Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.588
Filtrar
1.
Theor Appl Genet ; 137(8): 184, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008128

RESUMO

Phytotoxic soil salinity is a global problem, and in the northern Great Plains and western Canada, salt accumulates on the surface of marine sediment soils with high water tables under annual crop cover, particularly near wetlands. Crop production can overcome saline-affected soils using crop species and cultivars with salinity tolerance along with changes in management practices. This research seeks to improve our understanding of sunflower (Helianthus annuus) genetic tolerance to high salinity soils. Genome-wide association was conducted using the Sunflower Association Mapping panel grown for two years in naturally occurring saline soils (2016 and 2017, near Indian Head, Saskatchewan, Canada), and six phenotypes were measured: days to bloom, height, leaf area, leaf mass, oil percentage, and yield. Plot level soil salinity was determined by grid sampling of soil followed by kriging. Three estimates of sunflower performance were calculated: (1) under low soil salinity (< 4 dS/m), (2) under high soil salinity (> 4 dS/m), and (3) plasticity (regression coefficient between phenotype and soil salinity). Fourteen loci were significant, with one instance of co-localization between a leaf area and a leaf mass locus. Some genomic regions identified as significant in this study were also significant in a recent greenhouse salinity experiment using the same panel. Also, some candidate genes underlying significant QTL have been identified in other plant species as having a role in salinity response. This research identifies alleles for cultivar improvement and for genetic studies to further elucidate salinity tolerance pathways.


Assuntos
Mudança Climática , Helianthus , Fenótipo , Melhoramento Vegetal , Tolerância ao Sal , Helianthus/genética , Helianthus/crescimento & desenvolvimento , Helianthus/fisiologia , Tolerância ao Sal/genética , Salinidade , Locos de Características Quantitativas , Solo/química , Estudos de Associação Genética , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Seleção Genética , Estudo de Associação Genômica Ampla , Genótipo
2.
PeerJ ; 12: e17586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974413

RESUMO

The development of floral organs, crucial for the establishment of floral symmetry and morphology in higher plants, is regulated by MADS-box genes. In sunflower, the capitulum is comprised of ray and disc florets with various floral organs. In the sunflower long petal mutant (lpm), the abnormal disc (ray-like) floret possesses prolongated petals and degenerated stamens, resulting in a transformation from zygomorphic to actinomorphic symmetry. In this study, we investigated the effect of MADS-box genes on floral organs, particularly on petals, using WT and lpm plants as materials. Based on our RNA-seq data, 29 MADS-box candidate genes were identified, and their roles on floral organ development, especially in petals, were explored, by analyzing the expression levels in various tissues in WT and lpm plants through RNA-sequencing and qPCR. The results suggested that HaMADS3, HaMADS7, and HaMADS8 could regulate petal development in sunflower. High levels of HaMADS3 that relieved the inhibition of cell proliferation, together with low levels of HaMADS7 and HaMADS8, promoted petal prolongation and maintained the morphology of ray florets. In contrast, low levels of HaMADS3 and high levels of HaMADS7 and HaMADS8 repressed petal extension and maintained the morphology of disc florets. Their coordination may contribute to the differentiation of disc and ray florets in sunflower and maintain the balance between attracting pollinators and producing offspring. Meanwhile, Pearson correlation analysis between petal length and expression levels of MADS-box genes further indicated their involvement in petal prolongation. Additionally, the analysis of cis-acting elements indicated that these three MADS-box genes may regulate petal development and floral symmetry establishment by regulating the expression activity of HaCYC2c. Our findings can provide some new understanding of the molecular regulatory network of petal development and floral morphology formation, as well as the differentiation of disc and ray florets in sunflower.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Helianthus , Proteínas de Domínio MADS , Proteínas de Plantas , Helianthus/genética , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol Biochem ; 213: 108865, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936071

RESUMO

The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.


Assuntos
Antioxidantes , Carvão Vegetal , Helianthus , Microplásticos , Oryza , Solo , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Antioxidantes/metabolismo , Carvão Vegetal/farmacologia , Helianthus/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Solo/química , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Biomassa , Metabolismo Secundário , Prolina/metabolismo
4.
ACS Appl Mater Interfaces ; 16(24): 30658-30670, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38856560

RESUMO

Noninvasive treatment of inflammatory bowel disease with lower gastrointestinal bleeding is a major clinical challenge. In this study, we designed an orally targeted microsphere based on sunflower pollen microcapsules to localize the site of inflammatory injury and promote hemostasis and tissue repair. Due to the Eudragit and ascorbate palmitate coatings, EL/AP@PS(t+Dex) demonstrates pH- and enzyme-responsive release of loaded drugs and helps to resist the harsh environment of the gastrointestinal tract. Both in vitro and in vivo experiments show the characteristics of inflammation targeting and mucosal adhesion, which reduce the systematic exposure and increase the local drug concentration. In the DSS model, orally administered EL/AP@PS(t+Dex) significantly alleviates hematochezia, inhabits intestinal inflammation, and remarkably promotes the recovery of the intestinal epithelial barrier to reduce the exposure of intestinal microvessels. Furthermore, EL/AP@PS(t+Dex) optimized the composition of intestinal microbiota, which benefits intestinal homeostasis. This finding provides a fundamental solution for the treatment of intestinal bleeding caused by inflammatory bowel disease (IBD).


Assuntos
Helianthus , Doenças Inflamatórias Intestinais , Microesferas , Pólen , Doenças Inflamatórias Intestinais/tratamento farmacológico , Pólen/química , Animais , Helianthus/química , Camundongos , Humanos , Hemostasia/efeitos dos fármacos
5.
J Food Sci ; 89(7): 4064-4078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38829747

RESUMO

Derived from industrial processing waste, peanut skins contain polyphenols that delay oxidative food spoilage. However, these compounds are susceptible to light, heat, and oxygen exposure. Microencapsulation provides a solution by offering protection from these factors. The aim of this study was to evaluate the protective effect of peanut skin extract microcapsules on the chemical, microbiological, and sensory property and shelf life of sunflower seeds during storage. Five roasted sunflower seed samples were prepared: control (S-C); added with butylhydroxytoluene (S-BHT); coated with carboxymethyl cellulose (S-CMC); coated with CMC and the addition of peanut skin crude extract (S-CMC-CE); coated with CMC and the addition of microcapsules (S-CMC-M20). Sensory acceptability was determined using hedonic testing. Chemical (peroxide value, conjugated dienes, hexanal and nonanal content, and fatty acid profile), microbiological, and descriptive analyses were carried out on samples stored for 45 days at room temperature. Shelf life was calculated using a simple linear regression. All samples were microbiologically fit for human consumption and accepted by consumer panelists, scoring above five points on the nine-point hedonic scale. S-CMC-M20 exhibited the lowest peroxide value (6.59 meqO2/kg) and hexanal content (0.4 µg/g) at the end of the storage. Estimated shelf life showed that S-MC-M20 (76.3 days) extended its duration nearly ninefold compared to S-C (8.3 days) and doubled that of S-CMC-CE (37.5 days). This indicates a superior efficacy of microencapsulated extract compared to its unencapsulated form, presenting a promising natural strategy for improving the shelf life of analogous food items. PRACTICAL APPLICATION: Incorporating peanut skin extract microcapsules in coating sunflower seeds presents a promising strategy to extend the shelf life of lipid-rich foods, capitalizing on the antioxidant properties of polyphenols. This innovative approach not only enhances nutritional quality but also addresses sustainability concerns by repurposing agro-industrial byproducts, such as peanut skins. By meeting consumer demand for functional foods with added health benefits, this technique offers potential opportunities for the development of novel, value-added food products while contributing to circular economy principles and waste management efforts.


Assuntos
Arachis , Armazenamento de Alimentos , Helianthus , Polifenóis , Sementes , Sementes/química , Helianthus/química , Armazenamento de Alimentos/métodos , Arachis/química , Humanos , Composição de Medicamentos/métodos , Comportamento do Consumidor , Paladar , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Conservação de Alimentos/métodos
6.
Ecotoxicol Environ Saf ; 280: 116555, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870735

RESUMO

In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m3 per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha-1) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.) in saline-alkali soil. The treatment of biochar (10 ton ha-1) and PGPR-3 enhanced the soil respiration, dehydrogenase, nitrogenase, and phosphatase activities by 137 %, 129 %, 326 %, and 127 %, while it declined soil electrical conductivity and available Cd content by 31.7 % and 61.3 %. Also, it decreased Cd content in root, shoot, and seed by 55.3 %, 50.7 %, and 92.5 %, and biological concentration and translocation factors by 55 % and 5 %. It also declined the proline, lipid peroxidation, H2O2, and electrolyte leakage contents by 48 %, 94 %, 80 %, and 76 %, whereas increased the catalase, peroxidase, superoxide dismutase, and polyphenol oxidase activities by 80 %, 79 %, 61 %, and 116 %. Same treatment increased seed and oil yields increased by 76.1 % and 76.2 %. The unique aspect of this research is its investigation into the utilization of biochar in saline-alkali soil conditions, coupled with the combined application of biochar and PGPR to mitigate the adverse effects of Cd contamination on sunflower cultivation in saline-alkali soil.


Assuntos
Cádmio , Carvão Vegetal , Helianthus , Poluentes do Solo , Solo , Carvão Vegetal/química , Cádmio/análise , Cádmio/toxicidade , Helianthus/efeitos dos fármacos , Poluentes do Solo/análise , Solo/química , Egito , Álcalis/química , Biodegradação Ambiental , Raízes de Plantas , Microbiologia do Solo
7.
BMC Plant Biol ; 24(1): 592, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907232

RESUMO

Drought stress poses a significant threat to agricultural productivity, especially in areas susceptible to water scarcity. Sunflower (Helianthus annuus L.) is a widely cultivated oilseed crop with considerable potential globally. Jasmonic acid, a plant growth regulator, plays a crucial role in alleviating the adverse impacts of drought stress on the morphological, biochemical, and physiological characteristics of crops. Experimental detail includes sunflower varieties (Armani Gold, KQS-HSF-1, Parsun, and ESFH-3391), four drought stress levels (0, 25%, 50%, and 75% drought stress), and three levels (0, 40ppm, 80ppm) of jasmonic acid. The 0% drought stress and 0ppm jasmonic acid were considered as control treatments. The experimental design was a completely randomized design with three replicates. Drought stress significantly reduced the growth in all varieties. However, the exogenous application of jasmonic acid at concentrations of 40ppm and 80ppm enhanced growth parameters, shoot and root length (1.93%, 19%), shoot and root fresh weight (18.5%, 25%), chlorophyll content (36%), photosynthetic rate (22%), transpiration rate (40%), WUE (20%), MDA (6.5%), Phenolics (19%), hydrogen peroxide (7%) proline (28%) and glycine betaine (15-30%) under water-stressed conditions, which was closely linked to the increase in stomatal activity stimulated by jasmonic acid. Furthermore, JA 80 ppm was found to be the most appropriate dose to reduce the effect of water stress in all sunflower varieties. It was concluded that the foliar application of JA has the potential to enhance drought tolerance by improving the morphological, biochemical, and physiological of sunflower.


Assuntos
Ciclopentanos , Secas , Helianthus , Oxilipinas , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Helianthus/fisiologia , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Clorofila/metabolismo
8.
ACS Appl Bio Mater ; 7(6): 3731-3745, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38842103

RESUMO

Photosensitizing agents have received increased attention from the medical community, owing to their higher photothermal efficiency, induction of hyperthermia, and sustained delivery of bioactive molecules to their targets. Micro/nanorobots can be used as ideal photosensitizing agents by utilizing various physical stimuli for the targeted killing of pathogens (e.g., bacteria) and cancer cells. Herein, we report sunflower-pollen-inspired spiky zinc oxide (s-ZnO)-based nanorobots that effectively kill bacteria and cancer cells under near-infrared (NIR) light irradiation. The as-fabricated s-ZnO was modified with a catechol-containing photothermal agent, polydopamine (PDA), to improve its NIR-responsive properties, followed by the addition of antimicrobial (e.g., tetracycline/TCN) and anticancer (e.g., doxorubicin/DOX) drugs. The fabricated s-ZnO/PDA@Drug nanobots exhibited unique locomotory behavior with an average speed ranging from 13 to 14 µm/s under 2.0 W/cm2 NIR light irradiation. Moreover, the s-ZnO/PDA@TCN nanobots exhibited superior antibacterial activity against E. coli and S. epidermidis under NIR irradiation. The s-ZnO/PDA@DOX nanobots also displayed sufficient reactive oxygen species (ROS) amplification in B16F10 melanoma cells and induced apoptosis under NIR light, indicating their therapeutic efficacy. We hope the sunflower pollen-inspired s-ZnO nanorobots have tremendous potential in biomedical engineering from the phototherapy perspective, with the hope to reduce pathogen infections.


Assuntos
Antibacterianos , Antineoplásicos , Materiais Biocompatíveis , Ensaios de Seleção de Medicamentos Antitumorais , Helianthus , Tamanho da Partícula , Fármacos Fotossensibilizantes , Óxido de Zinco , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Helianthus/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Pólen/química , Escherichia coli/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Indóis/química , Indóis/farmacologia , Animais , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Raios Infravermelhos
9.
Int J Biol Macromol ; 272(Pt 1): 132873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838890

RESUMO

The decoctions of sunflower (Helianthus annuus L. HAL) stalk pith have been used to treat advanced cancer, and polysaccharide of sunflower stalk pith (HSPP) was key ingredient of the decoctions. To forage specially structured HSPP with anti-tumor effects and to uncover its mechanisms of anticancer activity, syngeneic mouse model of lung carcinoma metastasis was established and the HSPP was found to contain long-chain fatty acid. Encouragingly, the mean survival of the polysaccharide group (47.3 ± 12.8 d) and its sub-fractions group HSPP-4 (50.7 ± 13.0 d) was significantly increased compared with control group (38.7 ± 12.7 d) or positive control group (41.8 ± 13.4 d), (n = 20, P < 0.01 vs. the control group or positive control group). Furthermore, the HSPP exerted inhibitory effects on the tumor cells' metastasis. Eventually, it is postulated that the polysaccharide could inhibit tumor proliferation and metastasis by reduction of TNF-α from the macrophage.


Assuntos
Proliferação de Células , Helianthus , Metástase Neoplásica , Polissacarídeos , Fator de Necrose Tumoral alfa , Helianthus/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico
10.
Food Chem ; 454: 139790, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805931

RESUMO

Germination of seeds is known to affect the nutritional composition of cold-pressed oils. This study focused on the effects of germination on the antioxidants and oxidative stability of linseed and sunflower seed oil. As hypothesized, germination led to increased antioxidant activities and tocopherol, chlorophyll and carotenoid content. Analysis revealed a 37.2 ± 3.5-fold and 11.6 ± 1.5-fold increase in polyphenol content in linseed and sunflower seed oil from germinated seeds, respectively. Using LC-HRMS/MS, profiles with up to 69 polyphenolic substances were identified in germinated seed oils for the first time. Germination promoted lipid hydrolysis, as evidenced by NMR, with overall significant decreases in triacylglycerol content leading to increased diacylglycerol and free fatty acid values. Rancimat measurements predicted a 4.10 ± 0.52-fold longer shelf-life for germinated linseed oil. This study successfully demonstrated the potential of germination to develop PUFA-rich oils with enhanced antioxidant capacity and oxidative stability.


Assuntos
Antioxidantes , Germinação , Óleo de Semente do Linho , Valor Nutritivo , Oxirredução , Óleos de Plantas , Sementes , Óleo de Girassol , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Óleo de Girassol/química , Óleo de Girassol/metabolismo , Óleo de Semente do Linho/metabolismo , Óleo de Semente do Linho/química , Óleos de Plantas/química , Óleos de Plantas/análise , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/metabolismo , Linho/química , Linho/crescimento & desenvolvimento , Linho/metabolismo , Helianthus/crescimento & desenvolvimento , Helianthus/química , Helianthus/metabolismo
11.
New Phytol ; 243(1): 451-465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38764373

RESUMO

The tree of life is riddled with reticulate evolutionary histories, and some clades, such as the eastern standing Phlox, appear to be hotspots of hybridization. In this group, there are two cases of reinforcement and nine hypothesized hybrid species. Given their historical importance in our understanding of plant speciation, the relationships between these taxa and the role of hybridization in their diversification require genomic validation. Using phylogenomic analyses, we resolve the evolutionary relationships of the eastern standing Phlox and evaluate hypotheses about whether and how hybridization and gene flow played a role in their diversification. Our results provide novel resolution of the phylogenetic relationships in this group, including paraphyly across some taxa. We identify gene flow during one case of reinforcement and find genomic support for a hybrid lineage underlying one of the five hypothesized homoploid hybrid speciation events. Additionally, we estimate the ancestries of four allotetraploid hybrid species. Our results are consistent with hybridization contributing to diverse evolutionary outcomes within this group; although, not as extensively as previously hypothesized. This study demonstrates the importance of phylogenomics in evaluating hypothesized evolutionary histories of non-model systems and adds to the growing support of interspecific genetic exchange in the generation of biodiversity.


Assuntos
Especiação Genética , Hibridização Genética , Filogenia , Fluxo Gênico , Genoma de Planta , Genômica , Helianthus/genética , Evolução Biológica
12.
BMC Genom Data ; 25(1): 39, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693490

RESUMO

BACKGROUND: Sunflower (Helianthus annuus) is one of the most important economic crops in oilseed production worldwide. The different cultivars exhibit variability in their resistance genes. The NAC transcription factor (TF) family plays diverse roles in plant development and stress responses. With the completion of the H. annuus genome sequence, the entire complement of genes coding for NACs has been identified. However, the reference genome of a single individual cannot cover all the genetic information of the species. RESULTS: Considering only a single reference genome to study gene families will miss many meaningful genes. A pangenome-wide survey and characterization of the NAC genes in sunflower species were conducted. In total, 139 HaNAC genes are identified, of which 114 are core and 25 are variable. Phylogenetic analysis of sunflower NAC proteins categorizes these proteins into 16 subgroups. 138 HaNACs are randomly distributed on 17 chromosomes. SNP-based haplotype analysis shows haplotype diversity of the HaNAC genes in wild accessions is richer than in landraces and modern cultivars. Ten HaNAC genes in the basal stalk rot (BSR) resistance quantitative trait loci (QTL) are found. A total of 26 HaNAC genes are differentially expressed in response to Sclerotinia head rot (SHR). A total of 137 HaNAC genes are annotated in Gene Ontology (GO) and are classified into 24 functional groups. GO functional enrichment analysis reveals that HaNAC genes are involved in various functions of the biological process. CONCLUSIONS: We identified NAC genes in H. annuus (HaNAC) on a pangenome-wide scale and analyzed S. sclerotiorum resistance-related NACs. This study provided a theoretical basis for further genomic improvement targeting resistance-related NAC genes in sunflowers.


Assuntos
Ascomicetos , Resistência à Doença , Helianthus , Filogenia , Doenças das Plantas , Helianthus/genética , Helianthus/microbiologia , Ascomicetos/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Genoma de Planta , Família Multigênica/genética , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Haplótipos/genética
13.
Sci Rep ; 14(1): 9978, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693252

RESUMO

An extremely important oil crop in the world, Helianthus annuus L. is one of the world's most significant members of the Asteraceae family. The rate and extent of seed germination and agronomic features are consistently affecting  by temperature (T) and changes in water potential (ψ). A broad hydrothermal time model with T and ψ components could explain sunflower responses over suboptimal T and ψ. A lab experiment was performed using the HTT model to discover both T and ψ and their interactive effects on sunflower germination and also to figure  out the cardinal Ts values. The sunflower seeds were germinated at temperatures (15 °C, 20 °C, 25 °C and 30 °C); each Ts had five constant ψs of 0, 0.3, 0.6, 0.9, and 1.2 MPa via PEG 6000 as osmotic stress inducer. The results revealed that highest germination index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 30 °C with osmotic stress of (- 1.2 MPa). The highest value of germination rate index was found in seed grown at 20 °C in distilled water (0 MPa) and the lowest at 15 °C with an osmotic stress of (- 1.2 MPa). In conclusion, water potential, temperature, and their interactions have a considerable impact on seed germination rate, and other metrics (GI, SVI-I, GRI, GE, SVI-II, and MGT). Seeds sown  at 20 °C with zero water potential showed high germination metrics such as GE, GP, GRI, and T50%. The maximum value to TTsub noted at 30 °C in - 0.9 MPa osmotic stress and the minimum value was calculated at 15 °C in - 1.2 MPa osmotic stress. The result of TTsupra recorded highest at 15 °C in  controlled group (0 MPa). Moreover, θH was  highest at 30 °C in controlled condition (0 MPa) and minimum value was observed at  20 °C under - 1.2 MPa osmotic stress. The value of θHTT were  maximum at  30 °C in controlled group (0 MPa) and minimum value was  recorded at 15 °C under - 1.2 MPa osmotic potential. The base, optimum and ceiling temperatures for sunflower germination metrics in this experiment were noted  6.8, 20 and 30 °C respectively.


Assuntos
Germinação , Helianthus , Pressão Osmótica , Sementes , Temperatura , Helianthus/crescimento & desenvolvimento , Helianthus/fisiologia , Sementes/crescimento & desenvolvimento , Água , Modelos Teóricos
14.
Sci Rep ; 14(1): 12014, 2024 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797730

RESUMO

The present work investigates the quality and the chemical effects of dehydration, using a novel dehydration system based on an electromagnetic induction and low pressures technique, comparing it with the thermo-solar drying system. High oleic sunflower seeds, which are an important oil seed crop, were used due to the fact that they have a special place in the food industry. The seed samples were exposed to electromagnetic induction and low pressures by 0.5 and 1 h, then several chemical characterizations were carried out, in the electrophoresis study, it was found that most proteins in the hull were degraded or denatured, some of them were lost during the time in the thermosolar dryer while in kernel keeps 94.9% of the concentration in control proteins. Otherwise, the electromagnetic induction dryer did not lose the most of proteins in the kernel keeping 99.1% in 0.5 h and 98.4% in 1 h, just degrading its concentration. Germination viability results did not show changes after 0.5 h in the electromagnetic fields, but they decreased in 1 h from 66 to 40% until the thermosolar method fell to 24% in 4 h, both analysis results change proportionally with the treatment time and moisture content and the amount of the oxygen.


Assuntos
Germinação , Helianthus , Sementes , Helianthus/química , Sementes/química , Germinação/efeitos dos fármacos , Proteínas de Plantas , Dessecação/métodos , Água/química , Desidratação
15.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791426

RESUMO

This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.


Assuntos
Apoptose , Helianthus , Tubérculos , Poliaminas , Helianthus/metabolismo , Helianthus/crescimento & desenvolvimento , Poliaminas/metabolismo , Tubérculos/metabolismo , Tubérculos/crescimento & desenvolvimento
16.
PLoS One ; 19(5): e0301254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713689

RESUMO

Oil seed crops are the second most important field crops after cereals in the agricultural economy globally. The use and demand for oilseed crops such as groundnut, soybean and sunflower have grown significantly, but climate change is expected to alter the agroecological conditions required for oilseed crop production. This study aims to present an approach that utilizes decision-making tools to assess the potential climate change impacts on groundnut, soybean and sunflower yields and the greenhouse gas emissions from the management of the crops. The Decision Support Tool for Agrotechnology Transfer (DSSAT v4.7), a dynamic crop model and the Cool Farm Tool, a GHG calculator, was used to simulate yields and estimate GHG emissions from these crops, respectively. Four representative concentration pathways (RCPs 2.6, 4.5, 6.0, and 8.5), three nitrogen (0, 75, and 150 kg/ha) and phosphorous (0, 30 and 60 P kg/ha) fertilizer rates at three sites in Limpopo, South Africa (Ofcolaco, Syferkuil and Punda Maria) were used in field trials for calibrating the models. The highest yield was achieved by sunflower across all crops, years and sites. Soybean yield is projected to decrease across all sites and scenarios by 2030 and 2050, except at Ofcolaco, where yield increases of at least 15.6% is projected under the RCP 4.5 scenario. Positive climate change impacts are predicted for groundnut at Ofcolaco and Syferkuil by 2030 and 2050, while negative impacts with losses of up to 50% are projected under RCP8.5 by 2050 at Punda Maria. Sunflower yield is projected to decrease across all sites and scenarios by 2030 and 2050. A comparison of the climate change impacts across sites shows that groundnut yield is projected to increase under climate change while notable yield losses are projected for sunflower and soybean. GHG emissions from the management of each crop showed that sunflower and groundnut production had the highest and lowest emissions across all sites respectively. With positive climate change impacts, a reduction of GHG emissions per ton per hectare was projected for groundnuts at Ofcolaco and Syferkuil and for sunflower in Ofcolaco in the future. However, the carbon footprint from groundnut is expected to increase by 40 to 107% in Punda Maria for the period up to 2030 and between 70-250% for 2050, with sunflower following a similar trend. We conclude that climate change will potentially reduce yield for oilseed crops while management will increase emissions. Therefore, in designing adaptation measures, there is a need to consider emission effects to gain a holistic understanding of how both climate change impacts on crops and mitigation efforts could be targeted.


Assuntos
Mudança Climática , Produtos Agrícolas , Produtos Agrícolas/crescimento & desenvolvimento , África do Sul , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Helianthus/crescimento & desenvolvimento , Modelos Teóricos , Fertilizantes/análise , Gases de Efeito Estufa/análise , Óleos de Plantas , Agricultura/métodos
17.
PLoS One ; 19(5): e0298299, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722945

RESUMO

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Assuntos
Agrobacterium tumefaciens , Helianthus , Plantas Geneticamente Modificadas , Transformação Genética , Helianthus/genética , Helianthus/microbiologia , Helianthus/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Plantas Geneticamente Modificadas/genética , Técnicas de Cultura de Tecidos/métodos , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento
18.
BMC Plant Biol ; 24(1): 422, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760671

RESUMO

BACKGROUND: Salinity is one major abiotic stress affecting photosynthesis, plant growth, and development, resulting in low-input crops. Although photosynthesis underlies the substantial productivity and biomass storage of crop yield, the response of the sunflower photosynthetic machinery to salinity imposition and how H2S mitigates the salinity-induced photosynthetic injury remains largely unclear. Seed priming with 0.5 mM NaHS, as a donor of H2S, was adopted to analyze this issue under NaCl stress. Primed and nonprime seeds were established in nonsaline soil irrigated with tape water for 14 d, and then the seedlings were exposed to 150 mM NaCl for 7 d under controlled growth conditions. RESULTS: Salinity stress significantly harmed plant growth, photosynthetic parameters, the structural integrity of chloroplasts, and mesophyll cells. H2S priming improved the growth parameters, relative water content, stomatal density and aperture, photosynthetic pigments, photochemical efficiency of PSII, photosynthetic performance, soluble sugar as well as soluble protein contents while reducing proline and ABA under salinity. H2S also boosted the transcriptional level of ribulose 1,5-bisphosphate carboxylase small subunit gene (HaRBCS). Further, the transmission electron microscope showed that under H2S priming and salinity stress, mesophyll cells maintained their cell membrane integrity and integrated chloroplasts with well-developed thylakoid membranes. CONCLUSION: The results underscore the importance of H2S priming in maintaining photochemical efficiency, Rubisco activity, and preserving the chloroplast structure which participates in salinity stress adaptation, and possibly sunflower productivity under salinity imposition. This underpins retaining and minimizing the injury to the photosynthetic machinery to be a crucial trait in response of sunflower to salinity stress.


Assuntos
Helianthus , Sulfeto de Hidrogênio , Osmorregulação , Fotossíntese , Estresse Salino , Plântula , Helianthus/fisiologia , Helianthus/efeitos dos fármacos , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Fotossíntese/efeitos dos fármacos , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Sulfeto de Hidrogênio/metabolismo , Cloroplastos/metabolismo , Salinidade
19.
Chemosphere ; 359: 142290, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723691

RESUMO

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Assuntos
Biotransformação , Retardadores de Chama , Helianthus , Bifenil Polibromatos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Catalase/metabolismo
20.
Physiol Plant ; 176(3): e14324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705866

RESUMO

Broomrape (Orobanche cumana) negatively affects sunflower, causing severe yield losses, and thus, there is a need to control O. cumana infestation. Brassinosteroids (BRs) play key roles in plant growth and provide resilience to weed infection. This study aims to evaluate the mechanisms by which BRs ameliorate O. cumana infection in sunflower (Helianthus annuus). Seeds were pretreated with BRs (1, 10, and 100 nM) and O. cumana inoculation for 4 weeks under soil conditions. O. cumana infection significantly reduced plant growth traits, photosynthesis, endogenous BRs and regulated the plant defence (POX, GST), BRs signalling (BAK1, BSK1 to BSK4) and synthesis (BRI1, BR6OX2) genes. O. cumana also elevated the levels of malondialdehyde (MDA), hydroxyl radical (OH-), hydrogen peroxide (H2O2) and superoxide (O2 •-) in leaves/roots by 77/112, 63/103, 56/97 and 54/89%, as well as caused ultrastructural cellular damages in both leaves and roots. In response, plants activated a few enzymes, superoxide dismutase (SOD), peroxidase (POD) and reduced glutathione but were unable to stimulate the activity of ascorbate peroxidase (APX) and catalase (CAT) enzymes. The addition of BRs (especially at 10 nM) notably recovered the ultrastructural cellular damages, lowered the production of oxidative stress, activated the key enzymatic antioxidants and induced the phenolic and lignin contents. The downregulation in the particular genes by BRs is attributed to the increased resilience of sunflower via a susceptible reaction. In a nutshell, BRs notably enhanced the sunflower resistance to O. cumana infection by escalating the plant immunity responses, inducing systemic acquired resistance, reducing oxidative or cellular damages, and modulating the expression of BR synthesis or signalling genes.


Assuntos
Brassinosteroides , Helianthus , Orobanche , Sementes , Helianthus/efeitos dos fármacos , Helianthus/imunologia , Helianthus/fisiologia , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Orobanche/fisiologia , Orobanche/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/imunologia , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Imunidade Vegetal/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/imunologia , Raízes de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Malondialdeído/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...