Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.107
Filtrar
1.
Sheng Li Xue Bao ; 76(4): 547-560, 2024 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-39192788

RESUMO

Helicobacter pylori (Hp) is a Gram-negative bacterium that colonizes in the gastric mucosa. Hp induces the production of cancer-associated fibroblasts (CAF) in the stomach. The virulence factors of Hp and CAF trigger epithelial-mesenchymal transition (EMT), leading to local inflammation, damage to the gastric mucosa, and the occurrence of chronic gastritis. Here, we summarize the molecular mechanisms of CAF mediated gastric EMT after Hp infection, providing new insights into potential molecular targets and strategies for the future treatment of Hp infection associated gastric cancer.


Assuntos
Transição Epitelial-Mesenquimal , Mucosa Gástrica , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecções por Helicobacter/complicações , Helicobacter pylori/fisiologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/etiologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/fisiologia , Animais
2.
Helicobacter ; 29(4): e13108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021274

RESUMO

BACKGROUND: Helicobacter pylori infection-associated gastric adenocarcinoma is influenced by various factors, including the digestive microbiota. Lactic acid bacteria role in digestive carcinogenesis has been discussed, and some Lactobacillaceae family species have been shown to act against H. pylori-induced inflammation and colonization. However, their effects on H. pylori-related carcinogenesis have not yet been studied. Lactobacillaceae family effects on the epithelial-to-mesenchymal transition (EMT), emergence of cells with cancer stem cell (CSC) properties and the pro-inflammatory response of gastric epithelial cells to H. pylori infection were investigated. MATERIALS AND METHODS: A co-culture model of AGS gastric epithelial cells infected with a carcinogenic strain of H. pylori associated with 18 different probiotic strains candidates were used. Different EMT indicators and CSC properties were studied, including quantification of the mesenchymal phenotype, tumorsphere formation, EMT marker expression, and tight junction evaluation with immunofluorescence microscopy. The effect of the strains on the pro-inflammatory response to H. pylori was also evaluated by quantifying interleukin-8 (IL-8) production using ELISA. RESULTS: Among the strains tested, Lactobacillus gasseri BIO6369 and Lacticaseibacillus rhamnosus BIO5326 induced a 30.6% and 38.4% reduction in the mesenchymal phenotype, respectively, caused a significant decrease in Snail and Zeb1 EMT marker expression and prevented the loss of tight junctions induced by H. pylori infection. A separate co-culture with a Boyden chamber maintained the effects induced by the two strains. H. pylori-induced IL-8 production was also significantly reduced in the presence of L. gasseri BIO6369 and L. rhamnosus BIO5326. CONCLUSION: Lactobacillus gasseri BIO6369 and L. rhamnosus BIO5326 strains decreased epithelial-to-mesenchymal transition and inflammation induced by H. pylori infection, suggesting that these species may have a protective effect against H. pylori-induced gastric carcinogenesis.


Assuntos
Células Epiteliais , Transição Epitelial-Mesenquimal , Infecções por Helicobacter , Helicobacter pylori , Lacticaseibacillus rhamnosus , Lactobacillus gasseri , Probióticos , Neoplasias Gástricas , Humanos , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/fisiologia , Helicobacter pylori/patogenicidade , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Lacticaseibacillus rhamnosus/fisiologia , Células Epiteliais/microbiologia , Técnicas de Cocultura , Carcinogênese
3.
Food Funct ; 15(16): 8418-8431, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39042096

RESUMO

H. pylori is a highly pathogenic and prevalent pathogen that is a class I carcinogen. More than 50% of the world's population is infected with H. pylori. An anti-adhesive strategy is an effective way to antagonize H. pylori infection, which does not cause H. pylori resistance and is safer compared to antibiotic therapy. In the present study, to obtain rice bran protein-derived anti-adhesive activity peptides against H. pylori, an efficient enzymatic hydrolysis system was established, and it was found that rice bran protein hydrolysate prepared under specific conditions possessed anti-adhesive activity against H. pylori. The anti-adhesive activity of rice bran protein hydrolysate (RPH) was 43.74 ± 1.12% (4 mg mL-1), and gastric digestion (RPHA) had no significant effect on its activity. Hydrophobic amino acids and aromatic amino acids were important for its anti-adhesive activity. Further, 284 peptide sequences with potential anti-adhesive activity were isolated and identified from RPHA. Combined with molecular docking results, four novel anti-adhesive activity peptides were finally screened, namely LS5 (LSFRL), SN8 (SNTPGMVY), VV7 (VVNFGNL) and PV9 (PVLWGVPKG). Among them, PV9 showed the highest anti-adhesive activity of 59.64 ± 2.00% (4 mg mL-1). These four peptides could bind H. pylori adhesins BabA and SabA, occupying the binding sites of cell receptors and acting as anti-adhesion agents. In conclusion, four rice bran protein-derived anti-adhesive activity peptides against H. pylori can be used for the development of novel functional foods antagonizing H. pylori infection.


Assuntos
Aderência Bacteriana , Helicobacter pylori , Oryza , Peptídeos , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Oryza/microbiologia , Oryza/química , Peptídeos/farmacologia , Peptídeos/química , Aderência Bacteriana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química
4.
Sci Rep ; 14(1): 15619, 2024 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972876

RESUMO

H. pylori infection is gaining increasing attention, but detailed investigations into its impact on gastric microbiota remain limited. We collected gastric mucosa samples from 47 individuals divided into three groups: 1. Group HP: patients with initial positive H. pylori infection (25 cases); 2. Group ck: H. pylori-negative patients (14 cases); 3. Group DiffHP: patients with refractory H. pylori infection (8 cases). The samples were analyzed using 16S rDNA sequencing and functional prediction with PICRUSt. Group HP showed differences in flora distribution and function compared to Group ck, while Group DiffHP overlapped with Group HP. The abundances of Aeromonas piscicola, Shewanella algae, Vibrio plantisponsor, Aeromonas caviae, Serratia marcescens, Vibrio parahaemolyticus, Microbacterium lacticum, and Prevotella nigrescens were significantly reduced in both Group DiffHP and Group HP compared to Group ck. Vibrio shilonii was reduced only in Group DiffHP compared to Group ck, while Clostridium perfringens and Paracoccus marinus were increased only in Group DiffHP. LEfSe analysis revealed that Clostridium perfringens and Paracoccus marinus were enriched, whereas Vibrio shilonii was reduced in Group DiffHP compared to Group ck at the species level. In individuals with refractory H. pylori infection, the gastric microbiota exhibited enrichment in various human diseases, organic systems, and metabolic pathways (amino acid metabolism, carbohydrate metabolism, transcription, replication and repair, cell cycle pathways, and apoptosis). Patients with multiple failed H. pylori eradication exhibited significant changes in the gastric microbiota. An increase in Clostridium perfringens and Paracoccus marinus and a decrease in Vibrio shilonii appears to be characteristic of refractory H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Masculino , Pessoa de Meia-Idade , Feminino , Mucosa Gástrica/microbiologia , Adulto , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Idoso
5.
Helicobacter ; 29(3): e13100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873839

RESUMO

BACKGROUND: The formation of gallstones is often accompanied by chronic inflammation, and the mechanisms underlying inflammation and stone formation are not fully understood. Our aim is to utilize single-cell transcriptomics, bulk transcriptomics, and microbiome data to explore key pathogenic bacteria that may contribute to chronic inflammation and gallstone formation, as well as their associated mechanisms. METHODS: scRNA-seq data from a gallstone mouse model were extracted from the Gene Expression Omnibus (GEO) database and analyzed using the FindCluster() package for cell clustering analysis. Bulk transcriptomics data from patients with gallstone were also extracted from the GEO database, and intergroup functional differences were assessed using GO and KEGG enrichment analysis. Additionally, 16S rRNA sequencing was performed on gallbladder mucosal samples from asymptomatic patients with gallstone (n = 6) and liver transplant donor gallbladder mucosal samples (n = 6) to identify key bacteria associated with stone formation and chronic inflammation. Animal models were constructed to investigate the mechanisms by which these key pathogenic bacterial genera promote gallstone formation. RESULTS: Analysis of scRNA-seq data from the gallstone mouse model (GSE179524) revealed seven distinct cell clusters, with a significant increase in neutrophil numbers in the gallstone group. Analysis of bulk transcriptomics data from patients with gallstone (GSE202479) identified chronic inflammation in the gallbladder, potentially associated with dysbiosis of the gallbladder microbiota. 16S rRNA sequencing identified Helicobacter pylori as a key bacterium associated with gallbladder chronic inflammation and stone formation. CONCLUSIONS: Dysbiosis of the gallbladder mucosal microbiota is implicated in gallstone disease and leads to chronic inflammation. This study identified H. pylori as a potential key mucosal resident bacterium contributing to gallstone formation and discovered its key pathogenic factor CagA, which causes damage to the gallbladder mucosal barrier. These findings provide important clues for the prevention and treatment of gallstones.


Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Células Epiteliais , Vesícula Biliar , Cálculos Biliares , Helicobacter pylori , Animais , Cálculos Biliares/microbiologia , Cálculos Biliares/patologia , Células Epiteliais/microbiologia , Camundongos , Humanos , Vesícula Biliar/microbiologia , Vesícula Biliar/patologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Helicobacter pylori/fisiologia , RNA Ribossômico 16S/genética , Modelos Animais de Doenças , Permeabilidade , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL
6.
Helicobacter ; 29(3): e13078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867649

RESUMO

BACKGROUND: Educational initiatives on Helicobacter pylori (H. pylori) constitute a highly effective approach for preventing its infection and establishing standardized protocols for its eradication. ChatGPT, a large language model, is a potentially patient-friendly online tool capable of providing health-related knowledge. This study aims to assess the accuracy and repeatability of ChatGPT in responding to questions related to H. pylori. MATERIALS AND METHODS: Twenty-one common questions about H. pylori were collected and categorized into four domains: basic knowledge, diagnosis, treatment, and prevention. ChatGPT was utilized to individually answer the aforementioned 21 questions. Its responses were independently assessed by two experts on H. pylori. Questions with divergent ratings were resolved by a third reviewer. Cohen's kappa coefficient was calculated to assess the consistency between the scores of the two reviewers. RESULTS: The responses of ChatGPT on H. pylori-related questions were generally satisfactory, with 61.9% marked as "completely correct" and 33.33% as "correct but inadequate." The repeatability of the responses of ChatGPT to H. pylori-related questions was 95.23%. Among the responses, those related to prevention (comprehensive: 75%) had the best response, followed by those on treatment (comprehensive: 66.7%), basic knowledge (comprehensive: 60%), and diagnosis (comprehensive: 50%). In the "treatment" domain, 16.6% of the ChatGPT responses were categorized as "mixed with correct or incorrect/outdated data." However, ChatGPT still lacks relevant knowledge regarding H. pylori resistance and the use of sensitive antibiotics. CONCLUSIONS: ChatGPT can provide correct answers to the majority of H. pylori-related queries. It exhibited good reproducibility and delivered responses that were easily comprehensible to patients. Further enhancement of real-time information updates and correction of inaccurate information will make ChatGPT an essential auxiliary tool for providing accurate H. pylori-related health information to patients.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/microbiologia , Humanos , Helicobacter pylori/fisiologia , Reprodutibilidade dos Testes , Internet , Conhecimentos, Atitudes e Prática em Saúde , Inquéritos e Questionários
7.
Gut Microbes ; 16(1): 2369336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944840

RESUMO

The role of the intratumoral microbiome in gastric cancer (GC) has not been comprehensively assessed. Here, we explored the relationship between the microbial community and GC prognosis and therapy efficacy. Several cancer-associated microbial characteristics were identified, including increased α-diversity, differential ß-diversity, and decreased Helicobacter pylori abundance. After adjusting for clinical features, prognostic analysis revealed 2 phyla, 14 genera, and 5 species associated with the overall survival of patients with GC. Additionally, 2 phyla, 14 genera, and 6 species were associated with adjuvant chemotherapy (ACT) efficacy in patients with stage II - III GC. Furthermore, we classified GC microbiome structures into three microbial subtypes (MS1, MS2 and MS3) with distinguishing features. The MS1 subtype exhibited high immune activity and enrichment of microbiota related to immunotherapy and butyric acid-producing, as well as potential benefits in immunotherapy. MS2 featured the highest α-diversity and activation of the TFF pathway, MS3 was characterized by epithelial-mesenchymal transition and was associated with poor prognosis and reduced ACT efficacy. Collectively, the results of this study provide valuable insights into the microbial characteristics associated with GC prognosis and therapy efficacy.


Assuntos
Neoplasias Gástricas , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/terapia , Humanos , Prognóstico , Masculino , Feminino , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Microbioma Gastrointestinal , Idoso , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Quimioterapia Adjuvante , Resultado do Tratamento
8.
mBio ; 15(6): e0044024, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38700325

RESUMO

Motility promotes biofilm initiation during the early steps of this process: microbial surface association and attachment. Motility is controlled in part by chemotaxis signaling, so it seems reasonable that chemotaxis may also affect biofilm formation. There is a gap, however, in our understanding of the interactions between chemotaxis and biofilm formation, partly because most studies analyzed the phenotype of only a single chemotaxis signaling mutant, e.g., cheA. Here, we addressed the role of chemotaxis in biofilm formation using a full set of chemotaxis signaling mutants in Helicobacter pylori, a class I carcinogen that infects more than half the world's population and forms biofilms. Using mutants that lack each chemotaxis signaling protein, we found that chemotaxis signaling affected the biofilm initiation stage, but not mature biofilm formation. Surprisingly, some chemotaxis mutants elevated biofilm initiation, while others inhibited it in a manner that was not tied to chemotaxis ability or ligand input. Instead, the biofilm phenotype correlated with flagellar rotational bias. Specifically, mutants with a counterclockwise bias promoted biofilm initiation, e.g., ∆cheA, ∆cheW, or ∆cheV1; in contrast, those with a clockwise bias inhibited it, e.g., ∆cheZ, ∆chePep, or ∆cheV3. We tested this correlation using a counterclockwise bias-locked flagellum, which induced biofilm formation independent of the chemotaxis system. These CCW flagella, however, were not sufficient to induce biofilm formation, suggesting there are downstream players. Overall, our work highlights the new finding that flagellar rotational direction promotes biofilm initiation, with the chemotaxis signaling system operating as one mechanism to control flagellar rotation. IMPORTANCE: Chemotaxis signaling systems have been reported to contribute to biofilm formation in many bacteria; however, how they regulate biofilm formation remains largely unknown. Chemotaxis systems are composed of many distinct kinds of proteins, but most previous work analyzed the biofilm effect of loss of only a few. Here, we explored chemotaxis' role during biofilm formation in the human-associated pathogenic bacterium Helicobacter pylori. We found that chemotaxis proteins are involved in biofilm initiation in a manner that correlated with how they affected flagellar rotation. Biofilm initiation was high in mutants with counterclockwise (CCW) flagellar bias and low in those with clockwise bias. We supported the idea that a major driver of biofilm formation is flagellar rotational direction using a CCW-locked flagellar mutant, which stays CCW independent of chemotaxis input and showed elevated biofilm initiation. Our data suggest that CCW-rotating flagella, independent of chemotaxis inputs, are a biofilm-promoting signal.


Assuntos
Proteínas de Bactérias , Biofilmes , Quimiotaxia , Flagelos , Helicobacter pylori , Biofilmes/crescimento & desenvolvimento , Helicobacter pylori/fisiologia , Helicobacter pylori/genética , Flagelos/fisiologia , Flagelos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transdução de Sinais , Mutação , Rotação
9.
Biochem Pharmacol ; 225: 116253, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701869

RESUMO

Infection with Helicobacter pylori (H. pylori or Hp) is associated with an increased susceptibility to gastric diseases, notably gastric cancer (GC). This study investigates the impact of Hp infection on chemoresistance and immune activity in GC cells. Hp infection in AGS and MKN-74 cells promoted proliferation, migration and invasion, apoptosis resistance, and tumorigenic activity of cells under cisplatin (DDP) plus gemcitabine (GEM) treatment. Additionally, it dampened activity of the co-cultured CD8+ T cells. Hp infection increased POU class 5 homeobox 1 (POU5F1) level, which further activated secreted phosphoprotein 1 (SPP1) transcription to increase its expression. Silencing of either SPP1 or POU5F1 enhanced the GEM sensitivity in GC cells, and it increased the populations of CD8+ T cells and the secretion of immune-active cytokines both in vitro and in xenograft tumors in immunocompetent mice. However, the effects of POU5F1 silencing were counteracted by SPP1 overexpression. Furthermore, the POU5F1/SPP1 axis activated the PI3K/AKT signaling pathway. This study demonstrates that Hp infection induces POU5F1 upregulation and SPP1 activation, leading to increased DDP/GEM resistance and T cell inactivation in GC cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Infecções por Helicobacter , Helicobacter pylori , Fator 3 de Transcrição de Octâmero , Osteopontina , Neoplasias Gástricas , Regulação para Cima , Neoplasias Gástricas/metabolismo , Humanos , Animais , Regulação para Cima/efeitos dos fármacos , Camundongos , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/imunologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Osteopontina/metabolismo , Osteopontina/genética , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/imunologia , Masculino , Camundongos Nus
10.
Cell Commun Signal ; 22(1): 263, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730482

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is the predominant etiological agent of gastritis and disrupts the integrity of the gastric mucosal barrier through various pathogenic mechanisms. After H. pylori invades the gastric mucosa, it interacts with immune cells in the lamina propria. Macrophages are central players in the inflammatory response, and H. pylori stimulates them to secrete a variety of inflammatory factors, leading to the chronic damage of the gastric mucosa. Therefore, the study aims to explore the mechanism of gastric mucosal injury caused by inflammatory factors secreted by macrophages, which may provide a new mechanism for the development of H. pylori-related gastritis. METHODS: The expression and secretion of CCL3 from H. pylori infected macrophages were detected by RT-qPCR, Western blot and ELISA. The effect of H. pylori-infected macrophage culture medium and CCL3 on gastric epithelial cells tight junctions were analyzed by Western blot, immunofluorescence and transepithelial electrical resistance. EdU and apoptotic flow cytometry assays were used to detect cell proliferation and apoptosis levels. Dual-luciferase reporter assays and chromatin immunoprecipitation assays were used to study CCL3 transcription factors. Finally, gastric mucosal tissue inflammation and CCL3 expression were analyzed by hematoxylin and eosin staining and immunohistochemistry. RESULTS: After H. pylori infection, CCL3 expressed and secreted from macrophages were increased. H. pylori-infected macrophage culture medium and CCL3 disrupted gastric epithelial cells tight junctions, while CCL3 neutralizing antibody and receptor inhibitor of CCL3 improved the disruption of tight junctions between cells. In addition, H. pylori-infected macrophage culture medium and CCL3 recombinant proteins stimulated P38 phosphorylation, and P38 phosphorylation inhibitor improved the disruption of tight junctions between cells. Besides, it was identified that STAT1 was a transcription factor of CCL3 and H. pylori stimulated macrophage to secret CCL3 through the JAK1-STAT1 pathway. Finally, after mice were injected with murine CCL3 recombinant protein, the gastric mucosal injury and inflammation were aggravated, and the phosphorylation level of P38 was increased. CONCLUSIONS: In summary, our findings demonstrate that H. pylori infection stimulates macrophages to secrete CCL3 via the JAK1-STAT1 pathway. Subsequently, CCL3 damages gastric epithelial tight junctions through the phosphorylation of P38. This may be a novel mechanism of gastric mucosal injury in H. pylori-associated gastritis.


Assuntos
Quimiocina CCL3 , Mucosa Gástrica , Infecções por Helicobacter , Helicobacter pylori , Macrófagos , Helicobacter pylori/fisiologia , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Animais , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Mucosa Gástrica/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Homeostase , Camundongos Endogâmicos C57BL , Humanos , Apoptose , Proliferação de Células , Masculino , Células RAW 264.7
11.
Cancer Med ; 13(7): e7092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581123

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) accounts for the majority of gastric cancer (GC) cases globally. The present study found that H. pylori promoted GC stem cell (CSC)-like properties, therefore, the regulatory mechanism of how H. pylori promotes GC stemness was explored. METHODS: Spheroid-formation experiments were performed to explore the self-renewal capacity of GC cells. The expression of R-spondin 3 (RSPO3), Nanog homeobox, organic cation/carnitine transporter-4 (OCT-4), SRY-box transcription factor 2 (SOX-2), CD44, Akt, glycogen synthase kinase-3ß (GSK-3ß), p-Akt, p-GSK-3ß, ß-catenin, and G protein subunit gamma 7 (GNG7) were detected by RT-qPCR, western blotting, immunohistochemistry (IHC), and immunofluorescence. Co-immunoprecipitation (CoIP) and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were performed to identify proteins interacting with RSPO3. Lentivirus-based RNA interference constructed short hairpin (sh)-RSPO3 GC cells. Small interfering RNA transfection was performed to inhibit GNG7. The in vivo mechanism was verified using a tumor peritoneal seeding model in nude mice. RESULTS: H. pylori extracts promoted a CSC-like phenotype in GC cells and elevated the expression of RSPO3. RSPO3 knockdown significantly reduced the CSC-like properties induced by H. pylori. Previous studies have demonstrated that RSPO3 potentiates the Wnt/ß-catenin signaling pathway, but the inhibitor of Wnt cannot diminish the RSPO3-induced activation of ß-catenin. CoIP and LC-MS/MS revealed that GNG7 is one of the transmembrane proteins interacting with RSPO3, and it was confirmed that RSPO3 directly interacted with GNG7. Recombinant RSPO3 protein increased the phosphorylation level of Akt and GSK-3ß, and the expression of ß-catenin in GC cells, but this regulatory effect of RSPO3 could be blocked by GNG7 knockdown. Of note, GNG7 suppression could diminish the promoting effect of RSPO3 to CSC-like properties. In addition, RSPO3 suppression inhibited MKN45 tumor peritoneal seeding in vivo. IHC staining also showed that RSPO3, CD44, OCT-4, and SOX-2 were elevated in H. pylori GC tissues. CONCLUSION: RSPO3 enhanced the stemness of H. pylori extracts-infected GC cells through the GNG7/ß-catenin signaling pathway.


Assuntos
Helicobacter pylori , Neoplasias Gástricas , Animais , Camundongos , Helicobacter pylori/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Camundongos Nus , Cromatografia Líquida , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Via de Sinalização Wnt , Neoplasias Gástricas/patologia , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
12.
Helicobacter ; 29(2): e13077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682268

RESUMO

BACKGROUND: A novel regimen with high-dose dual therapy (HDDT) has emerged, but its impact on the gut microbiota is not well understood. This study aimed to evaluate the impact of HDDT on the gut microbiota and compare it with that of bismuth quadruple therapy (BQT). METHODS: We enrolled outpatients (18-70 years) diagnosed with Helicobacter pylori infection by either histology or a positive 13C-urea breath test (13C-UBT) and randomly assigned to either the BQT or HDDT group. Subjects consented to provide fecal samples which were collected at baseline, Week 2, and Week 14. Amplification of the V1 and V9 regions of the 16S rRNA was conducted followed by high-throughput sequencing. RESULTS: Ultimately, 78 patients (41 patients in the HDDT group and 37 in the BQT group) were enrolled in this study. Eradication therapy significantly altered the diversity of the gut microbiota. However, the alpha diversity rebounded only in the HDDT group at 12 weeks post-eradication. Immediately following eradication, the predominance of Proteobacteria, replacing commensal Firmicutes and Bacteroidetes, did not recover after 12 weeks. Species-level analysis showed that the relative abundances of Klebsiella pneumoniae and Escherichia fergusonii significantly increased in both groups at Week 2. Enterococcus faecium and Enterococcus faecalis significantly increased in the BQT group, with no significant difference observed in the HDDT group. After 12 weeks of treatment, the relative abundance of more species in the HDDT group returned to baseline levels. CONCLUSION: Eradication of H. pylori can lead to an imbalance in gut microbiota. Compared to BQT, the HDDT is a regimen with milder impact on gut microbiota.


Assuntos
Antibacterianos , Bismuto , Quimioterapia Combinada , Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bismuto/uso terapêutico , Bismuto/administração & dosagem , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/fisiologia , Inibidores da Bomba de Prótons/uso terapêutico , Inibidores da Bomba de Prótons/administração & dosagem , RNA Ribossômico 16S/genética
13.
J Biomed Sci ; 31(1): 44, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685037

RESUMO

BACKGROUND: Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS: Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS: CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS: The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.


Assuntos
Colesterol/análogos & derivados , Helicobacter pylori , Helicobacter pylori/metabolismo , Helicobacter pylori/fisiologia , Camundongos , Animais , Humanos , Lipídeos de Membrana/metabolismo , Linhagem Celular Tumoral , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Ésteres do Colesterol/metabolismo
14.
Helicobacter ; 29(2): e13072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686467

RESUMO

BACKGROUND: Helicobacter pylori infection is one of the main causes of gastric cancer. thioredoxin-1 (Trx1) and arginase (RocF) expressed by H. pylori were found to be closely related to its pathogenicity. However, whether Trx1 and RocF can be used in clinical screening of highly pathogenic H. pylori and the pathogenesis of trx1 high expressing H. pylori remain still unknown. MATERIALS AND METHODS: We investigated the expression level of H. pylori trx1 and H. pylori rocF in human gastric antrum tissues using reverse transcription and quantitative real-time PCR (RT-qPCR) and clarified the clinical application value of trx1 and rocF for screening highly pathogenic H. pylori. The pathogenic mechanism of Trx1 were further explored by RNA-seq of GES-1 cells co-cultured with trx1 high or low expressing H. pylori. Differentially expressed genes and signaling pathways were validated by RT-qPCR, Enzyme-linked immunosorbent assay (ELISA), western blot, immunohistochemistry and immunofluorescence. We also assessed the adherence of trx1 high and low expressing H. pylori to GES-1 cells. RESULTS: We found that H. pylori trx1 and H. pylori rocF were more significantly expressed in the gastric cancer and peptic ulcer group than that in the gastritis group and the parallel diagnosis of H. pylori trx1 and H. pylori rocF had high sensitivity. The trx1 high expressing H. pylori had stronger adhesion ability to GES-1 cells and upregulated the interleukin (IL) 23A/nuclear factor κappaB (NF-κB)/IL17A, IL6, IL8 pathway. CONCLUSIONS: H. pylori trx1 and H. pylori rocF can be used in clinical screening of highly pathogenic H. pylori and predicting the outcome of H. pylori infection. The trx1 high expressing H. pylori has stronger adhesion capacity and promotes the development of gastric diseases by upregulating the activation of NF-κB signaling pathway.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Interleucina-8 , NF-kappa B , Tiorredoxinas , Humanos , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Helicobacter pylori/patogenicidade , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , NF-kappa B/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Regulação para Cima , Transdução de Sinais , Arginase/metabolismo , Arginase/genética , Linhagem Celular , Gastropatias/microbiologia , Gastropatias/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
15.
Helicobacter ; 29(2): e13066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468575

RESUMO

BACKGROUND: SHP1 has been documented as a tumor suppressor and it was thought to play an antagonistic role in the pathogenesis of Helicobacter pylori infection. In this study, the exact mechanism of this antagonistic action was studied. MATERIALS AND METHODS: AGS, MGC803, and GES-1 cells were infected with H. pylori, intracellular distribution changes of SHP1 were first detected by immunofluorescence. SHP1 overexpression and knockdown were then constructed in these cells to investigate its antagonistic roles in H. pylori infection. Migration and invasion of infected cells were detected by transwell assay, secretion of IL-8 was examined via ELISA, the cells with hummingbird-like alteration were determined by microexamination, and activation of JAK2/STAT3, PI3K/Akt, and ERK pathways were detected by immunoblotting. Mice infection model was established and gastric pathological changes were evaluated. Finally, the SHP1 activator sorafenib was used to analyze the attenuating effect of SHP1 activation on H. pylori pathogenesis in vitro and in vivo. RESULTS: The sub-localization of SHP1 changed after H. pylori infection, specifically that the majority of the cytoplasmic SHP1 was transferred to the cell membrane. SHP1 inhibited H. pylori-induced activation of JAK2/STAT3 pathway, PI3K/Akt pathway, nuclear translocation of NF-κB, and then reduced EMT, migration, invasion, and IL-8 secretion. In addition, SHP1 inhibited the formation of CagA-SHP2 complex by dephosphorylating phosphorylated CagA, reduced ERK phosphorylation and the formation of CagA-dependent hummingbird-like cells. In the mice infection model, gastric pathological changes were observed and increased IL-8 secretion, indicators of cell proliferation and EMT progression were also detected. By activating SHP1 with sorafenib, a significant curative effect against H. pylori infection was obtained in vitro and in vivo. CONCLUSIONS: SHP1 plays an antagonistic role in H. pylori pathogenesis by inhibiting JAK2/STAT3 and PI3K/Akt pathways, NF-κB nuclear translocation, and CagA phosphorylation, thereby reducing cell EMT, migration, invasion, IL-8 secretion, and hummingbird-like changes.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/metabolismo , Helicobacter pylori/fisiologia , NF-kappa B/metabolismo , Interleucina-8/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Helicobacter/patologia , Sorafenibe/metabolismo , Células Epiteliais/metabolismo
16.
Front Cell Infect Microbiol ; 14: 1342913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469348

RESUMO

Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/fisiologia , Imunidade Adaptativa , Mucosa Gástrica/patologia , Evasão da Resposta Imune , Linfócitos T , Imunidade Inata
17.
Front Cell Infect Microbiol ; 14: 1339750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343887

RESUMO

Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Helicobacter pylori/fisiologia , Estômago/microbiologia , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia
18.
Methods Mol Biol ; 2763: 61-69, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347400

RESUMO

Mucin, a major component of the mucus, is considered to be one of the principal factors in the physiological defense mechanism of the gastrointestinal mucosa. Measuring the mucin content of human gastric mucus is a useful tool for the assessment of Helicobacter pylori (H. pylori) eradication or the involvement of mucus secretion in various gastroduodenal diseases. Here, we describe a methodology for the isolation of the mucin fraction from human gastric juice and the quantification of mucin.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Humanos , Mucinas Gástricas , Suco Gástrico , Mucinas , Helicobacter pylori/fisiologia , Mucosa Gástrica
19.
J Virol ; 98(3): e0192323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38358289

RESUMO

Helicobacter pylori is a human pathogen that infects almost half of the population. Antibiotic resistance in H. pylori threatens health and increases the demand for prophylactic and therapeutic vaccines. Traditional oral vaccine research faces considerable challenges because of the epithelial barrier, potential enterotoxicity of adjuvants, and the challenging conditions of the gastric environment. We developed an intranasal influenza A virus (IAV) vector vaccine based on two live attenuated influenza viruses with modified acidic polymerase protein (PA) genes encoding the A subunit of H. pylori neutrophil-activating protein (NapA), named IAV-NapA, including influenza virus A/WSN/33 (WSN)-NapA and A/Puerto Rico/8/34 (PR8)-NapA. These recombinant influenza viruses were highly attenuated and exhibited strong immunogenicity in mice. Vaccination with IAV-NapA induced antigen-specific humoral and mucosal immune responses while stimulating robust Th1 and Th17 cell immune responses in mice. Our findings suggest that prophylactic and therapeutic vaccination with influenza virus vector vaccines significantly reduces colonization of H. pylori and inflammation in the stomach of mice.IMPORTANCEHelicobacter pylori is the most common cause of chronic gastritis and leads to severe gastroduodenal pathology in some patients. Many studies have shown that Th1 and Th17 cellular and gastric mucosal immune responses are critical in reducing H. pylori load. IAV vector vaccines can stimulate these immune responses while overcoming potential adjuvant toxicity and antigen dosing issues. To date, no studies have demonstrated the role of live attenuated IAV vector vaccines in preventing and treating H. pylori infection. Our work indicates that vaccination with IAV-NapA induces antigen-specific humoral, cellular, and mucosal immunity, producing a protective and therapeutic effect against H. pylori infection in BALB/c mice. This undescribed H. pylori vaccination approach may provide valuable information for developing vaccines against H. pylori infection.


Assuntos
Helicobacter pylori , Vacinas contra Influenza , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Vacinas Bacterianas/imunologia , Helicobacter pylori/fisiologia , Vírus da Influenza A/fisiologia , Vacinas contra Influenza/administração & dosagem , Camundongos Endogâmicos BALB C , Infecções por Helicobacter/prevenção & controle , Administração Intranasal
20.
Food Funct ; 15(3): 1170-1190, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38206113

RESUMO

Helicobacter pylori (H. pylori) infection is a major cause of chronic gastritis, intestinal metaplasia, and gastric carcinoma. Antibiotics, the conventional regimen for eliminating H. pylori, cause severe bacterial resistance, gut dysbiosis and hepatic insufficiency. Here, fifty lactic acid bacteria (LAB) were initially screened out of 266 strains obtained from infants' feces and oral cavity. The antagonistic properties of these 50 strains against H. pylori were investigated. Based on eight metrics combined with principal component analysis, three LAB with probiotic function and excellent anti-H. pylori capacity were affirmed. Combining dynamics test, metabolite assays, adhesion assays, co-cultivation experiments, and SEM and TEM observations, LAB were found to antagonize H. pylori by causing coccoid conversion and intercellular adhesion. Furthermore, it was found that LAB antagonized H. pylori by four pathways, i.e., production of anti-H. pylori substances, inhibition of H. pylori colonization, enhancement of the gastric mucosal barrier, and anti-inflammatory effect. In addition, animal model experiments verified that the final screened superior strain L. salivarius NCUH062003 had anti-H. pylori activity in vivo. LAB also reduced IL-8 secretion, ultimately alleviating the inflammatory response of gastric mucosa. Whole genome sequencing (WGS) data showed that the NCUH062003 genome contained the secondary metabolite biosynthesis gene cluster T3PKS. Furthermore, NCUH062003 had a strong energy metabolism and substance transport capacity, and produced a small molecule heat stable peptide (SHSP, 4.1-6.5 kDa). Meanwhile, LAB proved to be safe through antibiotic susceptibility testing and CARD database comparisons.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Lactobacillales , Probióticos , Lactente , Animais , Humanos , Helicobacter pylori/fisiologia , Mucosa Gástrica/metabolismo , Fezes/microbiologia , Probióticos/farmacologia , Boca/patologia , Infecções por Helicobacter/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...