Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.759
Filtrar
1.
Toxins (Basel) ; 16(10)2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39453212

RESUMO

Gossypol (GP), a polyphenolic compound in cottonseed, has notable effects on female reproduction and the respiratory system in pigs. This study aimed to discern the alterations in gene expression within swine granulosa cells (GCs) when treated with two concentrations of GP (6.25 and 12.5 µM) for 72 h, in vitro. The analysis revealed significant changes in the expression of numerous genes in the GP-treated groups. A Gene Ontology analysis highlighted that the differentially expressed genes (DEGs) primarily pertained to processes such as the mitotic cell cycle, chromosome organization, centromeric region, and protein binding. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated distinct impacts on various pathways in response to different GP concentrations. Specifically, in the GP6.25 group, pathways related to the cycle oocyte meiosis, progesterone-mediated oocyte maturation, and p53 signaling were prominently affected. Meanwhile, in the GP12.5 group, pathways associated with PI3K-Akt signaling, focal adhesion, HIF-1 signaling, cell cycle, and ECM-receptor interaction showed significant alterations. Notably, genes linked to female reproductive function (CDK1, CCNB1, CPEB1, MMP3), cellular component organization (BIRC5, CYP1A1, TGFB3, COL1A2), and oxidation-reduction processes (PRDX6, MGST1, SOD3) exhibited differential expression in GP-treated groups. These findings offer valuable insights into the changes in GC gene expression in pigs exposed to GP.


Assuntos
Gossipol , Células da Granulosa , Animais , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Suínos , Gossipol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos
2.
Molecules ; 29(20)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39459334

RESUMO

Gossypol and its derivatives arouse interest due to their broad spectrum of biological activities. Despite its wide potential application, there is no reported example of gossypol derivatives bearing stable radical functional groups. The first gossypol nitroxide hybrid compound was prepared here via formation of a Schiff base. By this approach, synthesis of a gossypol nitroxide conjugate was performed by condensation of gossypol with a 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl) free radical, which afforded the target product in high yield. Its structure was proven by a combination of NMR and EPR spectroscopy, infrared spectroscopy, mass spectrometry, and high-resolution mass spectrometry. In addition, the structure of the gossypol nitroxide was determined by single-crystal X-ray diffraction measurements. In crystals, the paramagnetic Schiff base exists in an enamine-enamine tautomeric form. The tautomer is strongly stabilized by the intra- and intermolecular hydrogen bonds promoted by the resonance of π-electrons in the aromatic system. NMR analyses of the gossypol derivative proved that in solutions, the enamine-enamine tautomeric form prevailed. The gossypol nitroxide at micromolar concentrations suppressed the growth of tumor cells; however, compared to gossypol, the cytotoxicity of the obtained conjugate was substantially lower.


Assuntos
Gossipol , Marcadores de Spin , Gossipol/química , Gossipol/farmacologia , Marcadores de Spin/síntese química , Humanos , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Cristalografia por Raios X , Óxidos N-Cíclicos/química , Modelos Moleculares , Bases de Schiff/química , Bases de Schiff/síntese química
3.
Environ Sci Pollut Res Int ; 31(45): 56499-56522, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39271612

RESUMO

Keeping recruitment of green and cost-effective solutions for environmental challenges in view, the current work was designed to solve the problems related to metal corrosion in the aqueous phases of crude oil in chemical industries. Green materials can play an important role in protecting metals from this corrosion. Hence, the green anti-corrosion material based upon gossypol derivate is suggested to solve the above problems. The electrochemical characteristics were appraised by cyclic voltammetry, electrochemical impedance spectroscopy, potentiodynamic polarization, and electrochemical noise methods. The thermodynamics were studied by gravimetric analyses. The surface morphology was scrutinized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Density functional theory and molecular dynamic simulations were exploited in theoretical analyses. The gossypol derivate is green, non-toxic, more efficient, non-volatile, and chemically stable anti-corrosion material for gas and oil industries. Carbon steel corrosion simulated in aqueous phases of crude oil (NaCl solutions (1.0 M) saturated with H2S and CO2) was maximally prohibited by forming a protective layer of binaphthalene. Its protection degree is 96.71% (at 100.0 mg/L/0.107 mM). The gossypol ring is a suitable core for preparing the next modification materials to protect against corrosion. The rigid adsorption progressed mainly via hydroxyl functional moieties. Compared to the inhibition behavior of the neutral form of gossypol, the optimized protonated form causes a greater inhibition.


Assuntos
Gossipol , Petróleo , Corrosão , Gossipol/química
4.
Environ Toxicol ; 39(11): 5209-5221, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39263880

RESUMO

Gossypol, a natural polyphenolic compound, possesses antivirus activity and induces cell death of different types of tumors. However, the efficacy of gossypol on lung carcinoma metastases and epithelial to mesenchymal transition remains unknown. The aim of the present work was to determine the cellular and molecular mechanism of the anti-cancer and anti-metastatic efficacies of gossypol on human lung carcinoma cells. Gossypol showed a marked suppression of the viability, motility, and invasion in H1299 and A549 cells. Zymography assay showed that gossypol was sufficient to suppress the activities of urokinase-type plasminogen activator and matrix metalloproteinase-2. Gossypol reversed TGF-ß-induced epithelial to mesenchymal transition. Gossypol reduced vimentin, p-FAK, p-Src and p-paxillin. In vivo studies of gossypol were performed using subcutaneous inoculation and tail vein injection of A549 into immunodeficient BALB/c nude mice and severe combined immunodeficient mice.


Assuntos
Transição Epitelial-Mesenquimal , Gossipol , Neoplasias Pulmonares , Camundongos Endogâmicos BALB C , Camundongos Nus , Gossipol/farmacologia , Gossipol/análogos & derivados , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Movimento Celular/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Camundongos SCID , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Antineoplásicos/farmacologia
5.
Int J Biol Macromol ; 279(Pt 2): 135294, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39233179

RESUMO

Microbial degradation techniques are often considered an environmentally friendly and cost-effective strategy for reducing gossypol toxicity. However, the mechanism by which Candida tropicalis degrades gossypol remains unclear. In the current study, we aimed to establish the mechanisms of biodegradation and adaptation mechanisms by C. tropicalis ZD-3. The toxicological evaluation results revealed that ZD-3 adapts to gossypol primarily by activating the antioxidant defense system to alleviate the oxidative stress response induced by gossypol. Transcriptomic analyses further suggested that ZD-3 protects against gossypol toxicity via cell wall remodeling. The intracellular enzyme CTRG_04744 gene was significantly up-regulated under gossypol stress, and then expressed in Pichia pastoris. The purified AKR_Z1 degraded 92 % of gossypol within 48 h. In addition, the aldehyde group of gossypol was effectively eliminated to achieve the desired detoxification. Collectively, these results provide theoretical guidance for the continued development of bio-efficient strategies capable of degrading gossypol.


Assuntos
Candida tropicalis , Gossipol , Candida tropicalis/metabolismo , Candida tropicalis/genética , Candida tropicalis/efeitos dos fármacos , Gossipol/farmacologia , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica , Biodegradação Ambiental , Estresse Oxidativo/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 733: 150721, 2024 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-39307113

RESUMO

Lactate dehydrogenase A (LDHA) is a key enzyme in Warburg's effect, a characteristic of cancer cells. LDHA is a target of anticancer agents that inhibit the metabolism of cancer cells. Gossypol is a known cancer therapeutic agent that inhibits LDHA by competitive inhibition. However, the mechanisms of inhibition of LDHA by gossypol is unknown. Here, we elucidate the binding of gossypol and LDHA using biochemical and biophysical methods. The crystal structure of the complex between LDHA and gossypol is presented. The binding of gossypol affects LDHA activity by a conformational change in the active-site loop. Our research contributes to the structural insight into LDHA with gossypol and approaches gossypol as a novel therapeutic candidate targeting the metabolic pathways for cancer cells.


Assuntos
Gossipol , L-Lactato Desidrogenase , Modelos Moleculares , Gossipol/química , Gossipol/farmacologia , Gossipol/metabolismo , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , Humanos , Cristalografia por Raios X , Ligação Proteica , Domínio Catalítico , Conformação Proteica , Isoenzimas/química , Isoenzimas/metabolismo , Isoenzimas/antagonistas & inibidores , Lactato Desidrogenase 5/química , Lactato Desidrogenase 5/metabolismo , Lactato Desidrogenase 5/antagonistas & inibidores
7.
Adv Sci (Weinh) ; 11(41): e2309464, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39287149

RESUMO

The diagnosis and treatment of ovarian cancer (OC) are still a grand challenge, more than 70% of patients are diagnosed at an advanced stage with a dismal prognosis. Magnetic resonance imaging (MRI) has shown superior results to other examinations in preoperative assessment, while cisplatin-based chemotherapy is the first-line treatment for OC. However, few previous studies have brought together the two rapidly expanding fields. Here a technique is presented using cisplatin prodrug (Pt-COOH), Fe3+, and natural polyphenols (Gossypol) to construct the nanoparticles (HA@PFG NPs) that have a stable structure, controllable drug release behavior, and high drug loading capacity. The acidic pH values in tumor sites facilitate the release of Fe3+, Pt-COOH, and Gossypol from HA@PFG NPs. Pt-COOH with GSH consumption and cisplatin-based chemotherapy plus Gossypol with pro-apoptotic effects displays a synergistic effect for killing tumor cells. Furthermore, the release of Fe3+ at the tumor sites promotes ferroptosis and enables MRI imaging of OC. In the patient-derived tumor xenograft (PDX) model, HA@PFG NPs alleviate the tumor activity. RNA sequencing analysis reveals that HA@PFG NPs ameliorate OC symptoms mainly through IL-6 signal pathways. This work combines MRI imaging with cisplatin-based chemotherapy, which holds great promise for OC diagnosis and synergistic therapy.


Assuntos
Antineoplásicos , Cisplatino , Ácido Hialurônico , Imageamento por Ressonância Magnética , Nanopartículas , Neoplasias Ovarianas , Polímeros , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/diagnóstico por imagem , Animais , Imageamento por Ressonância Magnética/métodos , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Polímeros/química , Ácido Hialurônico/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Linhagem Celular Tumoral , Gossipol/farmacologia , Gossipol/química , Gossipol/uso terapêutico
8.
Mol Plant ; 17(11): 1687-1701, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39318096

RESUMO

Most coexisting insect species exhibit stunted growth compared to individual species on plants. This phenomenon reflects an interspecific antagonism drawing extensive attention, while the underlying mechanisms remain largely uncharacterized. Mirids (Apolygus lucorum) and cotton bollworms (Helicoverpa armigera) are two common cotton pests. We identified a secretory protein, ASP1, from the oral secretion of mirids, found in the nucleus of mirid-infested cotton leaves. ASP1 specifically targets the transcriptional co-repressor TOPLESS (TPL) and inhibits NINJA-mediated recruitment of TPL, promoting plant defense response and gossypol accumulation in cotton glands. ASP1-enhanced defense inhibits the growth of cotton bollworms on cotton plants, while having limited impact on mirids. The mesophyll-feeding characteristic allows mirids to avoid most cotton glands, invalidating cotton defense. Our investigation reveals the molecular mechanism by which mirids employ cotton defense to selectively inhibit the feeding of cotton bollworms.


Assuntos
Gossypium , Gossipol , Gossypium/metabolismo , Gossypium/parasitologia , Gossypium/genética , Gossipol/metabolismo , Gossipol/farmacologia , Animais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Mariposas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Insetos/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Fish Shellfish Immunol ; 153: 109852, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173982

RESUMO

Cottonseed meal (CSM) and cottonseed protein concentrate (CPC) serve as protein alternatives to fish meal and soybean meal in the feed industry. However, the presence of gossypol residue in CSM and CPC can potentially trigger severe intestinal inflammation, thereby restricting the widespread utilization of these two protein sources. Probiotics are widely used to prevent or alleviate intestinal inflammation, but their efficacy in protecting fish against gossypol-induced enteritis remains uncertain. Here, the protective effect of Pediococcus pentosaceus, a strain isolated from the gut of Nile tilapia (Oreochromis niloticus), was evaluated. Three diets, control diet (CON), gossypol diet (GOS) and GOS supplemented with P. pentosaceus YC diet (GP), were used to feed Nile tilapia for 10 weeks. After the feeding trial, P. pentosaceus YC reduced the activity of myeloperoxidase (MPO) in the proximal intestine (PI) and distal intestine (DI). Following a 7-day exposure to Aeromonas hydrophila, the addition of P. pentosaceus YC was found to increase the survival rate of the fish. P. pentosaceus YC significantly inhibited the oxidative stress caused by gossypol, which was evidenced by lower reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in PI and DI. Addition of P. pentosaceus YC significantly inhibited enteritis, with the lower expression of pro-inflammatory cytokines (il-1ß, il-6, il-8) and higher expression of anti-inflammatory cytokines tgf-ß. RNA-seq analysis indicated that P. pentosaceus YC supplementation significantly inhibited nlrc3 and promoted nf-κb expression in PI and DI, and the siRNA interference experiment in vivo demonstrated that intestinal inflammation was mediated by NLRC3/NF-κB/IL-1ß signaling pathway. Fecal bacteria transplantation experiment demonstrated that gut microbiota mediated the protective effect of P. pentosaceus YC. These findings offer valuable insights into the application of P. pentosaceus YC for alleviating gossypol-induced intestinal inflammation in fish.


Assuntos
Ração Animal , Ciclídeos , Doenças dos Peixes , Gossipol , Pediococcus pentosaceus , Probióticos , Transdução de Sinais , Animais , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/prevenção & controle , Probióticos/farmacologia , Probióticos/administração & dosagem , Ração Animal/análise , Transdução de Sinais/efeitos dos fármacos , Gossipol/administração & dosagem , Gossipol/farmacologia , Dieta/veterinária , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Aeromonas hydrophila/fisiologia , NF-kappa B/metabolismo , NF-kappa B/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Inflamação/veterinária , Inflamação/induzido quimicamente , Inflamação/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Enterite/veterinária , Enterite/prevenção & controle , Enterite/induzido quimicamente , Enterite/imunologia , Enterite/microbiologia
10.
Zhonghua Nan Ke Xue ; 30(3): 254-260, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-39177393

RESUMO

Gossypol is a natural product extracted from cotton seeds, roots and stems, once used as a male contraceptive and later found with an anti-tumor effect. Recent studies show that it has an antiviral effect after structurally modified. This review focuses on the status quo of present studies on the effects of gossypol and its derivatives in anti-reproduction and anti-PCa, with an introduction of the application of the new compounds obtained from structural modification of gossypol in the treatment of PCa.


Assuntos
Anticoncepcionais Masculinos , Gossipol , Gossipol/farmacologia , Gossipol/análogos & derivados , Masculino , Humanos , Anticoncepcionais Masculinos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Reprodução/efeitos dos fármacos , Animais
11.
PLoS One ; 19(8): e0306597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39106246

RESUMO

Gossypol, a yellow polyphenolic compound found in the Gossypium genus, is toxic to animals that ingest cotton-derived feed materials. However, ruminants display a notable tolerance to gossypol, attributed to the pivotal role of ruminal microorganisms in its degradation. The mechanisms of how rumen microorganisms degrade and tolerate gossypol remain unclear. Therefore, in this study, Enterobacter sp. GD5 was isolated from rumen fluid, and the effects of gossypol on its metabolism and gene expression were investigated using liquid chromatography-mass spectrometry (LC-MS) and RNA analyses. The LC-MS results revealed that gossypol significantly altered the metabolic profiles of 15 metabolites (eight upregulated and seven downregulated). The Kyoto Encyclopedia of Genes and Genomes analysis results showed that significantly different metabolites were associated with glutathione metabolism in both positive and negative ion modes, where gossypol significantly affected the biosynthesis of amino acids in the negative ion mode. Transcriptomic analysis indicated that gossypol significantly affected 132 genes (104 upregulated and 28 downregulated), with significant changes observed in the expression of catalase peroxidase, glutaredoxin-1, glutathione reductase, thioredoxin 2, thioredoxin reductase, and alkyl hydroperoxide reductase subunit F, which are related to antioxidative stress. Furthermore, Gene Ontology analysis revealed significant changes in homeostatic processes following gossypol supplementation. Overall, these results indicate that gossypol induces oxidative stress, resulting in the increased expression of antioxidative stress-related genes in Enterobacter sp. GD5, which may partially explain its tolerance to gossypol.


Assuntos
Enterobacter , Gossipol , Metabolômica , Gossipol/farmacologia , Gossipol/metabolismo , Enterobacter/metabolismo , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Animais , Transcriptoma/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica , Rúmen/microbiologia , Rúmen/metabolismo , Rúmen/efeitos dos fármacos
12.
Br J Pharmacol ; 181(22): 4546-4570, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39081110

RESUMO

BACKGROUND AND PURPOSE: Gastrointestinal tumours overexpress voltage-gated calcium (CaV3) channels (CaV3.1, 3.2 and 3.3). CaV3 channels regulate cell growth and apoptosis colorectal cancer. Gossypol, a polyphenolic aldehyde found in the cotton plant, has anti-tumour properties and inhibits CaV3 currents. A systematic study was performed on gossypol blocking mechanism on CaV3 channels and its potential anticancer effects in colon cancer cells, which express CaV3 isoforms. EXPERIMENTAL APPROACH: Transcripts for CaV3 proteins were analysed in gastrointestinal cancers using public repositories and in human colorectal cancer cell lines HCT116, SW480 and SW620. The gossypol blocking mechanism on CaV3 channels was investigated by combining heterologous expression systems and patch-clamp experiments. The anti-tumoural properties of gossypol were estimated by cell proliferation, viability and cell cycle assays. Ca2+ dynamics were evaluated with cytosolic and endoplasmic reticulum (ER) Ca2+ indicators. KEY RESULTS: High levels of CaV3 transcripts correlate with poor prognosis in gastrointestinal cancers. Gossypol blockade of CaV3 isoforms is concentration- and use-dependent interacting with the closed, activated and inactivated conformations of CaV3 channels. Gossypol and CaV3 channels down-regulation inhibit colorectal cancer cell proliferation by arresting cell cycles at the G0/G1 and G2/M phases, respectively. CaV3 channels underlie the vectorial Ca2+ uptake by endoplasmic reticulum in colorectal cancer cells. CONCLUSION AND IMPLICATIONS: Gossypol differentially blocked CaV3 channel and its anticancer activity was correlated with high levels of CaV3.1 and CaV3.2 in colorectal cancer cells. The CaV3 regulates cell proliferation and Ca2+ dynamics in colorectal cancer cells. Understanding this blocking mechanism maybe improve cancer therapies.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo T , Proliferação de Células , Neoplasias do Colo , Gossipol , Humanos , Gossipol/farmacologia , Gossipol/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia
13.
Inorg Chem ; 63(32): 15134-15143, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39074382

RESUMO

Gossypol (Gsp) and antibiotics present in water bodies become organic pollutants that are harmful to human health and the ecological environment. Accurate and effective detection of these pollutants has far-reaching significance in many fields. A new three-dimensional metal-organic framework (MOF), {[Eu3(L)2(HCOO-)(H2O)3]·2H2O·2DMF}n (Eu-MOF), was synthesized from 3,5-bis(2,4-dicarboxylphenyl)nitrobenzene (H4L) ligand and Eu3+ via the solvothermal method in this paper. The Eu-MOF demonstrates strong red fluorescence and can remain stable in different pH solutions. The MOF fluorescence probe could detect organic pollutants through the "shut-off" effect, with a fast response speed and a low detection limit [Gsp, nitrofurantoin (NFT), and nitrofurazone (NFZ) for 0.43, 0.38, and 0.41 µM, respectively]. During the testing process, Eu-MOF exhibited good selectivity and recoverability. Furthermore, the mechanism of fluorescence quenching was investigated, and the recoveries were also good in real samples. This paper introduced a deep learning model to recognize the fluorescence images, a portable intelligent logic detector designed for real-time detection of Gsp by logic gate strategy, and an anticounterfeiting mark prepared based on inkjet printing. Importantly, this work provides a new way of thinking for the detection of organic pollutants in water with high sensitivity and practicality by combining the fluorescence probe with machine learning and logical judgment.


Assuntos
Antibacterianos , Európio , Corantes Fluorescentes , Gossipol , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Európio/química , Antibacterianos/análise , Antibacterianos/química , Gossipol/análise , Gossipol/química , Poluentes Químicos da Água/análise , Nitrofuranos/análise , Espectrometria de Fluorescência , Estrutura Molecular , Limite de Detecção
14.
Poult Sci ; 103(9): 104025, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39003791

RESUMO

Free gossypol (FG), the primary antinutritional component in cottonseed meal, can adversely affect the growth and health of poultry. Although younger geese are particularly sensitive to FG, the precise effects of FG on geese remain elusive. This study aimed to investigate the effects of gossypol acetate (GA), a form of FG, on the growth, serum biochemical parameters, and intestinal health of goslings. Seventy-two healthy male goslings, aged 7-day-old with similar body weight (BW), were randomly divided into 3 groups: a control group and 2 GA-treated groups (GA25 and GA50), which were orally administered GA (25 and 50 mg/kg BW) daily for 14 d. The results showed that oral administration of GA significantly suppressed BW, altered serum parameters, and impaired intestinal health in a dose- and time-dependent manner. Specifically, GA adversely affected intestinal morphology, induced oxidative stress, and inflammation, diminished immune function, and increased intestinal permeability and apoptosis of intestinal cells, consequently impairing nutrient absorption and utilization of goslings. Overall, these data indicate that GA adversely affects the growth, serum parameters, and intestinal health of goslings, providing valuable information further to understand the toxic effects of gossypol on goslings.


Assuntos
Gansos , Gossipol , Intestinos , Animais , Gossipol/farmacologia , Gossipol/administração & dosagem , Masculino , Gansos/crescimento & desenvolvimento , Intestinos/efeitos dos fármacos , Ração Animal/análise , Distribuição Aleatória , Dieta/veterinária , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Análise Química do Sangue/veterinária
15.
Fish Shellfish Immunol ; 151: 109744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960107

RESUMO

MicroRNAs (miRNAs) have been demonstrated to act as crucial modulators with considerable impacts on the immune system. Cottonseed meal is often used as a protein source in aqua feed, cottonseed meal contains gossypol, which is harmful to animals. However, there is a lack of research on the role of miRNAs in fish exposed to gossypol stress. To determine the regulatory effects of miRNAs on gossypol toxicity, Cyprinus carpio were given to oral administration of 20 mg/kg gossypol for 7 days, and the gossypol concentration in the tissues was tested. Then, we detected spleen index, histology, immune enzyme activities of fish induced by gossypol. The results of miRNA sequencing revealed 8 differentially expressed miRNAs in gossypol group, and miR-214_L-1R+4 was found involved in immune response induced by gossypol. The potential targets of miR-214_L-1R+4 were predicted, and found a putative miR-214_L-1R+4 binding site in the 3'UTR of MyD88a. Furthermore, dual-luciferase reporter assays displayed miR-214_L-1R+4 decreased MyD88a expression through binding to the 3'UTR of MyD88a. Moreover, miR-214_L-1R+4 antagomir were intraperitoneally administered to C. carpio, down-regulated miR-214_L-1R+4 could increase MyD88a expression, as well as inflammatory cytokines and anti-inflammatory cytokines expression. These findings revealed that miR-214_L-1R+4 via the MyD88-dependent signaling pathway modulate the immune response to gossypol in C. carpio spleen.


Assuntos
Carpas , Proteínas de Peixes , Gossipol , MicroRNAs , Fator 88 de Diferenciação Mieloide , Transdução de Sinais , Animais , Carpas/imunologia , Carpas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Gossipol/farmacologia , Gossipol/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética
16.
J Am Soc Mass Spectrom ; 35(7): 1532-1538, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38856661

RESUMO

The development of simple and rapid analytical tools for gossypol (GSP) is important to the food industry and medical field. Here, we report a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method for the detection of GSP by using a reactive matrix 4-hydrazinoquinazoline (4-HQ). The two aldehyde groups of GSP react with the 4-HQ and therefore improve the detection sensitivity and selectivity of GSP. Moreover, GSP forms homogeneous crystals with the 4-HQ matrix, allowing the quantification of the GSP by the proposed method. With the optimized experimental conditions, GSP could be detected at concentrations as low as 0.1 µM and quantified in a wide linear range (1-500 µM). After a brief extraction with an organic solvent, the GSP contents in cottonseeds and cottonseed kernels from different provinces of China were determined successfully. The spiked recovery of GSP in cottonseed/cottonseed kernel samples was obtained as 97.88-105.80%, showing the reliability of the assay for GSP determination in real samples.


Assuntos
Gossipol , Limite de Detecção , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Gossipol/análise , Gossipol/química , Gossypium/química , Reprodutibilidade dos Testes
17.
Biochem Biophys Res Commun ; 726: 150306, 2024 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-38917634

RESUMO

The folate metabolism enzyme ALDH1L1 catalyzed 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Non-small cell lung cancer cells (NSCLC) strongly express ALDH1L1. Gossypol binds to an allosteric site and disrupts the folate metabolism by preventing NADP+ binding. The Cryo-EM structures of tetrameric C-terminal aldehyde dehydrogenase human ALDH1L1 complex with gossypol were examined. Gossypol-bound ALDH1L1 interfered with NADP+ by shifting the allosteric site of the structural conformation, producing a closed-form NADP+ binding site. In addition, the inhibition activity of ALDH1L1 was targeted with gossypol in NSCLC. The gossypol treatment had anti-cancer effects on NSCLC by blocking NADPH and ATP production. These findings emphasize the structure characterizing ALDH1L1 with gossypol.


Assuntos
Gossipol , Humanos , Gossipol/química , Gossipol/farmacologia , Gossipol/metabolismo , NADP/metabolismo , NADP/química , Modelos Moleculares , Microscopia Crioeletrônica , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/química , Ligação Proteica , Sítios de Ligação , Sítio Alostérico , Conformação Proteica , Linhagem Celular Tumoral , Oxirredutases atuantes sobre Doadores de Grupo CH-NH
18.
Plant J ; 119(2): 879-894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923085

RESUMO

Cotton is a globally cultivated crop, producing 87% of the natural fiber used in the global textile industry. The pigment glands, unique to cotton and its relatives, serve as a defense structure against pests and pathogens. However, the molecular mechanism underlying gland formation and the specific role of pigment glands in cotton's pest defense are still not well understood. In this study, we cloned a gland-related transcription factor GhHAM and generated the GhHAM knockout mutant using CRISPR/Cas9. Phenotypic observations, transcriptome analysis, and promoter-binding experiments revealed that GhHAM binds to the promoter of GoPGF, regulating pigment gland formation in cotton's multiple organs via the GoPGF-GhJUB1 module. The knockout of GhHAM significantly reduced gossypol production and increased cotton's susceptibility to pests in the field. Feeding assays demonstrated that more than 80% of the cotton bollworm larvae preferred ghham over the wild type. Furthermore, the ghham mutants displayed shorter cell length and decreased gibberellins (GA) production in the stem. Exogenous application of GA3 restored stem cell elongation but not gland formation, thereby indicating that GhHAM controls gland morphogenesis independently of GA. Our study sheds light on the functional differentiation of HAM proteins among plant species, highlights the significant role of pigment glands in influencing pest feeding preference, and provides a theoretical basis for breeding pest-resistant cotton varieties to address the challenges posed by frequent outbreaks of pests.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/parasitologia , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Animais , Giberelinas/metabolismo , Gossipol/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resistência à Doença/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Mariposas/fisiologia , Larva/crescimento & desenvolvimento
19.
Fish Shellfish Immunol ; 151: 109727, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936520

RESUMO

Gossypol, a naturally occurring compound found in cottonseed meal, shows promising therapeutic potential for human diseases. However, within the aquaculture industry, it is considered an antinutritional factor. The incorporation of cottonseed meal into fish feed introduces gossypol, which induces intracellular stresses and hinders overall health of farmed fish. The aim of this study is to determine the role of General control nonderepressible 2 (gcn2), a sensor for intracellular stresses in gossypol-induced stress responses in fish. In the present study, we established two gcn2 knockout zebrafish lines. A feeding trial was conducted to assess the growth-inhibitory effect of gossypol in both wild type and gcn2 knockout zebrafish. The results showed that in the absence of gcn2, zebrafish exhibited increased oxidative stress and apoptosis when exposed to gossypol, resulting in higher mortality rates. In feeding trial, dietary gossypol intensified liver inflammation in gcn2-/- zebrafish, diminishing their growth and feed conversion. Remarkably, administering the antioxidant N-acetylcysteine (NAC) was effective in reversing the gossypol induced oxidative stress and apoptosis, thereby increasing the gossypol tolerance of gcn2-/- zebrafish. Exposure to gossypol induces more severe mitochondrial stress in gcn2-/- zebrafish, thereby inducing metabolic disorders. These results reveal that gcn2 plays a protective role in reducing gossypol-induced oxidative stress and apoptosis, attenuating inflammation responses, and enhancing the survivability of zebrafish in gossypol-challenged conditions. Therefore, maintaining appropriate activation of Gcn2 may be beneficial for fish fed diets containing gossypol.


Assuntos
Apoptose , Gossipol , Inflamação , Estresse Oxidativo , Peixe-Zebra , Animais , Gossipol/toxicidade , Gossipol/farmacologia , Gossipol/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Inflamação/induzido quimicamente , Ração Animal/análise , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Dieta/veterinária , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
20.
Pestic Biochem Physiol ; 199: 105774, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458681

RESUMO

Aphis gossypii, a globally distributed and economically significant pest of several crops, is known to infest a wide range of host plants. Heat shock proteins (Hsps), acting as molecular chaperones, are essential for the insect's environmental stress responses. The present study investigated the molecular characteristics and expression patterns of AgHsp70, a heat shock protein gene, in Aphis gossypii. Our phylogenetic analysis revealed that AgHsp70 shared high similarity with homologs from other insects, suggesting a conserved function across species. The developmental expression profiles of AgHsp70 in A. gossypii showed that the highest transcript levels were observed in the fourth instar nymphs, while the lowest levels were detected in the third instar nymphs. Heat stress and exposure to four different xenobiotics (2-tridecanone, tannic acid, gossypol, and flupyradifurone (4-[(2,2-difluoroethyl)amino]-2(5H)-furanone)) significantly up-regulated AgHsp70 expression. Knockdown of AgHsp70 using RNAi obviously increased the susceptibility of cotton aphids to 2-tridecanone, gossypol and flupyradifurone. Dual-luciferase reporter assays revealed that gossypol and flupyradifurone significantly enhanced the promoter activity of AgHsp70 at a concentration of 10 mg/L. Furthermore, we identified the transcription factor heat shock factor (HSF) as a regulator of AgHsp70, as silencing AgHSF reduced AgHsp70 expression. Our results shed light on the role of AgHsp70 in xenobiotic adaptation and thermo-tolerance.


Assuntos
4-Butirolactona/análogos & derivados , Afídeos , Gossipol , Cetonas , Polifenóis , Piridinas , Animais , Afídeos/genética , Afídeos/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Gossipol/metabolismo , Filogenia , Xenobióticos/farmacologia , Xenobióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...