico de Vetores , Gorgulhos , Beauveria/fisiologia , Beauveria/patogenicidade , Animais , Gorgulhos/microbiologia , Controle Biológico de Vetores/métodos , Colômbia , Filogenia , Temperatura , Concentração de Íons de Hidrogênio
2.
Sci Rep ; 14(1): 16541, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019908

RESUMO

The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), also known as the Asian palm weevil, is an invasive pest that causes widespread damage to palm trees around the globe. As pheromone communication is crucial for their mass attack and survival on palm trees, the olfactory concept of pest control strategies has been widely explored recently. We aim to understand the molecular basis of olfaction in RPW by studying one of the key olfactory proteins in insect pheromone communication, sensory neuron membrane proteins (SNMPs). SNMPs belong to the CD36 (cluster of differentiation 36) family that perform two distinct olfactory roles in insects, either in pheromone (odorant) transfer to the odorant receptors (SNMP1) or in the pheromone clearing process (SNMP2). In this study, we performed antennal transcriptomic screening and identified six SNMPs, mapping them on the R. ferrugineus genome, and confirmed four distinct SNMPs. Both SNMP1 proteins in RPW, viz., RferSNMPu1 and RferSNMPu2, were mapped onto the same scaffold in different loci in the RPW genome. To further understand the function of these proteins, we first classified them using phylogenetic analysis and checked their tissue-specific expression patterns. Further, we measured the relative transcript abundance of SNMPs in laboratory-reared, field-collected adults and pheromone-exposure experiments, ultimately identifying RferSNMPu1 as a potential candidate for functional analysis. We mapped RferSNMPu1 expression in the antennae and found that expression patterns were similar in both sexes. We used RNAi-based gene silencing to knockdown RferSNMPu1 and tested the changes in the RPW responses to aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferrugineone), and a kairomone, ethyl acetate using electroantennogram (EAG) recordings. We found a significant reduction in the EAG recordings in the RferSNMPu1 knockdown strain of adult RPWs, confirming its potential role in pheromone detection. The structural modelling revealed the key domains in the RferSNMPu1 structure, which could likely be involved in pheromone detection based on the identified ectodomain tunnels. Our studies on RferSNMPu1 with a putative role in pheromone detection provide valuable insight into understanding the olfaction in R. ferrugineus as well as in other Curculionids, as SNMPs are under-explored in terms of its functional role in insect olfaction. Most importantly, RferSNMPu1 can be used as a potential target for the olfactory communication disruption in the R. ferrugineus control strategies.


Assuntos
Proteínas de Insetos , Feromônios , Gorgulhos , Animais , Gorgulhos/metabolismo , Gorgulhos/genética , Feromônios/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Masculino , Feminino , Inativação Gênica , Filogenia , Células Receptoras Sensoriais/metabolismo
3.
Neotrop Entomol ; 53(4): 955-963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963530

RESUMO

Globally, people use sugarcane (Saccharum officinarum) to produce sugar and ethanol. Rainfed or irrigated sugarcane agricultural systems are available. Among the pests affecting this crop, the weevil Sphenophorus levis, Vaurie 1978 (Coleoptera: Curculionidae), is increasingly becoming a significant threat in southern South America. Sphenophorus levis populations are controlled using chemical or biological measures. Control decisions hinge upon the economic injury level (EIL). The EIL delineates the pest density that results in financial losses for producers. This study aims to determine the EIL for S. levis, considering the factors favoring this insect pest and chemical and biological control methods in rainfed and irrigated systems. The intensity of S. levis attacks was monitored in commercial sugarcane plantations over four years in João Pinheiro, Minas Gerais, Brazil. Sampling occurred in a 50 × 50 × 30-cm-deep trench dug in the soil surrounding the sugarcane clump. The total number of stumps in the clump, including those attacked by S. levis, was tallied. The EILs for this pest were 5.93% and 4.85% of targeted stumps for chemical control in rainfed and irrigated crops, respectively. Biological control in sugarcane plots resulted in an EIL of 4.15% and 3.40% for stumps attacked in rainfed and irrigated crops, respectively. Pest attacks were more severe during rainy years and in older sugarcane crops. The EIL values determined in this study could inform integrated pest management programs for sugarcane crops.


Assuntos
Irrigação Agrícola , Produtos Agrícolas , Saccharum , Gorgulhos , Animais , Brasil , Controle Biológico de Vetores , Controle de Insetos
4.
Yakugaku Zasshi ; 144(6): 675-683, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825476

RESUMO

Recently, feeding damage by the olive weevil Pimelocerus (Dyscerus) perforatus Roelofs, which utilizes olive trees (Olea europaea Linne) as a host plant, has become the biggest obstacle to olive cultivation in Japan. We previously identified several volatile plant-derived natural products that exhibit repellent activity against olive weevils. In this study, we conducted a pilot test of repellents in an olive orchard along with the use of insecticide. During three consecutive years from 2021 to 2023, the first year was the observation period, and the second and third years were set aside for a trial period for o-vanillin and geraniol as repellents, respectively. Using o-vanillin, the number of adult olive weevil outbreaks decreased to almost half a year in the experimental area, the use of geraniol then resulted in a drastic reduction of the number of individual olive weevils in the experimental area. In contrast, adults and larvae outbreaks increased in the control area without a repellent, despite the use of insecticide. These results indicate that the volatile repellents drove the olive weevils away and kept them at bay in the field. Based on the observations, we will be able to provide a new approach for the control of olive cultivation, including fruit and leaves used for commercial purposes, following integrated pest management (IPM) practices, such as reducing environmental poisoning from intense insecticides, and returning olive weevils to their original habitat outside of olive orchards.


Assuntos
Monoterpenos Acíclicos , Repelentes de Insetos , Olea , Gorgulhos , Olea/química , Animais , Projetos Piloto , Inseticidas , Terpenos , Japão
5.
Sci Rep ; 14(1): 13951, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886531

RESUMO

The thrust of the study was to determine the chemical composition of the essential oils extracted from Thymus pallescens de Noé and Cymbogon citratus Stapf. as well as to evaluate their efficacy in controlling Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst) in either single or combined populations. Carvacrol (56.04%) and geraniol (20.86%) were identified as the major constituents of T. pallescens and C. citratus respectively. The tested essential oils showed pronounced insecticidal activity against the pest species in relation with the applied doses. T. pallescens EO had the highest efficacy and S. zeamais was found to be more susceptible to both individual and combined treatments. With reference to the contact and fumigation assessments, T. pallescens EO effectuated corrected mortality rates ranging from 42.5-100% to 25-100% in S. zeamais with corresponding lethal concentration (LC50) values of 17.7 µl/ml and 15µL/L air respectively. Whereas, the T. pallescens EO exhibited corrected mortality rates of 42.5-100% and 20-100% with corresponding LC50 values of 18.1 µl/ml and 15.5 µL/L air against T. castaneum in contact and fumigation assessments, respectively. The corrected mortality rates increased for both insect species when using combination treatments, with significant increases in the LC50 values, ranging from 8.59 to 49.9% for both pest species. Analysis of energy biomarkers in the treated insects indicate significantly increased protein and carbohydrate contents and decreased lipids levels. The study therefore demonstrated the bio-insecticidal toxicity of the EOs from T. pallescens and C. citratus against two important maize post-harvest pests, concurrently revealing significant positive and negative insecticidal activity gradients in relation to single or combined populations.


Assuntos
Inseticidas , Óleos Voláteis , Thymus (Planta) , Tribolium , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Tribolium/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Thymus (Planta)/química , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Gorgulhos/efeitos dos fármacos , Cimenos/farmacologia , Cimenos/química
6.
Sci Rep ; 14(1): 13672, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871779

RESUMO

Invasive pests reduce biodiversity and ecosystem service functions, thereby leading to economic and also agricultural losses. Banana skipper (Erionota torus Evans), red palm weevil (Rhynchophorus ferrugineus), and coconut caterpillar (Opisina arenosella Walker) are invasive insect pests in the palm-growing regions and they have had serious consequences for the planting of bananas (Musa nana), palms (Trachycarpus fortune) and coconut (Cocos nucifera). Based on screened occurrence data, the present research utilized Maximum Entropy model (Maxent) to simulate the distribution dynamics of these three invasive insects in China, under current and future climate (2050s, 2070s, 2090s) in two shared socio-economic pathways (SSPs: 126 and 585) of the newly released coupled model intercomparison project phase6 (CMIP6). The results show that: (1) Under current and future climate conditions, all model groups exhibited an AUC value exceeding 0.92, which shows that the model prediction results are very good;(2) The suitable habitat area of E. torus Evans remains relatively stable with some expansion in the SSP126 of 2090s and some contraction in the SSP585 of 2090s. The suitable habitat area of R. ferrugineus showed an overall contraction, with substantial contraction in the SSP585 of 2090s.The suitable habitat area of O. arenosella has an overall expansion, with the most pronounced expansion in the SSP585 of 2070s; (3) The current centroid of suitable habitats for R. ferrugineus and E. torus Evans is located in Guangxi Province and wholely shift toward the south direction under future climate. The centroid of suitable habitats for O. arenosella is currently located in the northeastern maritime area of Hainan Province and will shift toward the north direction under future climate; (4) Temperature, precipitation and Human disturbance factors (Population density and Human influence index) were crucial variables for describing the distribution of the three species. For E. torus Evans in particular, percentage contributions of Population density was up to 31.4, which is only 0.1 different from ranked first Bio19 (Precipitation of the coldest quarter). The dynamics of habitats of these three species and the correlating driver factors proposed in this work provide essential insights into future spatial management of the three invasive insects in China. Our work is necessary and timely in identifying newly areas at high risk of expansion of the three invasive insects in the future, then suggesting strategic control measures to prevent their spread, and finally providing scientific evidence for the early prevention and rapid response to the three invasive insects.


Assuntos
Mudança Climática , Espécies Introduzidas , Gorgulhos , Animais , China , Gorgulhos/fisiologia , Ecossistema , Agricultura , Biodiversidade
7.
Environ Entomol ; 53(3): 354-363, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38712725

RESUMO

Eucryptorrhynchus scrobiculatus (Motschulsky) (Coleoptera: Curculionidae) is a notorious pest of Ailanthus altissima (Mill.) Swingle (Sapindales: Simaroubaceae). E. scrobiculatus adults typically aggregate under leaves and in soil crevices at the base of A. altissima in the field. We hypothesize that the environmental factors and conspecific signals determine their aggregation behavior. To test this, we investigated adult numbers in light-exposed and shaded areas of the sample trees and conducted experiments in both field and lab settings. Results revealed that (i) greater adult distribution in shaded areas; (ii) significant influence of temperature and illumination on aggregation tendency in the field; (iii) no gender-based difference in aggregation degree and maximum aggregation between light and dark; (iv) the host plant triggering the aggregation tendency, negatively affected in the absence; (v) the aggregation tendency of E. scrobiculatus weakened with the temperature gradually changing to ordinary temperature; and (vi) mutual attraction and chemical attraction between males and females. Thus, the aggregation behavior was influenced by factors including temperature, light intensity, host plant, and conspecific signals, but light's role was not obvious in the lab.


Assuntos
Temperatura , Gorgulhos , Animais , Gorgulhos/fisiologia , Feminino , Masculino , Ailanthus , Luz , Comportamento Animal
8.
Neotrop Entomol ; 53(4): 889-906, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714593

RESUMO

Increased attention is being focused on the biological control of agricultural pests using microorganisms, owing to their potential as a viable substitute for chemical control methods. Insect cadavers constitute a potential source of entomopathogenic microorganisms. We tested whether bacteria and fungi isolated from Spodoptera frugiperda (JE Smith) cadavers could affect its survival, development, egg-laying pattern, and hatchability, as well as induce mortality in Anthonomus grandis Boheman adults. We isolated the bacteria Enterobacter hormaechei and Serratia marcescens and the fungi Scopulariopsis sp. and Aspergillus nomiae from fall armyworm cadavers and the pest insects were subjected to an artificial diet enriched with bacteria cells or fungal spores to be tested, in the case of S. frugiperda, and only fungal spores in the case of A. grandis. Enterobacter hormaechei and A. nomiae were pathogenic to S. frugiperda, affecting the survival of adults and pupae. The fungus Scopulariopsis sp. does not affect the survival of S. frugiperda caterpillars and pupae; however, due to late action, moths and eggs may be affected. Aspergillus nomiae also increased mortality of A. grandis adults, as well as the development of S. frugiperda in the early stages of exposure to the diet, as indicated by the vertical spore transfer to offspring and low hatchability. Enterobacter hormaechei and A. nomiae are potential biocontrol agents for these pests, and warrant further investigation from a toxicological point of view and subsequently in field tests involving formulations that could improve agricultural sustainability practices.


Assuntos
Larva , Controle Biológico de Vetores , Pupa , Spodoptera , Gorgulhos , Animais , Spodoptera/microbiologia , Larva/microbiologia , Gorgulhos/microbiologia , Pupa/microbiologia , Cadáver , Fungos/classificação , Aspergillus , Serratia marcescens , Bactérias/classificação , Bactérias/isolamento & purificação , Enterobacter
9.
Am J Bot ; 111(5): e16333, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757608

RESUMO

PREMISE: During the last centuries, the area covered by urban landscapes is increasing all over the world. Urbanization can change local habitats and decrease connectivity among these habitats, with important consequences for species interactions. While several studies have found a major imprint of urbanization on plant-insect interactions, the effects of urbanization on seed predation remain largely unexplored. METHODS: We investigated the relative impact of sunlight exposure, leaf litter, and spatial connectivity on predation by moth and weevil larvae on acorns of the pedunculate oak across an urban landscape during 2018 and 2020. We also examined whether infestations by moths and weevils were independent of each other. RESULTS: While seed predation varied strongly among trees, seed predation was not related to differences in sunlight exposure, leaf litter, or spatial connectivity. Seed predation by moths and weevils was negatively correlated at the level of individual acorns in 2018, but positively correlated at the acorn and the tree level in 2020. CONCLUSIONS: Our study sets the baseline expectation that urban seed predators are unaffected by differences in sunlight exposure, leaf litter, and spatial connectivity. Overall, our findings suggest that the impact of local and spatial factors on insects within an urban context may depend on the species guild. Understanding the impact of local and spatial factors on biodiversity, food web structure, and ecosystem functioning can provide valuable insights for urban planning and management strategies aimed at promoting urban insect diversity.


Assuntos
Ecossistema , Mariposas , Quercus , Sementes , Gorgulhos , Animais , Sementes/fisiologia , Mariposas/fisiologia , Gorgulhos/fisiologia , Quercus/fisiologia , Larva/fisiologia , Urbanização , Cidades , Luz Solar , Cadeia Alimentar
10.
J Insect Physiol ; 155: 104653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763361

RESUMO

The impacts of climate change on the development of insects are of great concern due to potential alterations in population dynamics and pest pressure. The carrot weevil, Listronotus oregonensis, is a major agricultural pest, and its development is influenced by temperature and photoperiod. In this study, our aim was to investigate the impact of temperature increases on the voltinism and reproductive diapause of the carrot weevil under field conditions and bioclimatic models. Field observations were conducted over two growing seasons using structures that allowed for temperature increases. The developmental stages of the carrot weevil, including female reproductive status, oviposition and larval stage, were monitored weekly to measure the proportion of individuals undergoing an additional generation. Concurrently, bioclimatic models were used to simulate the probability of a second generation under current (1981-2010) and future (2041-2070) climates, considering a lower and a higher change in emission scenarios. Results showed that rising temperatures led to an increase in the proportion of carrot weevils undergoing inhibition of the reproductive diapause and a higher number of eggs laid in the field. The models indicated a substantial rise in the probability of a second generation developing, from 24% to 37% to 62%-99% under current and future climates, respectively. These findings demonstrate the potential for significant alterations in carrot weevil population dynamics, resulting in increased pest pressure on crops. Further research is needed to fully understand the implications of these findings and to develop effective adaptation measures to mitigate the negative impacts of global warming on insect populations and agriculture.


Assuntos
Mudança Climática , Diapausa de Inseto , Gorgulhos , Animais , Gorgulhos/fisiologia , Gorgulhos/crescimento & desenvolvimento , Diapausa de Inseto/fisiologia , Feminino , Reprodução , Oviposição , Temperatura , Larva/crescimento & desenvolvimento , Larva/fisiologia
11.
Braz J Biol ; 84: e282231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808790

RESUMO

The technique of terrestrial sampling of boll weevil (BW) populations is expensive and inefficient over large areas, but may be cheaper and more efficient without involving the manipulation of cotton squares. The aim of this study was to develop a technique to sampling cotton squares based on the observation of opened and/or yellowing bracts to determine the need and efficacy of chemical control of BW in cotton crops. The first experiment aimed to estimate the ratio between the number of cotton squares with opened and/or yellowed bracts and that of squares with BW oviposition punctures. The second experiment, aimed to determine the efficacy of chemical control for BW by sampling cotton squares with opened and/or yellowed bracts. The ratio between the number of opened and/or yellowed bracts and the number of cotton squares with oviposition punctures was 2:1. The level and efficiency of chemical control of BW, based on the percentage and sampling of cotton plants with opened and/or yellowed bracts, was 5% and did not differ from the one based on the observation of cotton plants with 10% cotton squares with oviposition punctures by BW females. The control level based on sampling cotton plants with open and/or yellowing bracts was 5%. The efficiency of chemical insecticides using this economic threshold against the BW did not differ from that based on sampling cotton plants with 10% of cotton squares with oviposition punctures by BW females. This indicates that the chemical control of cotton boll weevil can be carried out based on cotton squares with open and/or yellowed bracts.


Assuntos
Gossypium , Controle de Insetos , Oviposição , Gorgulhos , Gorgulhos/fisiologia , Gossypium/parasitologia , Animais , Oviposição/fisiologia , Feminino , Controle de Insetos/métodos , Inseticidas
12.
J Invertebr Pathol ; 204: 108123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705354

RESUMO

Entomopathogenic nematodes (EPNs) can control several important turfgrass insect pests including white grubs, weevils, cutworms, and sod webworms. But most of the research has focused on inundative releases in a biopesticide strategy using EPN strains that may have lost some of their ability to persist effectively over years of lab maintenance and / or selection for virulence and efficient mass-production. Our study examined the potential of fresh field isolate mixes of endemic EPNs to provide multi-year suppression of turfgrass insect pests. In early June 2020, we applied isolate mixes from golf courses of the EPNs Steinernema carpocapsae, Heterorhabditis bacteriophora, and their combination to plots straddling fairway and rough on two golf courses in central New Jersey, USA. Populations of EPNs and insect pests were sampled on the fairway and rough side of the plots from just before EPN application until October 2022. EPN populations increased initially in plots treated with the respective species. Steinernema carpocapsae densities stayed high for most of the experiment. Heterorhabditis bacteriophora densities decreased after 6 months and stabilized at lower levels. Several insect pests were reduced across the entire experimental period. In the fairway, the combination treatment reduced annual bluegrass weevil larvae (59 % reduction) and adults (74 %); S. carpocapsae reduced only adults (42 %). White grubs were reduced by H. bacteriophora (67 %) and the combination (63 %). Black turfgrass ataenius adults were reduced in all EPN treatments (43-62 %) in rough and fairway. Sod webworm larvae were reduced by S. carpocapsae in the fairway (75 %) and the rough (100 %) and by H. bacteriophora in the rough (75 %). Cutworm larvae were reduced in the fairway by S. carpocapsae (88 %) and the combination (75 %). Overall, our observations suggest that inoculative applications of fresh field isolate mixes of endemic EPNs may be a feasible approach to long-term suppression of insect pests in turfgrass but may require periodic reapplications.


Assuntos
Controle Biológico de Vetores , Rabditídios , Animais , Rabditídios/fisiologia , Poaceae/parasitologia , Mariposas/parasitologia , Gorgulhos/parasitologia , New Jersey
13.
Arch Insect Biochem Physiol ; 116(1): e22115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770623

RESUMO

Zeugodacus cucurbitae (Coquillett) is an important fruit and vegetable pest, especially in high-temperature seasons. In our previous research, we developed a temperature-sensitive sustained-release attractant for Z. cucurbitae, that not only can control the release rate of cuelure according to the temperature change, but also shows an excellent trapping effect on Z. cucurbitae. To further enhance the killing effect of the temperature-sensitive attractant on Z. cucurbitae, this study proposed using it in combination with an insecticide to prepare a temperature-sensitive insecticide for Z. cucurbitae. Based on the controlled release technology of pesticides, a temperature-sensitive Z. cucurbitae insecticide was developed by using PNIPAM gel as a temperature-sensitive switch to carry both cuelure and insecticide at the same time. In addition, the lethal effect of different pesticides on Z. cucurbitae were tested by indoor toxicity test, and the best pesticide combination was screened out. The temperature-sensitive insecticide prepared in this study not only had excellent thermal response and controlled release ability, but also enhanced its toxicological effects on Z. cucurbitae because it contained insecticides. Among them, combining thiamethoxam and clothianidin with the temperature-sensitive attractants was the most effective, and their lethality reached more than 97% against Z. cucurbitae. This study is not only of great practical significance for the monitoring and controlling Z. cucurbitae, but also provides theoretical basis and reference value for the combination of temperature-sensitive attractant and insecticide.


Assuntos
Inseticidas , Neonicotinoides , Temperatura , Inseticidas/farmacologia , Animais , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Controle de Insetos/métodos , Gorgulhos/efeitos dos fármacos , Tiazóis/farmacologia
14.
Insect Biochem Mol Biol ; 169: 104129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704126

RESUMO

The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.


Assuntos
Receptores Odorantes , Gorgulhos , Animais , Gorgulhos/metabolismo , Gorgulhos/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Compostos Orgânicos Voláteis/metabolismo , Masculino , Filogenia , Feminino , Arecaceae/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Antenas de Artrópodes/metabolismo , Ésteres/metabolismo
15.
J Econ Entomol ; 117(3): 963-972, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38577920

RESUMO

A major challenge to area-wide management of coffee berry borer (Hypothenemus hampei Ferrari) (Coleoptera: Scolytidae) is understanding how a heterogeneous coffee-growing landscape affects coffee berry borer population dynamics across temporal and spatial scales. We examined coffee phenology, weather, coffee berry borer flight activity, infestation, coffee berry borer position within the fruit, and management across 14 commercial coffee farms from 2016 to 2018 on Hawaii Island to characterize variation among districts and elevations. Here we aim to determine whether the timing of pesticide applications might be optimized based on specific locations. We observed larger populations of coffee berry borer at low-elevation farms and in the Kona district compared to mid- and high-elevation farms and the Ka'u district. Temperature, relative humidity, and rainfall all differed significantly across districts and elevations. We also observed a trend of higher fruit production at low-elevation farms compared to high-elevation farms, and differences in the timing of fruit development. Infestation increased with higher pest pressure and air temperatures and reduced fruit availability early and late in the season. Lastly, the timing and number of management interventions varied among districts and elevations. Combining information on trap catch, infestation, coffee berry borer position, and plant phenology, we present an optimized pesticide spray schedule for each location and find that the number of sprays could be reduced by 33-75% in comparison to the existing integrated pest management recommendations while maintaining effective control. Implementing a coordinated area-wide approach refined by small-scale optimization will lead to improved management of coffee berry borer on individual farms and a reduction in pest pressure across the coffee-growing landscape.


Assuntos
Coffea , Controle de Insetos , Dinâmica Populacional , Animais , Havaí , Controle de Insetos/métodos , Coffea/crescimento & desenvolvimento , Gorgulhos/fisiologia , Inseticidas/farmacologia , Estações do Ano , Besouros/fisiologia
16.
Sci China Life Sci ; 67(7): 1514-1524, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38558376

RESUMO

The significance of ecological non-monotonicity (a function whose first derivative changes signs) in shaping the structure and functions of the ecosystem has recently been recognized, but such studies involving high-order interactions are rare. Here, we have proposed a three-trophic conceptual diagram on interactions among trees, rodents, and insects in mast and non-mast years and tested the hypothesis that oak (Quercus wutaishanica) masting could result in increased mutualism and less predation in an oak-weevil-rodent system in a warm temperate forest of China. Our 14-year dataset revealed that mast years coincided with a relatively low rodent abundance but a high weevil abundance. Masting not only benefited seedling recruitment of oaks through increased dispersal by rodents but also a decrease in predation by rodents and weevils, as well as an increase in the overwintering survival of rodents. Masting appeared to have increased weevil survival by reducing predation of infested acorns by rodents. These results suggest that masting benefits all participants in the plant-insect-rodent system by increasing mutualism and reducing predation behavior (i.e., a non-monotonic function). Our study highlights the significance of masting in maintaining the diversity and function of the forest ecosystem by facilitating the transformation from predation to mutualism among trophic species.


Assuntos
Comportamento Predatório , Quercus , Roedores , Simbiose , Gorgulhos , Animais , Quercus/fisiologia , Gorgulhos/fisiologia , Comportamento Predatório/fisiologia , Roedores/fisiologia , China , Ecossistema , Florestas , Cadeia Alimentar
17.
J Econ Entomol ; 117(3): 1192-1197, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641562

RESUMO

Euwallacea fornicatus is an invasive tree pest able to infest healthy plants and cause damage to many host plants. This beetle has become established in several countries where it was introduced. It has now become established in Brazil, and while the original introduction site remains uncertain, there is a possibility of multiple introductions. We report the first evidence for the establishment of E. fornicatus with molecular confirmation, as well as its distribution, and host plants in Brazil. Euwallacea fornicatus has spread to main commercial avocado groves, other monocultures, and native vegetation in the country, and its pest status puts it as a threat, mainly to Brazilian avocado producers.


Assuntos
Distribuição Animal , Espécies Introduzidas , Persea , Gorgulhos , Animais , Gorgulhos/fisiologia , Brasil
18.
J Econ Entomol ; 117(3): 1022-1031, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648181

RESUMO

Spruce beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Curculionidae), is the most destructive pest of mature spruce (Picea) in western North America. Recent outbreaks in Alaska and other western US states highlight the need for tools to protect Picea from D. rufipennis. The primary antiaggregation pheromone of D. rufipennis (3-methylcyclohex-2-en-1-one, MCH) and various combinations of potential repellents (1-octen-3-ol, exo-brevicomin, endo-brevicomin, ipsdienol, ipsenol, limonene, and verbenone) were tested for their ability to disrupt the response of D. rufipennis to attractant-baited multiple-funnel traps. Two assays were conducted on the Kenai Peninsula, Alaska, in June and July 2021. All treatments significantly reduced the mean number of D. rufipennis caught compared to the baited control. No other significant differences were observed among treatments. Informed by these and other data, tree protection studies were established in Lutz spruce, Picea × lutzii, on the Kenai Peninsula in 2022 and in Engelmann spruce, Pi. engelmannii, in the Uinta Mountains, Utah, in 2021. All experimental trees were baited with frontalin. Repellent treatments included MCH (SPLAT MCH, ISCA Inc., Riverside, CA, USA) and at least 1 additional repellent combination. In Alaska, all treatments significantly reduced colonization (strip attacks + mass attacks) and mortality of individually treated Pi. × lutzii and all Picea within 11.3-m radius of each treated Pi. × lutzii compared to the control. In Utah, all treatments except for SPLAT MCH + octenol significantly reduced colonization compared to the control. Only SPLAT MCH + Acer kairomone blend (AKB) and SPLAT MCH + octenol reduced Pi. engelmannii mortality compared to the control. SPLAT MCH + AKB and SPLAT MCH + acetophenone and green leaf volatiles (PLUS) were the most effective across both studies. The implications of these and other results to the development of an effective semiochemical repellent for D. rufipennis are discussed.


Assuntos
Controle de Insetos , Repelentes de Insetos , Feromônios , Picea , Gorgulhos , Animais , Controle de Insetos/métodos , Alaska , Utah , Feromônios/farmacologia
19.
Pestic Biochem Physiol ; 200: 105829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582575

RESUMO

Cowpea weevil, Callosobruchus maculatus, is the primary pest of stored cowpea seeds. The management of this infestation currently relies on insecticides, resulting in environmental pollution and selection of insecticide-resistant pests. Consequently, research efforts are being devoted to identify natural insecticides as sustainable and environment friendly alternatives for the control of C. maculatus. In this study, we explore the toxic effects of the nonhost seeds Parkia multijuga, Copaifera langsdorffii, Ormosia arborea, Amburana cearensis, Lonchocarpus guilleminianus, Sapindus saponaria, and Myroxylon peruiferum, on the cowpea weevil C. maculatus. Notably, all nonhost seeds led to reductions between 60 and 100% in oviposition by C. maculatus females. Additionally, the larvae were unable to penetrate the nonhost seeds. Artificial seeds containing 0.05% to 10% of cotyledon flour were toxic to C. maculatus larvae. Approximately 40% of larvae that consumed seeds containing 0.05% of O. arborea failed to develop, in contrast to control larvae. Proteomic analysis of A. cearensis and O. arborea seeds identify revealed a total of 371 proteins. From those, 237 are present in both seeds, 91 were exclusive to O. arborea seeds, and 43 were specific to A. cearensis seeds. Some of these proteins are related to defense, such as proteins containing the cupin domain and 11S seed storage protein. The in silico docking of cupin domain-containing proteins and 11S storage protein with N-acetylglucosamine (NAG)4 showed negative values of affinity energy, indicating spontaneous binding. These results showed that nonhost seeds have natural insecticide compounds with potential to control C. maculatus infestation.


Assuntos
Besouros , Inseticidas , Vigna , Gorgulhos , Animais , Feminino , Inseticidas/toxicidade , Proteômica , Larva , Sementes/química
20.
Microb Cell Fact ; 23(1): 110, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609906

RESUMO

BACKGROUND: The wasabi receptor, also known as the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel, is a potential target for development of repellents for insects, like the pine weevil (Hylobius abietis) feeding on conifer seedlings and causing damage in forestry. Heterologous expression of TRPA1 from pine weevil in the yeast Pichia pastoris can potentially provide protein for structural and functional studies. Here we take advantage of the Green Fluorescent Protein (GFP) tag to examine the various steps of heterologous expression, to get more insight in clone selection, expression and isolation of the intact purified protein. RESULTS: The sequence of HaTRPA1 is reported and GFP-tagged constructs were made of the full-length protein and a truncated version (Δ1-708 HaTRPA1), lacking the N-terminal ankyrin repeat domain. Clones were screened on GFP expression plates, induced in small liquid cultures and in fed-batch cultures, and evaluated by flow cytometry and fluorescence microscopy. The screening on plates successfully identifies low-expression clones, but fails to predict the ranking of the best performing clones in small-scale liquid cultures. The two constructs differ in their cellular localization. Δ1-708 HaTRPA1 is found in a ring at the perimeter of cell, whereas HaTRPA1 is forming highly fluorescent speckles in interior regions of the cell. The pattern is consistent in different clones of the same construct and persists in fed-batch culture. The expression of Δ1-708 HaTRPA1 decreases the viability more than HaTRPA1, and in fed-batch culture it is clear that intact cells first express Δ1-708 HaTRPA1 and then become damaged. Purifications show that both constructs suffer from degradation of the expressed protein, but especially the HaTRPA1 construct. CONCLUSIONS: The GFP tag makes it possible to follow expression by flow cytometry and fluorescence microscopy. Analyses of localization, cell viability and expression show that the former two parameters are specific for each of the two evaluated constructs, whereas the relative expression of the constructs varies with the cultivation method. High expression is not all that matters, so taking damaged cells into account, something that may be linked to protein degradation, is important when picking the most suitable construct, clone, and expression scheme.


Assuntos
Saccharomycetales , Gorgulhos , Animais , Proteínas de Fluorescência Verde/genética , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...