Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
Food Chem ; 462: 141030, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241685

RESUMO

The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.


Assuntos
Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Leite Humano , Estresse Oxidativo , Probióticos , Humanos , Probióticos/farmacologia , Probióticos/química , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Glicoproteínas/química , Glicoproteínas/farmacologia , Glicoproteínas/metabolismo , Células CACO-2 , Glicolipídeos/química , Glicolipídeos/farmacologia , Glicolipídeos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Leite Humano/química , Lactente , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Fórmulas Infantis/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/metabolismo
2.
Luminescence ; 39(9): e4885, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238366

RESUMO

Near-infrared (NIR) fluorescent probes with aggregation-induced emission (AIE) properties are of great significance in cell imaging and cancer therapy. However, the complexity of its synthesis, poor photostabilities, and expensive raw materials still pose some obstacles to their practical application. This study reported an AIE luminescent material with red emission and its application in in vitro imaging and photodynamic therapy (PDT) study. This material has the characteristics of simple synthesis, large Stokes shift, good photostabilities, and excellent lipid droplets-specific testing ability. Interestingly, this red-emitting material can effectively produce reactive oxygen species (ROS) under white light irradiation, further achieving PDT-mediated killing of cancer cells. In conclusion, this study demonstrates a simple approach to synthesize NIR AIE probes with both imaging and therapeutic effects, providing an ideal architecture for constructing long-wavelength emission AIE materials.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Gotículas Lipídicas , Fotoquimioterapia , Espécies Reativas de Oxigênio , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Gotículas Lipídicas/química , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Sobrevivência Celular/efeitos dos fármacos , Imagem Óptica , Estrutura Molecular , Células HeLa
3.
Food Res Int ; 195: 114948, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277226

RESUMO

Oleosomes are natural lipid droplets that can be extracted intact from oil seeds, forming oil/water emulsions. Their lipid cores, surrounded by a monolayer of phospholipids and proteins, make oleosomes suitable as carriers of hydrophobic bioactive compounds like cannabidiol (CBD). As CBD is crystalline at room temperature, it first has to be liquified to allow better encapsulation. This was done by heating (80 °C for 4 h) or by pre-solubilizing CBD in ethanol and then the liquified CBD was mixed with oleosome dispersions for the encapsulation. Both methods exhibit good encapsulation efficiency, but the results were significantly influenced by the ratio of CBD to lipid contents, regardless of the encapsulation method applied. At higher concentrations of CBD relative to that of the lipid in the oleosomes, the encapsulation efficiency decreased as saturation was attained. Moreover, the in vitro digestion analysis was conducted to investigate the potential of oleosomes as carriers to transport CBD. The relatively slow and steady release of CBD from oleosomes indicates that oleosomes are a slow-release carrier for hydrophobic functional ingredients. An important finding is that the encapsulation and in vitro digestive properties of the oleosomes remain unaffected by the presence of CBD, heating treatment or ethanol, which could bring more opportunities for the applications of oleosomes as carriers in various fields.


Assuntos
Canabidiol , Cannabis , Emulsões , Sementes , Canabidiol/química , Cannabis/química , Sementes/química , Emulsões/química , Gotículas Lipídicas/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Temperatura Alta , Etanol/química
4.
Phys Chem Chem Phys ; 26(35): 23032-23052, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39172096

RESUMO

Lipid droplets (LDs) are globular biological organelles found in the human body, essential for lipid storage, homeostasis, energy reserve, cellular stress response, membrane biogenesis, and cellular signaling. Dysregulated accumulation of LDs leads to various diseases, including breast and liver cancers. Therefore, the development of diagnostic tools for monitoring LDs using suitable probes for bio-imaging applications is imperative. However, identifying promising probes with near-infrared emission characteristics is still a challenging and intriguing task, requiring extensive exploration of the structure-emission property relationship to design efficient probes for LDs. In this context, we envision the impact of 2-furylated imidazole as a π-bridge and have designed nine LD probes by substituting it with electron-releasing groups like CH3, NH2, NH(CH3), and N(CH3)2 at the 3rd and 4th positions via DFT, TD-DFT, FMO, ESP, NCI, and QTAIM analyses. Our results demonstrate that LDP7 with NH(CH3) at the 3rd position is the most promising molecule, exhibiting the highest emission maxima (772.02 nm) with a lower HOMO-LUMO gap, suggesting its suitability for a range of biomedical applications. An enhancement of ∼200 nm is achieved through tailoring the molecular structure using the designed 2-furylated imidazole-derived π-bridge. ADMET and molecular docking analysis followed by molecular dynamics simulations with the human pyruvate kinase protein reveal these LDPs' bioavailability, binding ability and their stability towards their bio-imaging applications. In summary, our study offers valuable insights to aid researchers in developing and refining various π-linkers for lipid droplet bio-imaging applications.


Assuntos
Imidazóis , Gotículas Lipídicas , Imidazóis/química , Humanos , Gotículas Lipídicas/química , Corantes Fluorescentes/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Simulação de Dinâmica Molecular
5.
Food Res Int ; 192: 114680, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147535

RESUMO

Driven by the acknowledged health and functional properties of milk fat globules (MFGs), there is a growing interest to develop gentle methodologies for separation of fat from milk. In this study, separation of fat from raw milk and fractionation in streams containing MFGs of different size was achieved using a series of two silicon carbide ceramic membranes. A first step consisting of a 1.4 µm membrane aimed to concentrate the bulk of the fat, i.e. the larger MFGs (D[4,3] âˆ¼ 4 µm) followed by a 0.5 µm fractionation aimed to concentrate the residual milk fat in the permeate, i.e. fraction with the smaller MFGs (D[4,3] âˆ¼ 1.8-2.4 µm. The fat separation performance showed a yield of 92 % for the 1.4 µm membrane and 97 % for the 0.5 µm membrane. Both fat enriched retentates showed, by the confocal laser scanning microscopy, intact MFGs with limited damage in the MFG membrane. The fatty acid profile analysis and SAXS showed minor differences in fat acid composition and the crystallization behavior was related to differences in the fat content. The 0.5 µm permeate containing the smallest MFGs however showed larger aggregates and a trinomial particle size distribution, due to probably pore pressure induced coalescences. The series of silicon carbide membranes showed potential to concentrate some of MFGM proteins such as Periodic Schiff base 3/4 and cluster of differentiation 36 especially in the 0.5 µm retentates. A shift in casein to whey protein ratio from 80:20 (milk) to 50:50 was obtained in the final 0.5 µm permeate, which opens new opportunities for product development.


Assuntos
Compostos Inorgânicos de Carbono , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Leite , Compostos de Silício , Gotículas Lipídicas/química , Compostos de Silício/química , Glicolipídeos/química , Compostos Inorgânicos de Carbono/química , Glicoproteínas/química , Glicoproteínas/análise , Animais , Leite/química , Membranas Artificiais , Tamanho da Partícula , Ácidos Graxos/análise , Ácidos Graxos/química , Difração de Raios X , Sialoglicoproteínas , Espalhamento a Baixo Ângulo , Fracionamento Químico/métodos
6.
Mikrochim Acta ; 191(9): 532, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134779

RESUMO

Lipid droplets (LDs) dysfunction is closely associated with a multitude of diseases, including nonalcoholic fatty liver disease (NAFLD). Therefore, it is imperative to develop fluorescent probes that specifically target LDs for the early detection and diagnosis of NAFLD. In this study, a series of lipophilic fluorophores CZ1-CZ4 that feature a D-π-A configuration were designed and synthesized based on the carbazole and tricocyanofuran derivatives. The photophysical data revealed that all four probes exhibited large Stokes shifts (~ 120 nm) in high-polarity solvents (e.g., DMSO) and demonstrated enhanced fluorescence in solvents ranging from low-polarity (e.g., 1,4-Dioxane) to high-polarity. Notably, by utilizing probe CZ1, we could specifically visualize LDs and captured high-quality images, even eliminating the need for a time-consuming wash procedure. Moreover, CZ1 enabled monitoring of LDs dynamic changes in-real time within live cells, and importantly, it could be used to effectively distinguish normal and NAFLD tissues at both the organ and in vivo level. This exceptional property of probe CZ1 provides a practical tool for the diagnosis and intervention of NAFLD.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Gotículas Lipídicas/química , Humanos , Animais , Imagem Óptica/métodos , Camundongos , Células Hep G2
7.
ACS Nano ; 18(33): 21998-22009, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115238

RESUMO

Lipid droplets (LDs), the essential cytosolic fat storage organelles, have emerged as pivotal regulators of cellular metabolism and are implicated in various diseases. The noninvasive monitoring of LDs necessitates fluorescent probes with precise organelle selectivity and biocompatibility. Addressing this need, we have engineered a probe by strategically modifying the structure of a conventional two-photon-absorbing dipolar dye, acedan. This innovative approach induces nanoaggregate formation in aqueous environments, leading to aggregation-induced fluorescence quenching. Upon cellular uptake via clathrin-mediated endocytosis, the probe selectively illuminates within LDs through a disassembly process, effectively distinguishing LDs from the cytosol with exceptional specificity. This breakthrough enables the high-fidelity imaging of LDs in both cellular and tissue environments. In a pioneering investigation, we probed LDs in a diabetes model induced by streptozotocin, unveiling significantly heightened LD accumulation in cardiac tissues compared to other organs, as evidenced by TP imaging. Furthermore, our exploration of a lipopolysaccharide-mediated cardiomyopathy model revealed an LD accumulation during heart injury. Thus, our developed probe holds immense potential for elucidating LD-associated diseases and advancing related research endeavors.


Assuntos
Clatrina , Corantes Fluorescentes , Gotículas Lipídicas , Animais , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Clatrina/metabolismo , Corantes Fluorescentes/química , Camundongos , Endocitose , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/diagnóstico por imagem , Fótons , Humanos , Imagem Óptica , Masculino , Camundongos Endogâmicos C57BL
8.
Biosens Bioelectron ; 264: 116624, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39121616

RESUMO

Fluorescence imaging technology is a versatile and essential tool in the field of biomedical research. To obtain excellent imaging results, the precise labeling of fluorescent probes is an important prerequisite. Nevertheless, the labeling selectivity of most fluorescent probes is not satisfactory, new design concepts are desperately needed. In this context, two isomeric lipid droplets (LDs) fluorescent probes Lipi-Cz-1 and Lipi-Cz-2 have been sophisticatedly developed with TICT and ICT-emitting characteristic, respectively. The more environmentally sensitive TICT-emitting Lipi-Cz-1 exhibits a significantly enhanced labeling selectivity in LDs imaging compared to the ICT-emitting Lipi-Cz-2, sufficiently illustrating the effectiveness of TICT-emitting characteristic in improving labeling selectivity. Additionally, Lipi-Cz-1 displays high photostability and biocompatibility. These advantages enable Lipi-Cz-1 to be finely applied in multimode fluorescence imaging, e.g. time-lapse 3D confocal imaging to monitor changes of the number and size of LDs during starvation, two-photon 3D imaging to compare the variations of LDs in various liver tissues, and STED super-resolution imaging to visualize the nanoscale LDs with the resolution of 65 nm. Overall, these imaging findings validate the effectiveness of the new strategy for improving the labeling selectivity.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Imagem Óptica , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Humanos , Imagem Óptica/métodos , Animais , Técnicas Biossensoriais/métodos , Camundongos
9.
Food Chem ; 461: 140879, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39154466

RESUMO

Currently, the poor whipping capabilities of anhydrous milk fat (AMF) in aerated emulsion products are a major obstacle for their use in beverages like tea and coffee, as well as in cakes and desserts, presenting fresh hurdles for the food industry. In this study, the mechanism of action of diacylglycerols (DAGs) with different carbon chain lengths and degrees of saturation on the partial coalescence of aerated emulsions was systematically investigated from three fundamental perspectives: fat crystallization, air-liquid interface rheology, and fat globule interface properties. The optimized crystallization of long carbon chain length diacylglycerol (LCD) based on stearate enhances interactions between fat globules at the air-liquid interface (with an elastic modulus E' reaching 246.42 mN/m), leading to a significantly reduced interface membrane strength. This promotes fat crystal-membrane interactions during whipping, resulting in a thermally stable foam structure with excellent shaping capability due to enhanced partial coalescence of fat globules. Although Laurate based medium carbon chain length diacylglycerol (MCD) promoted fat crystallization and optimized interface properties, it showed weaker foam properties because it did not adequately encapsulate air bubbles during whipping. Conversely, oleate long carbon chain length diacylglycerol (OCD) proved to be ineffective in facilitating fat crystal-membrane interaction, causing foam to have a subpar appearance. Hence, drawing from the carefully examined fat crystal-membrane interaction findings, a proposed mechanism sheds light on how DAGs impact the whipping abilities of aerated emulsions. This mechanism serves as a blueprint for creating aerated emulsions with superior whipping capabilities and foam systems that are resistant to heat.


Assuntos
Cristalização , Diglicerídeos , Emulsões , Diglicerídeos/química , Emulsões/química , Animais , Reologia , Leite/química , Gotículas Lipídicas/química
10.
Chem Commun (Camb) ; 60(72): 9809-9812, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39163003

RESUMO

The twist fusion of a benzothiophene group and the introduction of a 4-methyloxystyryl donor group to the BODIPY core resulted in large spin-orbit coupling values and smaller singlet-triplet energy gaps for the novel infrared absorbed photosensitizers named BSBDP. They show a high reactive oxygen species efficiency exceeding 69% and a fluorescence quantum yield of 23% and are successfully applied in imaging-guided photodynamic therapy in vitro and in vivo.


Assuntos
Compostos de Boro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Tiofenos , Compostos de Boro/química , Compostos de Boro/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Tiofenos/química , Tiofenos/farmacologia , Humanos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Estrutura Molecular
11.
Anal Chem ; 96(35): 14215-14221, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39162214

RESUMO

Atherosclerosis (AS) is the leading cause of cardiovascular disease. Foam cells, with elevated lipid droplets (LDs) and HClO levels, are the main components of the atherosclerotic plaques that are characteristic of AS. Super-resolution imaging can be used to visualize the distribution of LDs in foam cells at the nanometer level, facilitating the identification of LDs and HClO. In the present study, we report the development of a ratiometric fluorescent probe, SFL-HClO, for super-resolution imaging of LDs and HClO. Super-resolution imaging with this probe revealed the precise structure of LDs at the suborganelle level. Moreover, the fluorescence behavior of SFL-HClO on the surface of LDs verified its excellent performance in detecting HClO in the foam cells. SFL-HClO can sequentially and specifically respond to LDs and HClO via "turn-on" and ratiometric signal output, respectively, thus contributing to precise imaging of foam cells. Importantly, we demonstrate that SFL-HClO can be used to report on upregulated HClO in atherosclerotic plaques in the aorta of AS mice, providing a suitable fluorescent tool for early atherosclerotic disease assessment.


Assuntos
Aterosclerose , Corantes Fluorescentes , Células Espumosas , Ácido Hipocloroso , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Células Espumosas/patologia , Animais , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Camundongos , Ácido Hipocloroso/análise , Células RAW 264.7 , Imagem Óptica , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/química , Placa Aterosclerótica/patologia , Camundongos Endogâmicos C57BL , Gotículas Lipídicas/química
12.
J Photochem Photobiol B ; 258: 113000, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121718

RESUMO

Lipid droplets (LDs) are spherical organelles that localize in the cytosol of eukaryotic cells. Different proteins are embedded on the surface of LDs, so LDs play a vital role in the physiological activities of cells. The dysregulation of LDs is associated with various human diseases, such as diabetes and obesity. Therefore, it is essential to develop a fluorescent dye that labels LDs to detect and monitor illnesses. In this study, we developed the compound BDAA12C for staining LDs in cells. BDAA12C exhibits excellent LD specificity and low toxicity, enabling us to successfully stain and observe the fusion of LDs in A549 cancer cells. Furthermore, we also successfully distinguished A549 cancer cells and MRC-5 normal cells in a co-culture experiment and in normal and tumour tissues. Interestingly, we found different localizations of BDAA12C in well-fed and starved A549 cancer cells and consequently illustrated the transfer of fatty acids (FAs) from LDs to mitochondria to supply energy for ß-oxidation upon starvation. Therefore, BDAA12C is a promising LD-targeted probe for cancer diagnosis and tracking lipid trafficking within cells.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Corantes Fluorescentes/química , Células A549 , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Ácidos Graxos/química , Técnicas de Cocultura , Mitocôndrias/metabolismo , Acridinas/química , Microscopia de Fluorescência
13.
Analyst ; 149(19): 4953-4959, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39171995

RESUMO

Lipid droplets (LDs) and lysosomes are vital organelles that play crucial roles in various physiological and pathological processes. However, simultaneous two-color visualization of these two organelles using a single probe for cell homeostasis monitoring remains a challenge due to the lack of rational design strategies. To address this issue, we have developed an aggregation-induced emission (AIE) fluorescent probe named TPE-NDI-Mor with an electron donor (D)-acceptor (A) structure, which can stain both LDs and lysosomes with high selectivity through green and red fluorescence imaging, respectively. A detailed mechanism study revealed that TPE-NDI-Mor, with a twisted intramolecular charge transfer (TICT) effect, shows a high affinity for a polar microenvironment. Additionally, the probe also demonstrates good stability, high anti-interference performance and a large Stokes shift, making it suitable for visualizing cell homeostasis and further disease diagnosis by tracking the dynamic changes of LDs and lysosomes.


Assuntos
Corantes Fluorescentes , Homeostase , Gotículas Lipídicas , Lisossomos , Lisossomos/química , Lisossomos/metabolismo , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Humanos , Imagem Óptica/métodos , Células HeLa , Microscopia de Fluorescência/métodos , Cor , Microscopia Confocal/métodos
14.
Curr Opin Cell Biol ; 90: 102402, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39053179

RESUMO

Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.


Assuntos
Gotículas Lipídicas , Lipólise , Lisossomos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Humanos , Animais , Lisossomos/metabolismo , Metabolismo dos Lipídeos , Autofagia , Exocitose
15.
Talanta ; 279: 126605, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084038

RESUMO

Intracellular lipid droplets (LDs) are important organelles regulating intracellular redox processes. Endogenous bisulfite/sulfite (HSO3-/SO32-) is one of the metabolites of thiol metabolism. The variation in HSO3-/SO32- content around LDs is closely related to cellular homeostasis. However, there is currently no effective method to visualize and quantify the dynamic changes in HSO3-/SO32- content around LDs. In this work, a fluorescent probe MC-BEN utilizing a triphenylamine basic framework was developed to selectively recognize HSO3-/SO32- via a nucleophilic addition reaction. The probe exhibits excellent anti-interference capability, short response time, outstanding photostability, and a low fluorescence detection limit (6.1 µM) for HSO3-/SO32- recognition. More interesting, there is a trend of accelerated contact between LDs and lysosomes after MC-BEN targeting LDs and reacting with endogenous/exogenous HSO3-/SO32-, which may provide new ideas for the study of intracellular lysosomal lipophagy.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Sulfitos , Sulfitos/química , Sulfitos/análise , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Humanos , Lisossomos/química , Lisossomos/metabolismo , Células HeLa , Imagem Óptica , Limite de Detecção
16.
Food Res Int ; 191: 114734, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059965

RESUMO

Plant-based meat analogs are being developed to address environmental, sustainability, health, and animal welfare concerns associated with real meat products. However, it is challenging to mimic the desirable physicochemical, functional, and sensory properties of real meat products using plant-based ingredients. Emulsion gels consisting of lipid droplets embedded in biopolymer matrices are commonly used to create products with appearances, textures, and sensory attributes like meat products. In this study, the impact of soybean oil droplet characteristics (concentration, size, and charge) on the physicochemical properties of potato protein gels was studied. The oil droplets were either coated by a non-ionic surfactant (Tween 20) or a plant protein (patatin) to obtain different surface properties. The introduction of the oil droplets caused the protein gels to change from mauve to off-white, which was attributed to increased light scattering. Increasing the oil droplet concentration in the emulsion gels decreased their shear modulus and Young's modulus, which was mainly attributed to the fact that the oil droplets were less rigid than the surrounding protein network. Moreover, increasing the oil droplet size made this effect more pronounced, which was attributed to their greater deformability. Competitive adsorption of proteins and surfactants at the oi-water interface in the Tween emulsion promoted emulsion instability. This research highlights the complexity of the interactions between oil droplets and protein networks in emulsion gels. These insights are important for the utilization of emulsion gels in the formulation of plant-based foods with improved quality attributes.


Assuntos
Emulsões , Géis , Gotículas Lipídicas , Proteínas de Plantas , Reologia , Emulsões/química , Géis/química , Gotículas Lipídicas/química , Proteínas de Plantas/química , Tamanho da Partícula , Óleo de Soja/química , Propriedades de Superfície , Produtos da Carne/análise , Solanum tuberosum/química , Tensoativos/química , Polissorbatos/química
17.
Biomolecules ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062527

RESUMO

Exosomes are cell-derived extracellular vesicles (EVs) with diameters between 30 and 120 nm. In recent years, several studies have evaluated the therapeutic potential of exosomes derived from different fluids due to their low immunogenicity and high biocompatibility. However, producing exosomes on a large scale is still challenging. One of the fluids from which they could be isolated in large quantities is milk. Moreover, regeneration is a well-known property of milk. The present work seeks to optimize a method for isolating exosomes from bovine and human milk, comparing different storage conditions and different extraction protocols. We found differences in the yield extraction associated with pre-storage milk conditions and observed some differences according to the processing agent. When we removed milk fat globules and added rennet before freezing, we obtained a cleaner final fraction. In summary, we attempted to optimize a rennet-based new milk-exosome isolation method and concluded that pre-treatment, followed by freezing of samples, yielded the best exosome population.


Assuntos
Exossomos , Leite , Exossomos/metabolismo , Exossomos/química , Animais , Bovinos , Leite/química , Humanos , Leite Humano/química , Quimosina/química , Quimosina/metabolismo , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Glicolipídeos , Glicoproteínas
18.
Talanta ; 278: 126477, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968656

RESUMO

Early treatment significantly improves the survival rate of liver cancer patients, so the development of early diagnostic methods for liver cancer is urgent. Liver cancer can develop from viral hepatitis, alcoholic liver, and fatty liver, thus making the above diseases share common features such as elevated viscosity, reactive oxygen species, and reactive nitrogen species. Therefore, accurate differentiation between other liver diseases and liver cancer is both a paramount practical need and challenging. Numerous fluorescent probes have been reported for the diagnosis of liver cancer by detecting a single biomarker, but these probes lack specificity for liver cancer in complex biological systems. Obviously, using multiple liver cancer biomarkers as the basis for judgment can dramatically improve diagnostic accuracy. Herein, we report the first fluorescent probe, LD-TCE, that sequentially detects carboxylesterase (CE) and lipid droplet polarity in liver cancer cells with high sensitivity and selectivity, with linear detection of CE in the range of 0-6 U/mL and a 65-fold fluorescence enhancement in response to polarity. The probe first reacts with CE and releases weak fluorescence, which is then dramatically enhanced due to the decrease in lipid droplet polarity in liver cancer cells. This approach allows the probe to enable specific imaging of liver cancer with higher contrast and accuracy. The probe successfully achieved the screening of liver cancer cells and the precise identification of liver cancer in mice. More importantly, it is not disturbed by liver fibrosis, which is a common pathological feature of many liver diseases. We believe that the LD-TCE is expected to be a powerful tool for early diagnosis of liver cancer.


Assuntos
Carboxilesterase , Corantes Fluorescentes , Neoplasias Hepáticas , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Neoplasias Hepáticas/diagnóstico , Animais , Carboxilesterase/metabolismo , Camundongos , Imagem Óptica , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Camundongos Endogâmicos BALB C
19.
Anal Chem ; 96(32): 13242-13251, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39083638

RESUMO

Imaging and sensing of lipid droplets (LDs) attracted significant attention due to growing evidence for their important role in cell life. Solvatochromic dyes are promising tools to probe LDs' local polarity, but this analysis is biased by their non-negligible emission from intracellular membranes and capacity to emit from both the apolar core and polar interface of LDs. Here, we developed two push-pull solvatochromic dyes based on naphthalene and fluorene cores bearing an exceptionally strong electron acceptor, the trifluoroacetyl group. The latter was found to boost the optical properties of the dyes by shifting their absorption and emission to red and increasing their extinction coefficient, photostability, and sensitivity to solvent polarity (solvatochromism). In contrast to classical solvatochromic dyes, such as parent aldehydes and reference Nile Red, the new dyes exhibited strong fluorescence quenching by millimolar water concentrations in organic solvents. In live cells, the trifluoroacetyl dyes exhibited high specificity to LDs, whereas the parent aldehydes and Nile Red showed a detectable backgrounds from intracellular membranes. Experiments in model lipid membranes and nanoemulsion droplets confirmed the high selectivity of new probes to LDs in contrast to classical solvatochromic dyes. Moreover, the new probes were found to be selective to the LDs oil core, where they can sense lipid unsaturation and chain length. Their ratiometric imaging in cells revealed strong heterogeneity in polarity within LDs, which covered the range of polarities of unsaturated triglyceride oils, whereas Nile Red failed to properly estimate the local polarity of LDs. Finally, the probes revealed that LDs core polarity can be altered by fatty acid diets, which correlates with their chain length and unsaturation.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Humanos , Estrutura Molecular , Fluorenos/química , Naftalenos/química , Células HeLa
20.
Anal Chem ; 96(31): 12908-12915, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39066699

RESUMO

To coordinate cellular physiology, cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites. Lipid droplets (LDs) and nuclear membrane (NM) contact sites are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites. However, there is still a lack of understanding of the specific morphology of the contact sites. Here, we combine advanced three-dimensional (3D) imaging with a high-brightness fluorescent probe specifically targeting LDs to map the structural landscape of LD-NM contact sites. The probe exhibits exceptional photophysical properties, making it highly suitable for visualizing the changes occurring in LDs during the apoptosis process. In addition, we utilize the advantages of the probe to accurately monitor the overexpression of abnormal LDs in cirrhosis by 3D imaging for the first time. The outcomes of this investigation highlight that the probe has potential as a robust imaging tool to investigate intricate biological functions of LDs and their implications in related diseases.


Assuntos
Corantes Fluorescentes , Imageamento Tridimensional , Gotículas Lipídicas , Membrana Nuclear , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Humanos , Corantes Fluorescentes/química , Membrana Nuclear/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Animais , Células Hep G2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...