Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.598
Filtrar
1.
Food Res Int ; 192: 114746, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147552

RESUMO

Consumers are interested in new sustainable ingredients but are unwilling to accept undesirable sensory properties in their food products. Luffa (Luffa cylindrica) is mainly harvested and processed for its fibrous network, which is used as an exfoliator, while its seeds are usually discarded. However, the seeds have been found to have various nutritional benefits. As such, this study investigated the sensory properties of luffa seed powder added to yogurt and compared it to other seed powder (flax, sunflower, chia, and hemp). Consumers (n = 107) evaluated their liking of the different seeds added to yogurt using hedonic scales and the sensory properties using check-all-that-apply (CATA). The luffa seeds when mixed with yogurt were associated with off-colour, off-flavour, metallic, strong flavour, bitter, salty, earthy and decreased consumer liking. The flax and sunflower seeds were found to be sweet, nutty, cooked, mild flavour, and to have a smooth texture. The overall liking scores for the flax and sunflower seed samples were significantly higher than the luffa and hemp samples. Future studies should investigate different drying and roasting treatments to improve the sensory properties of the luffa seeds.


Assuntos
Comportamento do Consumidor , Helianthus , Luffa , Salvia , Sementes , Paladar , Sementes/química , Humanos , Adulto , Salvia/química , Feminino , Masculino , Luffa/química , Pessoa de Meia-Idade , Adulto Jovem , Iogurte/análise , Cannabis/química
2.
PeerJ ; 12: e17808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099650

RESUMO

Stress-associated proteins (SAPs) are known to play an important role in plant responses to abiotic stresses. This study systematically identified members of the sunflower SAP gene family using sunflower genome data. The genes of the sunflower SAP gene family were analyzed using bioinformatic methods, and gene expression was assessed through fluorescence quantification (qRT-PCR) under salt and drought stress. A comprehensive analysis was also performed on the number, structure, collinearity, and phylogeny of seven Compositae species and eight other plant SAP gene families. The sunflower genome was found to have 27 SAP genes, distributed across 14 chromosomes. The evolutionary analysis revealed that the SAP family genes could be divided into three subgroups. Notably, the annuus variety exhibited amplification of the SAP gene for Group 3. Among the Compositae species, C. morifolium demonstrated the highest number of collinearity gene pairs and the closest distance on the phylogenetic tree, suggesting relative conservation in the evolutionary process. An analysis of gene structure revealed that Group 1 exhibited the most complex gene structure, while the majority of HaSAP genes in Group 2 and Group 3 lacked introns. The promoter analysis revealed the presence of cis-acting elements related to ABA, indicating their involvement in stress responses. The expression analysis indicated the potential involvement of 10 genes (HaSAP1, HaSAP3, HaSAP8, HaSAP10, HaSAP15, HaSAP16, HaSAP21, HaSAP22, HaSAP23, and HaSAP26) in sunflower salt tolerance. The expression of these 10 genes were then examined under salt and drought stress using qRT-PCR, and the tissue-specific expression patterns of these 10 genes were also analyzed. HaSAP1, HaSAP21, and HaSAP23 exhibited consistent expression patterns under both salt and drought stress, indicating these genes play a role in both salt tolerance and drought resistance in sunflower. The findings of this study highlight the significant contribution of the SAP gene family to salt tolerance and drought resistance in sunflower.


Assuntos
Secas , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Helianthus , Família Multigênica , Filogenia , Proteínas de Plantas , Helianthus/genética , Helianthus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genoma de Planta , Estresse Salino/genética
3.
Glycobiology ; 34(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39088584

RESUMO

The limited availability of efficient treatments for Candida infections and the increased emergence of antifungal-resistant strains stimulates the search for new antifungal agents. We have previously isolated a sunflower mannose-binding lectin (Helja) with antifungal activity against Candida albicans, capable of binding mannose-bearing oligosaccharides exposed on the cell surface. This work aimed to investigate the biological and biophysical basis of Helja's binding to C. albicans cell wall mannans and its influence on the fungicidal activity of the lectin. We evaluated the interaction of Helja with the cell wall mannans extracted from the isogenic parental strain (WT) and a glycosylation-defective C. albicans with altered cell wall phosphomannosylation (mnn4∆ null mutants) and investigated its antifungal effect. Helja exhibited stronger antifungal activity on the mutant strain, showing greater inhibition of fungal growth, loss of cell viability, morphological alteration, and formation of clusters with agglutinated cells. This differential biological activity of Helja was correlated with the biophysical parameters determined by solid phase assays and isothermal titration calorimetry, which demonstrated that the lectin established stronger interactions with the cell wall mannans of the mnn4∆ null mutant than with the WT strain. In conclusion, our results provide new evidence on the nature of the Helja molecular interactions with cell wall components, i.e. phosphomannan, and its impact on the antifungal activity. This study highlights the relevance of plant lectins in the design of effective antifungal therapies.


Assuntos
Antifúngicos , Candida albicans , Parede Celular , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Helianthus/química , Mananas/química , Mananas/farmacologia , Mananas/metabolismo , Testes de Sensibilidade Microbiana
4.
Plant Cell Rep ; 43(9): 220, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158724

RESUMO

KEY MESSAGE: This study provided a non-destructive detection method with Vis-NIR hyperspectral imaging combining with physio-biochemical parameters in Helianthus annuus in response to Orobanche cumana infection that took insights into the monitoring of sunflower weed. Sunflower broomrape (Orobanche cumana Wallr.) is an obligate weed that attaches to the host roots of sunflower (Helianthus annuus L.) leading to a significant reduction in yield worldwide. The emergence of O. cumana shoots after its underground life-cycle causes irreversible damage to the crop. In this study, a fast visual, non-invasive and precise method for monitoring changes in spectral characteristics using visible and near-infrared (Vis-NIR) hyperspectral imaging (HSI) was developed. By combining the bands sensitive to antioxidant enzymes (SOD, GR), non-antioxidant enzymes (GSH, GSH + GSSG), MDA, ROS (O2-, OH-), PAL, and PPO activities obtained from the host leaves, we sought to establish an accurate means of assessing these changes and conducted imaging acquisition using hyperspectral cameras from both infested and non-infested sunflower cultivars, followed by physio-biochemical parameters measurement as well as analyzed the expression of defense related genes. Extreme learning machine (ELM) and convolutional neural network (CNN) models using 3-band images were built to classify infected or non-infected plants in three sunflower cultivars, achieving accuracies of 95.83% and 95.83% for the discrimination of infestation as well as 97.92% and 95.83% of varieties, respectively, indicating the potential of multi-spectral imaging systems for early detection of O. cumana in weed management.


Assuntos
Helianthus , Imageamento Hiperespectral , Orobanche , Helianthus/parasitologia , Orobanche/fisiologia , Imageamento Hiperespectral/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Folhas de Planta/parasitologia , Folhas de Planta/metabolismo , Doenças das Plantas/parasitologia , Antioxidantes/metabolismo , Plantas Daninhas , Interações Hospedeiro-Parasita
5.
Plant Cell Environ ; 47(9): 3590-3604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031544

RESUMO

The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.


Assuntos
Dióxido de Carbono , Helianthus , Células do Mesofilo , Estômatos de Plantas , Triticum , Dióxido de Carbono/metabolismo , Estômatos de Plantas/fisiologia , Células do Mesofilo/fisiologia , Células do Mesofilo/metabolismo , Triticum/fisiologia , Triticum/metabolismo , Helianthus/fisiologia , Helianthus/metabolismo , Isótopos de Carbono , Fotossíntese/fisiologia , Fabaceae/fisiologia , Clorofila/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo
6.
PeerJ ; 12: e17586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974413

RESUMO

The development of floral organs, crucial for the establishment of floral symmetry and morphology in higher plants, is regulated by MADS-box genes. In sunflower, the capitulum is comprised of ray and disc florets with various floral organs. In the sunflower long petal mutant (lpm), the abnormal disc (ray-like) floret possesses prolongated petals and degenerated stamens, resulting in a transformation from zygomorphic to actinomorphic symmetry. In this study, we investigated the effect of MADS-box genes on floral organs, particularly on petals, using WT and lpm plants as materials. Based on our RNA-seq data, 29 MADS-box candidate genes were identified, and their roles on floral organ development, especially in petals, were explored, by analyzing the expression levels in various tissues in WT and lpm plants through RNA-sequencing and qPCR. The results suggested that HaMADS3, HaMADS7, and HaMADS8 could regulate petal development in sunflower. High levels of HaMADS3 that relieved the inhibition of cell proliferation, together with low levels of HaMADS7 and HaMADS8, promoted petal prolongation and maintained the morphology of ray florets. In contrast, low levels of HaMADS3 and high levels of HaMADS7 and HaMADS8 repressed petal extension and maintained the morphology of disc florets. Their coordination may contribute to the differentiation of disc and ray florets in sunflower and maintain the balance between attracting pollinators and producing offspring. Meanwhile, Pearson correlation analysis between petal length and expression levels of MADS-box genes further indicated their involvement in petal prolongation. Additionally, the analysis of cis-acting elements indicated that these three MADS-box genes may regulate petal development and floral symmetry establishment by regulating the expression activity of HaCYC2c. Our findings can provide some new understanding of the molecular regulatory network of petal development and floral morphology formation, as well as the differentiation of disc and ray florets in sunflower.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Helianthus , Proteínas de Domínio MADS , Proteínas de Plantas , Helianthus/genética , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Sci Rep ; 14(1): 17573, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080438

RESUMO

The oil obtained from black cumin (Nigella sativa) seeds has many health-effective properties, which is used in food applications and in traditional medicine. One practical method to extract its oil is mixing with other seeds such as sunflower (Helianthus anuus) seeds before oil extraction by press. The effectiveness of the cold-press oil obtained from the mixture of black cumin seeds (BS) and sunflower seeds (SF) in different proportions 100:0, 95:5, 90:10, 85:15 and 0:100 (w/w) was studied to evaluate their qualitative properties including peroxide value (PV), acid value, p-anisidine value (AnV), pigments (carotenoid and chlorophyll) content, polyphenols, and profile of fatty acids during heating process (30-150 min at 180 °C). The results revealed that the acid and p-anisidine value of the all samples enhanced with the extension of the heating time, and the peroxide value increased at the beginning of the heating and then decreased with the prolongation of the heating time (p < .05). With the increase of temperature and heating time, the peroxide of sunflower oil increased with a higher slope and speed than that of black seed and blends oil. Changes in the PV and AnV were the fastest in sunflower oil. Blending and heating caused considerable changes in the fatty acid composition of oils, especially myristic, palmitic, and stearic acids. Moreover, the levels of certain unsaturated fatty acids, namely linoleic, oleic, and linolenic acids declined after heating. The carotenoids, chlorophyll and total phenol content decreased gradually during heating treatments. Among extracted oils, SF:BS (15%) had the good potential for stability, with total phenol content of 95.92 (Caffeic acid equivalents/100 g), PV of 2.16 (meq O2/kg), AV of 2.59 (mg KOH/g oil), and AnV of 8.08 after the heating. In conclusion, oil extracted from the mixture of SF and BS can be used as salad and cooking oils with a high content of bioactive components and positive nutritional properties.


Assuntos
Helianthus , Temperatura Alta , Nigella sativa , Óleos de Plantas , Sementes , Nigella sativa/química , Helianthus/química , Sementes/química , Óleos de Plantas/química , Óleos de Plantas/análise , Ácidos Graxos/análise , Clorofila/análise , Peróxidos/análise , Polifenóis/análise , Polifenóis/química , Óleo de Girassol/química , Carotenoides/análise , Carotenoides/química
8.
Theor Appl Genet ; 137(8): 184, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008128

RESUMO

Phytotoxic soil salinity is a global problem, and in the northern Great Plains and western Canada, salt accumulates on the surface of marine sediment soils with high water tables under annual crop cover, particularly near wetlands. Crop production can overcome saline-affected soils using crop species and cultivars with salinity tolerance along with changes in management practices. This research seeks to improve our understanding of sunflower (Helianthus annuus) genetic tolerance to high salinity soils. Genome-wide association was conducted using the Sunflower Association Mapping panel grown for two years in naturally occurring saline soils (2016 and 2017, near Indian Head, Saskatchewan, Canada), and six phenotypes were measured: days to bloom, height, leaf area, leaf mass, oil percentage, and yield. Plot level soil salinity was determined by grid sampling of soil followed by kriging. Three estimates of sunflower performance were calculated: (1) under low soil salinity (< 4 dS/m), (2) under high soil salinity (> 4 dS/m), and (3) plasticity (regression coefficient between phenotype and soil salinity). Fourteen loci were significant, with one instance of co-localization between a leaf area and a leaf mass locus. Some genomic regions identified as significant in this study were also significant in a recent greenhouse salinity experiment using the same panel. Also, some candidate genes underlying significant QTL have been identified in other plant species as having a role in salinity response. This research identifies alleles for cultivar improvement and for genetic studies to further elucidate salinity tolerance pathways.


Assuntos
Mudança Climática , Helianthus , Fenótipo , Melhoramento Vegetal , Tolerância ao Sal , Helianthus/genética , Helianthus/crescimento & desenvolvimento , Helianthus/fisiologia , Tolerância ao Sal/genética , Salinidade , Locos de Características Quantitativas , Solo/química , Estudos de Associação Genética , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Seleção Genética , Estudo de Associação Genômica Ampla , Genótipo
9.
Genes (Basel) ; 15(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062729

RESUMO

The sunflower (Helianthus annuus L.) is one of the most essential oil crops in the world. Several component traits, including flowering time, plant height, stem diameter, seed weight, and kernel weight, determine sunflower seed and oil yield. Although the genetic mechanisms governing the variation of these yield-related traits have been studied using various approaches, genome-wide association studies (GWAS) have not been widely applied to sunflowers. In this study, a set of 342 sunflower accessions was evaluated in 2019 and 2020 using an incomplete randomized block design, and GWAS was conducted utilizing two complementary approaches: the mixed linear model (MLM) and the fixed and random model circulating probability unification (farmCPU) model by fitting 226,779 high-quality SNPs. As a result, GWAS identified a number of trait-associated SNPs. Those SNPs were located close to several genes that may serve as a basis for further molecular characterization and provide promising targets for sunflower yield improvement.


Assuntos
Estudo de Associação Genômica Ampla , Helianthus , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Helianthus/genética , Estudo de Associação Genômica Ampla/métodos , Sementes/genética , Sementes/crescimento & desenvolvimento , Característica Quantitativa Herdável
10.
Plant Physiol Biochem ; 213: 108865, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936071

RESUMO

The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.


Assuntos
Antioxidantes , Carvão Vegetal , Helianthus , Microplásticos , Oryza , Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Antioxidantes/metabolismo , Carvão Vegetal/farmacologia , Helianthus/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Solo/química , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomassa , Metabolismo Secundário , Prolina/metabolismo
11.
Environ Pollut ; 356: 124316, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848955

RESUMO

Soil heavy metal contamination is often an unintended byproduct of historic land-use. This contamination can negatively impact resident plants and their interactions with other organisms. Plant fitness in contaminated landscapes depends not only on plant growth, but also on the maintenance of interactions with pollinators. Cadmium (Cd) is a heavy metal that is commonly found in agricultural, urban, and industrial ecosystems as a legacy of historic land-use. It is a prioritized pollutant in soils because of its wide distribution and strong biotoxicity. To understand how Cd influences plant growth and pollinator interactions, we grew sunflowers in media with three different Cd concentrations to represent the range of Cd contamination faced by sunflowers growing on land recovering from past land-use. We measured Cd contamination effects on sunflower morphology and pollinator foraging behavior, specifically the number of visits and visit duration. We then measured seed number and weight to determine if contamination directly or indirectly, as mediated by pollinators, altered plant fitness. Plant height was negatively correlated with Cd concentration, but contamination alone (in the absence of pollinators) did not affect sunflower reproduction. Bumble bees visited sunflowers grown in Exceeding Threshold Cd concentrations less often and for shorter time compared to visits to Below Threshold Cd sunflowers, but honey bees and sweat bees showed similar foraging behavior across Cd contamination treatment levels. Sunflower seed set was positively correlated with the total number of pollinator visits, and sunflowers grown in Exceeding Threshold Cd soil had marginally lower seed set compared to those grown in Below Threshold Cd soil. Our results suggest that at Exceeding Threshold Cd contamination levels plant-pollinator interactions are negatively affected with consequences for plant fitness.


Assuntos
Cádmio , Helianthus , Polinização , Poluentes do Solo , Poluentes do Solo/análise , Cádmio/análise , Abelhas/fisiologia , Abelhas/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Helianthus/fisiologia , Helianthus/crescimento & desenvolvimento , Animais , Solo/química
12.
J Food Sci ; 89(7): 4064-4078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38829747

RESUMO

Derived from industrial processing waste, peanut skins contain polyphenols that delay oxidative food spoilage. However, these compounds are susceptible to light, heat, and oxygen exposure. Microencapsulation provides a solution by offering protection from these factors. The aim of this study was to evaluate the protective effect of peanut skin extract microcapsules on the chemical, microbiological, and sensory property and shelf life of sunflower seeds during storage. Five roasted sunflower seed samples were prepared: control (S-C); added with butylhydroxytoluene (S-BHT); coated with carboxymethyl cellulose (S-CMC); coated with CMC and the addition of peanut skin crude extract (S-CMC-CE); coated with CMC and the addition of microcapsules (S-CMC-M20). Sensory acceptability was determined using hedonic testing. Chemical (peroxide value, conjugated dienes, hexanal and nonanal content, and fatty acid profile), microbiological, and descriptive analyses were carried out on samples stored for 45 days at room temperature. Shelf life was calculated using a simple linear regression. All samples were microbiologically fit for human consumption and accepted by consumer panelists, scoring above five points on the nine-point hedonic scale. S-CMC-M20 exhibited the lowest peroxide value (6.59 meqO2/kg) and hexanal content (0.4 µg/g) at the end of the storage. Estimated shelf life showed that S-MC-M20 (76.3 days) extended its duration nearly ninefold compared to S-C (8.3 days) and doubled that of S-CMC-CE (37.5 days). This indicates a superior efficacy of microencapsulated extract compared to its unencapsulated form, presenting a promising natural strategy for improving the shelf life of analogous food items. PRACTICAL APPLICATION: Incorporating peanut skin extract microcapsules in coating sunflower seeds presents a promising strategy to extend the shelf life of lipid-rich foods, capitalizing on the antioxidant properties of polyphenols. This innovative approach not only enhances nutritional quality but also addresses sustainability concerns by repurposing agro-industrial byproducts, such as peanut skins. By meeting consumer demand for functional foods with added health benefits, this technique offers potential opportunities for the development of novel, value-added food products while contributing to circular economy principles and waste management efforts.


Assuntos
Arachis , Armazenamento de Alimentos , Helianthus , Polifenóis , Sementes , Sementes/química , Helianthus/química , Armazenamento de Alimentos/métodos , Arachis/química , Humanos , Composição de Medicamentos/métodos , Comportamento do Consumidor , Paladar , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Conservação de Alimentos/métodos
13.
ACS Appl Mater Interfaces ; 16(24): 30658-30670, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856560

RESUMO

Noninvasive treatment of inflammatory bowel disease with lower gastrointestinal bleeding is a major clinical challenge. In this study, we designed an orally targeted microsphere based on sunflower pollen microcapsules to localize the site of inflammatory injury and promote hemostasis and tissue repair. Due to the Eudragit and ascorbate palmitate coatings, EL/AP@PS(t+Dex) demonstrates pH- and enzyme-responsive release of loaded drugs and helps to resist the harsh environment of the gastrointestinal tract. Both in vitro and in vivo experiments show the characteristics of inflammation targeting and mucosal adhesion, which reduce the systematic exposure and increase the local drug concentration. In the DSS model, orally administered EL/AP@PS(t+Dex) significantly alleviates hematochezia, inhabits intestinal inflammation, and remarkably promotes the recovery of the intestinal epithelial barrier to reduce the exposure of intestinal microvessels. Furthermore, EL/AP@PS(t+Dex) optimized the composition of intestinal microbiota, which benefits intestinal homeostasis. This finding provides a fundamental solution for the treatment of intestinal bleeding caused by inflammatory bowel disease (IBD).


Assuntos
Helianthus , Doenças Inflamatórias Intestinais , Microesferas , Pólen , Doenças Inflamatórias Intestinais/tratamento farmacológico , Pólen/química , Animais , Helianthus/química , Camundongos , Humanos , Hemostasia/efeitos dos fármacos
14.
Ecotoxicol Environ Saf ; 280: 116555, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870735

RESUMO

In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m3 per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha-1) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.) in saline-alkali soil. The treatment of biochar (10 ton ha-1) and PGPR-3 enhanced the soil respiration, dehydrogenase, nitrogenase, and phosphatase activities by 137 %, 129 %, 326 %, and 127 %, while it declined soil electrical conductivity and available Cd content by 31.7 % and 61.3 %. Also, it decreased Cd content in root, shoot, and seed by 55.3 %, 50.7 %, and 92.5 %, and biological concentration and translocation factors by 55 % and 5 %. It also declined the proline, lipid peroxidation, H2O2, and electrolyte leakage contents by 48 %, 94 %, 80 %, and 76 %, whereas increased the catalase, peroxidase, superoxide dismutase, and polyphenol oxidase activities by 80 %, 79 %, 61 %, and 116 %. Same treatment increased seed and oil yields increased by 76.1 % and 76.2 %. The unique aspect of this research is its investigation into the utilization of biochar in saline-alkali soil conditions, coupled with the combined application of biochar and PGPR to mitigate the adverse effects of Cd contamination on sunflower cultivation in saline-alkali soil.


Assuntos
Cádmio , Carvão Vegetal , Helianthus , Poluentes do Solo , Solo , Carvão Vegetal/química , Cádmio/análise , Cádmio/toxicidade , Helianthus/efeitos dos fármacos , Poluentes do Solo/análise , Solo/química , Egito , Álcalis/química , Biodegradação Ambiental , Raízes de Plantas , Microbiologia do Solo
15.
BMC Plant Biol ; 24(1): 592, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907232

RESUMO

Drought stress poses a significant threat to agricultural productivity, especially in areas susceptible to water scarcity. Sunflower (Helianthus annuus L.) is a widely cultivated oilseed crop with considerable potential globally. Jasmonic acid, a plant growth regulator, plays a crucial role in alleviating the adverse impacts of drought stress on the morphological, biochemical, and physiological characteristics of crops. Experimental detail includes sunflower varieties (Armani Gold, KQS-HSF-1, Parsun, and ESFH-3391), four drought stress levels (0, 25%, 50%, and 75% drought stress), and three levels (0, 40ppm, 80ppm) of jasmonic acid. The 0% drought stress and 0ppm jasmonic acid were considered as control treatments. The experimental design was a completely randomized design with three replicates. Drought stress significantly reduced the growth in all varieties. However, the exogenous application of jasmonic acid at concentrations of 40ppm and 80ppm enhanced growth parameters, shoot and root length (1.93%, 19%), shoot and root fresh weight (18.5%, 25%), chlorophyll content (36%), photosynthetic rate (22%), transpiration rate (40%), WUE (20%), MDA (6.5%), Phenolics (19%), hydrogen peroxide (7%) proline (28%) and glycine betaine (15-30%) under water-stressed conditions, which was closely linked to the increase in stomatal activity stimulated by jasmonic acid. Furthermore, JA 80 ppm was found to be the most appropriate dose to reduce the effect of water stress in all sunflower varieties. It was concluded that the foliar application of JA has the potential to enhance drought tolerance by improving the morphological, biochemical, and physiological of sunflower.


Assuntos
Ciclopentanos , Secas , Helianthus , Oxilipinas , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Helianthus/fisiologia , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo
16.
Int J Biol Macromol ; 272(Pt 1): 132873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838890

RESUMO

The decoctions of sunflower (Helianthus annuus L. HAL) stalk pith have been used to treat advanced cancer, and polysaccharide of sunflower stalk pith (HSPP) was key ingredient of the decoctions. To forage specially structured HSPP with anti-tumor effects and to uncover its mechanisms of anticancer activity, syngeneic mouse model of lung carcinoma metastasis was established and the HSPP was found to contain long-chain fatty acid. Encouragingly, the mean survival of the polysaccharide group (47.3 ± 12.8 d) and its sub-fractions group HSPP-4 (50.7 ± 13.0 d) was significantly increased compared with control group (38.7 ± 12.7 d) or positive control group (41.8 ± 13.4 d), (n = 20, P < 0.01 vs. the control group or positive control group). Furthermore, the HSPP exerted inhibitory effects on the tumor cells' metastasis. Eventually, it is postulated that the polysaccharide could inhibit tumor proliferation and metastasis by reduction of TNF-α from the macrophage.


Assuntos
Proliferação de Células , Helianthus , Metástase Neoplásica , Polissacarídeos , Fator de Necrose Tumoral alfa , Helianthus/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico
17.
ACS Appl Bio Mater ; 7(6): 3731-3745, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38842103

RESUMO

Photosensitizing agents have received increased attention from the medical community, owing to their higher photothermal efficiency, induction of hyperthermia, and sustained delivery of bioactive molecules to their targets. Micro/nanorobots can be used as ideal photosensitizing agents by utilizing various physical stimuli for the targeted killing of pathogens (e.g., bacteria) and cancer cells. Herein, we report sunflower-pollen-inspired spiky zinc oxide (s-ZnO)-based nanorobots that effectively kill bacteria and cancer cells under near-infrared (NIR) light irradiation. The as-fabricated s-ZnO was modified with a catechol-containing photothermal agent, polydopamine (PDA), to improve its NIR-responsive properties, followed by the addition of antimicrobial (e.g., tetracycline/TCN) and anticancer (e.g., doxorubicin/DOX) drugs. The fabricated s-ZnO/PDA@Drug nanobots exhibited unique locomotory behavior with an average speed ranging from 13 to 14 µm/s under 2.0 W/cm2 NIR light irradiation. Moreover, the s-ZnO/PDA@TCN nanobots exhibited superior antibacterial activity against E. coli and S. epidermidis under NIR irradiation. The s-ZnO/PDA@DOX nanobots also displayed sufficient reactive oxygen species (ROS) amplification in B16F10 melanoma cells and induced apoptosis under NIR light, indicating their therapeutic efficacy. We hope the sunflower pollen-inspired s-ZnO nanorobots have tremendous potential in biomedical engineering from the phototherapy perspective, with the hope to reduce pathogen infections.


Assuntos
Antibacterianos , Antineoplásicos , Materiais Biocompatíveis , Ensaios de Seleção de Medicamentos Antitumorais , Helianthus , Tamanho da Partícula , Fármacos Fotossensibilizantes , Óxido de Zinco , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Helianthus/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Pólen/química , Escherichia coli/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Indóis/química , Indóis/farmacologia , Animais , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Raios Infravermelhos
18.
Food Chem ; 454: 139790, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805931

RESUMO

Germination of seeds is known to affect the nutritional composition of cold-pressed oils. This study focused on the effects of germination on the antioxidants and oxidative stability of linseed and sunflower seed oil. As hypothesized, germination led to increased antioxidant activities and tocopherol, chlorophyll and carotenoid content. Analysis revealed a 37.2 ± 3.5-fold and 11.6 ± 1.5-fold increase in polyphenol content in linseed and sunflower seed oil from germinated seeds, respectively. Using LC-HRMS/MS, profiles with up to 69 polyphenolic substances were identified in germinated seed oils for the first time. Germination promoted lipid hydrolysis, as evidenced by NMR, with overall significant decreases in triacylglycerol content leading to increased diacylglycerol and free fatty acid values. Rancimat measurements predicted a 4.10 ± 0.52-fold longer shelf-life for germinated linseed oil. This study successfully demonstrated the potential of germination to develop PUFA-rich oils with enhanced antioxidant capacity and oxidative stability.


Assuntos
Antioxidantes , Germinação , Óleo de Semente do Linho , Valor Nutritivo , Oxirredução , Óleos de Plantas , Sementes , Óleo de Girassol , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Óleo de Girassol/química , Óleo de Girassol/metabolismo , Óleo de Semente do Linho/metabolismo , Óleo de Semente do Linho/química , Óleos de Plantas/química , Óleos de Plantas/análise , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/metabolismo , Linho/química , Linho/crescimento & desenvolvimento , Linho/metabolismo , Helianthus/crescimento & desenvolvimento , Helianthus/química , Helianthus/metabolismo
19.
Chemosphere ; 359: 142290, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723691

RESUMO

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Assuntos
Biotransformação , Retardadores de Chama , Helianthus , Bifenil Polibromatos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Catalase/metabolismo
20.
Sci Rep ; 14(1): 12014, 2024 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797730

RESUMO

The present work investigates the quality and the chemical effects of dehydration, using a novel dehydration system based on an electromagnetic induction and low pressures technique, comparing it with the thermo-solar drying system. High oleic sunflower seeds, which are an important oil seed crop, were used due to the fact that they have a special place in the food industry. The seed samples were exposed to electromagnetic induction and low pressures by 0.5 and 1 h, then several chemical characterizations were carried out, in the electrophoresis study, it was found that most proteins in the hull were degraded or denatured, some of them were lost during the time in the thermosolar dryer while in kernel keeps 94.9% of the concentration in control proteins. Otherwise, the electromagnetic induction dryer did not lose the most of proteins in the kernel keeping 99.1% in 0.5 h and 98.4% in 1 h, just degrading its concentration. Germination viability results did not show changes after 0.5 h in the electromagnetic fields, but they decreased in 1 h from 66 to 40% until the thermosolar method fell to 24% in 4 h, both analysis results change proportionally with the treatment time and moisture content and the amount of the oxygen.


Assuntos
Germinação , Helianthus , Sementes , Helianthus/química , Sementes/química , Germinação/efeitos dos fármacos , Proteínas de Plantas , Dessecação/métodos , Água/química , Desidratação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...