Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros













Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1358036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690262

RESUMO

Background: It remains unclear whether BPIV3 infection leads to stress granules formation and whether G3BP1 plays a role in this process and in viral replication. This study aims to clarify the association between BPIV3 and stress granules, explore the effect of G3BP1 on BPIV3 replication, and provide significant insights into the mechanisms by which BPIV3 evades the host's antiviral immunity to support its own survival. Methods: Here, we use Immunofluorescence staining to observe the effect of BPIV3 infection on the assembly of stress granules. Meanwhile, the expression changes of eIF2α and G3BP1 were determined. Overexpression or siRNA silencing of intracellular G3BP1 levels was examined for its regulatory control of BPIV3 replication. Results: We identify that the BPIV3 infection elicited phosphorylation of the eIF2α protein. However, it did not induce the assembly of stress granules; rather, it inhibited the formation of stress granules and downregulated the expression of G3BP1. G3BP1 overexpression facilitated the formation of stress granules within cells and hindered viral replication, while G3BP1 knockdown enhanced BPIV3 expression. Conclusion: This study suggest that G3BP1 plays a crucial role in BPIV3 suppressing stress granule formation and viral replication.


Assuntos
DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Replicação Viral , Animais , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , RNA Helicases/metabolismo , RNA Helicases/genética , Grânulos de Estresse/metabolismo , Bovinos , Fator de Iniciação 2 em Eucariotos/metabolismo , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Fosforilação , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo
2.
Nat Commun ; 15(1): 4127, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750080

RESUMO

Stress granules (SGs) are induced by various environmental stressors, resulting in their compositional and functional heterogeneity. SGs play a crucial role in the antiviral process, owing to their potent translational repressive effects and ability to trigger signal transduction; however, it is poorly understood how these antiviral SGs differ from SGs induced by other environmental stressors. Here we identify that TRIM25, a known driver of the ubiquitination-dependent antiviral innate immune response, is a potent and critical marker of the antiviral SGs. TRIM25 undergoes liquid-liquid phase separation (LLPS) and co-condenses with the SG core protein G3BP1 in a dsRNA-dependent manner. The co-condensation of TRIM25 and G3BP1 results in a significant enhancement of TRIM25's ubiquitination activity towards multiple antiviral proteins, which are mainly located in SGs. This co-condensation is critical in activating the RIG-I signaling pathway, thus restraining RNA virus infection. Our studies provide a conceptual framework for better understanding the heterogeneity of stress granule components and their response to distinct environmental stressors.


Assuntos
DNA Helicases , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Transdução de Sinais , Grânulos de Estresse , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Grânulos de Estresse/metabolismo , RNA Helicases/metabolismo , DNA Helicases/metabolismo , Proteína DEAD-box 58/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Imunidade Inata , RNA de Cadeia Dupla/metabolismo , Células HEK293 , Células HeLa , Grânulos Citoplasmáticos/metabolismo , Infecções por Vírus de RNA/virologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/imunologia , Receptores Imunológicos/metabolismo
3.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731625

RESUMO

Upon a variety of environmental stresses, eukaryotic cells usually recruit translational stalled mRNAs and RNA-binding proteins to form cytoplasmic condensates known as stress granules (SGs), which minimize stress-induced damage and promote stress adaptation and cell survival. SGs are hijacked by cancer cells to promote cell survival and are consequently involved in the development of anticancer drug resistance. However, the design and application of chemical compounds targeting SGs to improve anticancer drug efficacy have rarely been studied. Here, we developed two types of SG inhibitory peptides (SIPs) derived from SG core proteins Caprin1 and USP10 and fused with cell-penetrating peptides to generate TAT-SIP-C1/2 and SIP-U1-Antp, respectively. We obtained 11 SG-inducing anticancer compounds from cell-based screens and explored the potential application of SIPs in overcoming resistance to the SG-inducing anticancer drug sorafenib. We found that SIPs increased the sensitivity of HeLa cells to sorafenib via the disruption of SGs. Therefore, anticancer drugs which are competent to induce SGs could be combined with SIPs to sensitize cancer cells, which might provide a novel therapeutic strategy to alleviate anticancer drug resistance.


Assuntos
Antineoplásicos , Sorafenibe , Grânulos de Estresse , Humanos , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Grânulos de Estresse/metabolismo , Células HeLa , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Sobrevivência Celular/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química
4.
Nat Commun ; 15(1): 4405, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782923

RESUMO

Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.


Assuntos
Células Endoteliais , Proteína 1 de Ligação a Y-Box , Proteína da Zônula de Oclusão-1 , Animais , Proteína 1 de Ligação a Y-Box/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Camundongos , Humanos , Células Endoteliais/metabolismo , Grânulos de Estresse/metabolismo , Neovascularização Fisiológica , Vasos Retinianos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Angiogênese , Fatores de Transcrição
5.
Med Oncol ; 41(6): 140, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713310

RESUMO

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Assuntos
Neoplasias Encefálicas , Canabidiol , Glioblastoma , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Canabidiol/farmacologia , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Grânulos de Estresse/metabolismo , Grânulos de Estresse/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/metabolismo
6.
Elife ; 132024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655849

RESUMO

Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.


PURA syndrome is a neurodevelopmental disorder that affects about 650 patients worldwide, resulting in a range of symptoms including neurodevelopmental delays, intellectual disability, muscle weakness, seizures, and eating difficulties. The condition is caused by a mutated gene that codes for a protein called PURA. PURA binds RNA ­ the molecule that carries genetic information so it can be translated into proteins ­ and has roles in regulating the production of new proteins. Contrary to other conditions that result from mutations in a single gene, PURA syndrome patients show 'high penetrance', meaning almost every reported mutation in the gene leads to symptoms. Proske, Janowski et al. wanted to understand the molecular basis for this high penetrance. To find out more, the researchers first examined how patient mutations affected the location of the PURA in the cell, using human cells grown in the laboratory. Normally, PURA travels to P-bodies, which are groupings of RNA and proteins involved in regulating which genes get translated into proteins. The researchers found that in cells carrying PURA syndrome mutations, PURA failed to move adequately to P-bodies. To find out how this 'mislocalization' might happen, Proske, Janowski et al. tested how different mutations affected the three-dimensional folding of PURA. These analyses showed that the mutations impair the protein's folding and thereby disrupt PURA's ability to bind RNA, which may explain why mutant PURA cannot localize correctly. Proske, Janowski et al. describe the molecular abnormalities of PURA underlying this disorder and show how molecular analysis of patient mutations can reveal the mechanisms of a disease at the cell level. The results show that the impact of mutations on the structural integrity of the protein, which affects its ability to bind RNA, are likely key to the symptoms of the syndrome. Additionally, their approach used establishes a way to predict and test mutations that will cause PURA syndrome. This may help to develop diagnostic tools for this condition.


Assuntos
Transtornos do Neurodesenvolvimento , Corpos de Processamento , Humanos , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/patologia , Corpos de Processamento/metabolismo , Corpos de Processamento/patologia , Grânulos de Estresse/metabolismo , Cristalografia por Raios X , Dimerização , Domínios Proteicos , Dicroísmo Circular , Proteínas Recombinantes , Dobramento de Proteína , Penetrância , Substituição de Aminoácidos , Mutação Puntual , Células HeLa
7.
Vet Microbiol ; 293: 110095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643723

RESUMO

Porcine epidemic diarrhea virus (PEDV) envelope protein (E) has been characterized as an important structural protein that plays critical roles in the interplay with its host to affect the virus life cycle. Stress granules (SGs) are host translationally silent ribonucleoproteins, which are mainly induced by the phosphorylation of eIF2α in the PERK/eIF2α signaling pathway. Our previous study found that PEDV E protein caused endoplasmic reticulum stress response (ERS)-mediated suppression of antiviral proteins' translation. However, the link and the underlying mechanism by which PEDV induces SGs formation and suppresses host translation remain elusive. In this study, our results showed that PEDV E protein significantly elevated the expression of GRP78, CANX, and phosphorylation of PERK and eIF2α, indicating that the PERK/eIF2α branch of ERS was activated. PEDV E protein localized to the ER and aggregated into puncta to reconstruct ER structure, and further induced SGs formation, which has been caused through upregulating the G3BP1 expression level. In addition, a significant global translational stall and endogenous protein translation attenuation were detected in the presence of E protein overexpression, but the global mRNA transcriptional level remained unchanged, suggesting that the shutoff of protein translation was associated with the translation, not with the transcription process. Collectively, this study demonstrates that PERK/eIF2α activation is required for SGs formation and protein translation stall. This study is beneficial for us to better understand the mechanism by which PEDV E suppresses host protein synthesis, and provides us a new insight into the host translation regulation during virus infection.


Assuntos
Fator de Iniciação 2 em Eucariotos , Vírus da Diarreia Epidêmica Suína , Biossíntese de Proteínas , Transdução de Sinais , Grânulos de Estresse , eIF-2 Quinase , Vírus da Diarreia Epidêmica Suína/fisiologia , Animais , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Suínos , Células Vero , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Chlorocebus aethiops , Chaperona BiP do Retículo Endoplasmático/metabolismo , Fosforilação , Estresse do Retículo Endoplasmático
8.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38536035

RESUMO

Stress granules and P-bodies are ribonucleoprotein (RNP) granules that accumulate during the stress response due to the condensation of untranslating mRNPs. Stress granules form in part by intermolecular RNA-RNA interactions and can be limited by components of the RNA chaperone network, which inhibits RNA-driven aggregation. Herein, we demonstrate that the DEAD-box helicase DDX6, a P-body component, can also limit the formation of stress granules, independent of the formation of P-bodies. In an ATPase, RNA-binding dependent manner, DDX6 limits the partitioning of itself and other RNPs into stress granules. When P-bodies are limited, proteins that normally partition between stress granules and P-bodies show increased accumulation within stress granules. Moreover, we show that loss of DDX6, 4E-T, and DCP1A increases P-body docking with stress granules, which depends on CNOT1 and PAT1B. Taken together, these observations identify a new role for DDX6 in limiting stress granules and demonstrate that P-body components can influence stress granule composition and docking with P-bodies.


Assuntos
RNA Helicases DEAD-box , Corpos de Processamento , Grânulos de Estresse , Adenosina Trifosfatases , Corpos de Processamento/química , Corpos de Processamento/metabolismo , RNA , Grânulos de Estresse/química , Grânulos de Estresse/metabolismo , Humanos , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo
9.
Adv Sci (Weinh) ; 11(19): e2308338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447188

RESUMO

Liquid‒liquid phase separation (LLPS) is a ubiquitous process in which proteins, RNA, and biomolecules assemble into membrane-less compartments, playing important roles in many biological functions and diseases. The current knowledge on the biophysical and biochemical principles of LLPS is largely from in vitro studies; however, the physiological environment in living cells is complex and not at equilibrium. The characteristics of intracellular dynamics and their roles in physiological LLPS remain to be resolved. Here, by using single-particle tracking of quantum dots and dynamic monitoring of the formation of stress granules (SGs) in single cells, the spatiotemporal dynamics of intracellular transport in cells undergoing LLPS are quantified. It is shown that intracellular diffusion and active transport are both reduced. Furthermore, the formation of SG droplets contributes to increased spatial heterogeneity within the cell. More importantly, the study demonstrated that the LLPS of SGs can be regulated by intracellular dynamics in two stages: the reduced intracellular diffusion promotes SG assembly and the microtubule-associated transport facilitates SG coalescences. The work on intracellular dynamics not only improves the understanding of the mechanism of physiology phase separations occurring in nonequilibrium environments but also reveals an interplay between intracellular dynamics and LLPS.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/metabolismo , Transporte Biológico/fisiologia , Grânulos de Estresse/metabolismo , Separação de Fases
10.
Cell Mol Life Sci ; 81(1): 113, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436697

RESUMO

APE1 is an essential gene involved in DNA damage repair, the redox regulation of transcriptional factors (TFs) and RNA processing. APE1 overexpression is common in cancers and correlates with poor patient survival. Stress granules (SGs) are phase-separated cytoplasmic assemblies that cells form in response to environmental stresses. Precise regulation of SGs is pivotal to cell survival, whereas their dysregulation is increasingly linked to diseases. Whether APE1 engages in modulating SG dynamics is worthy of investigation. In this study, we demonstrate that APE1 colocalizes with SGs and promotes their formation. Through phosphoproteome profiling, we discover that APE1 significantly alters the phosphorylation landscape of ovarian cancer cells, particularly the phosphoprofile of SG proteins. Notably, APE1 promotes the phosphorylation of Y-Box binding protein 1 (YBX1) at S174 and S176, leading to enhanced SG formation and cell survival. Moreover, expression of the phosphomutant YBX1 S174/176E mimicking hyperphosphorylation in APE1-knockdown cells recovered the impaired SG formation. These findings shed light on the functional importance of APE1 in SG regulation and highlight the importance of YBX1 phosphorylation in SG dynamics.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Neoplasias Ovarianas , Grânulos de Estresse , Proteína 1 de Ligação a Y-Box , Feminino , Humanos , Endodesoxirribonucleases , Neoplasias Ovarianas/genética , Fosforilação , Grânulos de Estresse/metabolismo , Proteína 1 de Ligação a Y-Box/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
11.
Nucleic Acids Res ; 52(9): 5356-5375, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38366783

RESUMO

Stress granules (SGs) are cytoplasmic assemblies formed under various stress conditions as a consequence of translation arrest. SGs contain RNA-binding proteins, ribosomal subunits and messenger RNAs (mRNAs). It is well known that mRNAs contribute to SG formation; however, the connection between SG assembly and nuclear processes that involve mRNAs is not well established. Here, we examine the effects of inhibiting mRNA transcription, splicing and export on the assembly of SGs and the related cytoplasmic P body (PB). We demonstrate that inhibition of mRNA transcription, splicing and export reduces the formation of canonical SGs in a eukaryotic initiation factor 2α phosphorylation-independent manner, and alters PB size and quantity. We find that the splicing inhibitor madrasin promotes the assembly of stress-like granules. We show that the addition of synthetic mRNAs directly to the cytoplasm is sufficient for SG assembly, and that the assembly of these SGs requires the activation of stress-associated protein synthesis pathways. Moreover, we show that adding an excess of mRNA to cells that do not have active splicing, and therefore have low levels of cytoplasmic mRNAs, promotes SG formation under stress conditions. These findings emphasize the importance of the cytoplasmic abundance of newly transcribed mRNAs in the assembly of SGs.


Assuntos
Núcleo Celular , Grânulos Citoplasmáticos , Splicing de RNA , RNA Mensageiro , Grânulos Citoplasmáticos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Grânulos de Estresse/metabolismo , Transcrição Gênica , Citoplasma/metabolismo , Células HeLa , Fator de Iniciação 2 em Eucariotos/metabolismo , Fosforilação
12.
Adv Sci (Weinh) ; 11(16): e2306174, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368261

RESUMO

Patients with concurrent intrahepatic cholangiocarcinoma (ICC) and hepatolithiasis generally have poor prognoses. Hepatolithiasis is once considered the primary cause of ICC, although recent insights indicate that bacteria in the occurrence of hepatolithiasis can promote the progression of ICC. By constructing in vitro and in vivo ICC models and patient-derived organoids (PDOs), it is shown that Escherichia coli induces the production of a novel RNA, circGLIS3 (cGLIS3), which promotes tumor growth. cGLIS3 binds to hnRNPA1 and G3BP1, resulting in the assembly of stress granules (SGs) and suppression of hnRNPA1 and G3BP1 ubiquitination. Consequently, the IKKα mRNA is blocked in SGs, decreasing the production of IKKα and activating the NF-κB pathway, which finally results in chemoresistance and produces metastatic phenotypes of ICC. This study shows that a combination of Icaritin (ICA) and gemcitabine plus cisplatin (GP) chemotherapy can be a promising treatment strategy for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Progressão da Doença , Escherichia coli , NF-kappa B , Grânulos de Estresse , Animais , Humanos , Camundongos , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Modelos Animais de Doenças , DNA Helicases , Escherichia coli/genética , Escherichia coli/metabolismo , Gencitabina , NF-kappa B/metabolismo , NF-kappa B/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Transdução de Sinais/genética , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética
13.
Ecotoxicol Environ Saf ; 269: 115755, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039847

RESUMO

Under various cellular stress conditions, including exposure to toxic chemicals, RNA-binding proteins (RBPs), including Ras GTPase-activating protein-binding protein 1 (G3BP1), aggregate and form stress granule complexes, which serve as hallmarks of cellular stress. The existing methods for analyzing stress granule assembly have limitations in the rapid detection of dynamic cellular stress and ignore the effects of constitutively overexpressed RBP on cellular stress and stress-related processes. Therefore, to overcome these limitations, we established a G3BP1-GFP reporter in a human lung epithelial cell line using CRISPR/Cas9-based knock-in as an alternative system for stress granule analysis. We showed that the G3BP1-GFP reporter system responds to stress conditions and forms a stress granule complex similar to that of native G3BP1. Furthermore, we validated the stress granule response of an established cell line under exposure to various household chemicals. Overall, this novel G3BP1-GFP reporter human lung cell system is capable of monitoring stress granule dynamics in real time and can be used for assessing the lung toxicity of various substances in vitro.


Assuntos
DNA Helicases , Pulmão , RNA Helicases , Grânulos de Estresse , Humanos , DNA Helicases/metabolismo , Pulmão/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse/metabolismo , Proteínas de Fluorescência Verde , Genes Reporter
14.
Nature ; 623(7989): 1062-1069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968398

RESUMO

Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3-7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.


Assuntos
Endossomos , Membranas Intracelulares , Lisossomos , Macrófagos , Grânulos de Estresse , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Endossomos/microbiologia , Endossomos/patologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiologia , Membranas Intracelulares/patologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/patologia , Mycobacterium tuberculosis/metabolismo , Grânulos de Estresse/metabolismo , Técnicas In Vitro , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia
15.
J Virol ; 97(11): e0097923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902397

RESUMO

IMPORTANCE: Our study highlights the mechanisms behind the cell's resistance to stress granule (SG) formation after infection with Old World alphaviruses. Shortly after infection, the replication of these viruses hinders the cell's ability to form SGs, even when exposed to chemical inducers such as sodium arsenite. This resistance is primarily attributed to virus-induced transcriptional and translational shutoffs, rather than interactions between the viral nsP3 and the key components of SGs, G3BP1/2, or the ADP-ribosylhydrolase activity of nsP3 macro domain. While interactions between G3BPs and nsP3 are essential for the formation of viral replication complexes, their role in regulating SG development appears to be small, if any. Cells harboring replicating viruses or replicons with lower abilities to inhibit transcription and/or translation, but expressing wild-type nsP3, retain the ability for SG development. Understanding these mechanisms of regulation of SG formation contributes to our knowledge of viral replication and the intricate relationships between alphaviruses and host cells.


Assuntos
Alphavirus , DNA Helicases , Interações entre Hospedeiro e Microrganismos , Biossíntese de Proteínas , Grânulos de Estresse , Transcrição Gênica , Alphavirus/fisiologia , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Replicon , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Grânulos de Estresse/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
16.
Nucleic Acids Res ; 51(17): 9369-9384, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37503837

RESUMO

Bloom's syndrome (BLM) protein is a known nuclear helicase that is able to unwind DNA secondary structures such as G-quadruplexes (G4s). However, its role in the regulation of cytoplasmic processes that involve RNA G-quadruplexes (rG4s) has not been previously studied. Here, we demonstrate that BLM is recruited to stress granules (SGs), which are cytoplasmic biomolecular condensates composed of RNAs and RNA-binding proteins. BLM is enriched in SGs upon different stress conditions and in an rG4-dependent manner. Also, we show that BLM unwinds rG4s and acts as a negative regulator of SG formation. Altogether, our data expand the cellular activity of BLM and shed light on the function that helicases play in the dynamics of biomolecular condensates.


Assuntos
Quadruplex G , Grânulos de Estresse , Humanos , DNA/química , RecQ Helicases/metabolismo , RNA/genética , Grânulos de Estresse/metabolismo
17.
J Biol Chem ; 299(7): 104844, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209818

RESUMO

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs are regulated by different stimulators including viral infection, which is involved in the antiviral activity of host cells to limit viral propagation. To survive, several viruses have been reported to execute various strategies, such as modulating SG formation, to create optimal surroundings for viral replication. African swine fever virus (ASFV) is one of the most notorious pathogens in the global pig industry. However, the interplay between ASFV infection and SG formation remains largely unknown. In this study, we found that ASFV infection inhibited SG formation. Through SG inhibitory screening, we found that several ASFV-encoded proteins are involved in inhibition of SG formation. Among them, an ASFV S273R protein (pS273R), the only cysteine protease encoded by the ASFV genome, significantly affected SG formation. ASFV pS273R interacted with G3BP1 (Ras-GTPase-activating protein [SH3 domain] binding protein 1), a vital nucleating protein of SG formation. Furthermore, we found that ASFV pS273R cleaved G3BP1 at the G140-F141 to produce two fragments (G3BP1-N1-140 and G3BP1-C141-456). Interestingly, both the pS273R-cleaved fragments of G3BP1 lost the ability to induce SG formation and antiviral activity. Taken together, our finding reveals that the proteolytic cleavage of G3BP1 by ASFV pS273R is a novel mechanism by which ASFV counteracts host stress and innate antiviral responses.


Assuntos
Vírus da Febre Suína Africana , Grânulos de Estresse , Proteínas Virais , Animais , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/enzimologia , Vírus da Febre Suína Africana/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos de Estresse/metabolismo , Suínos , Replicação Viral/fisiologia , Chlorocebus aethiops , Humanos , Células HEK293 , Células Cultivadas , Macrófagos Alveolares/virologia , Proteínas Virais/metabolismo , Proteólise
18.
Cell Rep ; 42(3): 112211, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36884350

RESUMO

Stress granules (SGs) and processing bodies (PBs) are membraneless cytoplasmic assemblies regulating mRNAs under environmental stress such as viral infections, neurological disorders, or cancer. Upon antigen stimulation, T lymphocytes mediate their immune functions under regulatory mechanisms involving SGs and PBs. However, the impact of T cell activation on such complexes in terms of formation, constitution, and relationship remains unknown. Here, by combining proteomic, transcriptomic, and immunofluorescence approaches, we simultaneously characterized the SGs and PBs from primary human T lymphocytes pre and post stimulation. The identification of the proteomes and transcriptomes of SGs and PBs indicate an unanticipated molecular and functional complementarity. Notwithstanding, these granules keep distinct spatial organizations and abilities to interact with mRNAs. This comprehensive characterization of the RNP granule proteomic and transcriptomic landscapes provides a unique resource for future investigations on SGs and PBs in T lymphocytes.


Assuntos
Ativação Linfocitária , Corpos de Processamento , Proteoma , Grânulos de Estresse , Linfócitos T , Transcriptoma , Grânulos de Estresse/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Corpos de Processamento/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Proteômica , Perfilação da Expressão Gênica , Humanos , Masculino , Feminino , Adulto , Células Cultivadas , RNA/análise , Biossíntese de Proteínas , Transcrição Gênica , Fracionamento Celular
19.
J Virol ; 97(2): e0171222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651745

RESUMO

The pathogenic mechanisms of peste des petits ruminants virus (PPRV) infection remain poorly understood, leaving peste des petits ruminants (PPR) control and eradication especially difficult. Here, we determined that PPRV nucleocapsid (N) protein triggers formation of stress granules (SGs) to benefit viral replication. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N protein interacted with protein kinase R (PKR)-activating protein (PACT), and this interaction was confirmed in the context of PPRV infection. PACT was essential for PPRV replication. Besides, the ectopic expression of N activated the PKR/eIF2α (α subunit of eukaryotic initiation factor 2) pathway through induction of PKR phosphorylation, but it did not induce PKR phosphorylation in PACT-deficient (PACT-/-) cells. PPRV N interacted with PACT, impairing the interaction between PACT and a PKR inhibitor, transactivation response RNA-binding protein (TRBP), which subsequently enhanced the interaction between PACT and PKR and thus promoted the activation of PKR and eIF2α phosphorylation, resulting in formation of stress granules (SGs). Consistently, PPRV infection induced SG formation through activation of the PKR/eIF2α pathway, and knockdown of N impaired PPRV-induced SG formation. PPRV-induced SG formation significantly decreased in PACT-/- cells as well. The role of SG formation in PPRV replication was subsequently investigated, which showed that SG formation plays a positive role in PPRV replication. By using an RNA fluorescence in situ hybridization assay, we found that PPRV-induced SGs hid cellular mRNA rather than viral mRNA. Altogether, our data provide the first evidence that PPRV N protein plays a role in modulating the PKR/eIF2α/SG axis and promotes virus replication through targeting PACT. IMPORTANCE Stress granule (SG) formation is a conserved cellular strategy to reduce stress-related damage regulating cell survival. A mass spectrometry-based profiling of the interactome of PPRV N protein revealed that PPRV N interacted with PACT to regulate the assembly of SGs. N protein inhibited the interaction between PACT and a PKR inhibitor, TRBP, through binding to the M1 domain of PACT, which enhanced the interaction between PACT and PKR and thus promoted PKR activation and subsequent eIF2α phosphorylation as well as SG formation. The regulatory function of N protein was strikingly abrogated in PACT-/- cells. SGs induced by PPRV infection through the PKR/eIF2α pathway are PACT dependent. The loss-of-function assay indicated that PPRV-induced SGs were critical for PPRV replication. We concluded that the PPRV N protein manipulates the host PKR/eIF2α/SG axis to favor virus replication.


Assuntos
Proteínas do Nucleocapsídeo , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , Proteínas de Ligação a RNA , Grânulos de Estresse , Replicação Viral , Animais , Humanos , Hibridização in Situ Fluorescente , Proteínas do Nucleocapsídeo/metabolismo , Peste dos Pequenos Ruminantes/fisiopatologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Grânulos de Estresse/metabolismo , Replicação Viral/genética
20.
Theranostics ; 12(17): 7289-7306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438488

RESUMO

Rationale: A C9orf72 hexanucleotide repeat expansion (GGGGCC) is the most common genetic origin of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Haploinsufficiency of C9orf72 has been proposed as a possible disease mechanism (loss-of-function mechanism). Additionally, the aberrantly activated unfolded protein response (UPR) and stress granule (SG) formation are associated with the etiopathology of both ALS and FTD. However, the molecular determinants in this pathogenesis are not well characterized. Methods: We performed an immunoprecipitation-mass spectrometry (IP-MS) assay to identify potential proteins interacting with the human C9orf72 protein. We used C9orf72 knockout cell and rat models to determine the roles of C9orf72 in translation initiation and the stress response. Results: Here, we show that C9orf72, which is genetically and pathologically related to ALS and FTD, interacts with eukaryotic initiation factor 2 subunit alpha (eIF2α) and regulates its function in translation initiation. C9orf72 knockout weakens the interaction between eIF2α and eIF2B5, leading to global translation inhibition. Moreover, the loss of C9orf72 results in primary ER stress with activated UPR in rat spleens, which is one of the causes of splenomegaly with inflammation in C9orf72 -/- rats. Finally, C9orf72 delays SG formation by interacting with eIF2α in stressed cells. Conclusions: In summary, these data reveal that C9orf72 modulates translation initiation, the UPR and SG formation, which have implications for understanding ALS/FTD pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Animais , Humanos , Ratos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Fator de Iniciação 2 em Eucariotos/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Grânulos de Estresse/genética , Grânulos de Estresse/metabolismo , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA