Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.440
Filtrar
1.
Nat Commun ; 15(1): 5557, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956415

RESUMO

Severe traumatic bleeding may lead to extremely high mortality rates, and early intervention to stop bleeding plays as a critical role in saving lives. However, rapid hemostasis in deep non-compressible trauma using a highly water-absorbent hydrogel, combined with strong tissue adhesion and bionic procoagulant mechanism, remains a challenge. In this study, a DNA hydrogel (DNAgel) network composed of natural nucleic acids with rapid water absorption, high swelling and instant tissue adhesion is reported, like a band-aid to physically stop bleeding. The excellent swelling behavior and robust mechanical performance, meanwhile, enable the DNAgel band-aid to fill the defect cavity and exert pressure on the bleeding vessels, thereby achieving compression hemostasis for deep tissue bleeding sites. The neutrophil extracellular traps (NETs)-inspired DNAgel network also acts as an artificial DNA scaffold for erythrocytes to adhere and aggregate, and activates platelets, promoting coagulation cascade in a bionic way. The DNAgel achieves lower blood loss than commercial gelatin sponge (GS) in male rat trauma models. In vivo evaluation in a full-thickness skin incision model also demonstrates the ability of DNAgel for promoting wound healing. Overall, the DNAgel band-aid with great hemostatic capacity is a promising candidate for rapid hemostasis and wound healing.


Assuntos
DNA , Armadilhas Extracelulares , Hemostasia , Hemostáticos , Hidrogéis , Cicatrização , Animais , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , DNA/química , Masculino , Hidrogéis/química , Hidrogéis/farmacologia , Ratos , Hemostasia/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Hemostáticos/farmacologia , Hemostáticos/química , Ratos Sprague-Dawley , Hemorragia , Humanos , Neutrófilos/metabolismo , Modelos Animais de Doenças
2.
PLoS One ; 19(7): e0304231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985805

RESUMO

Trauma is the leading cause of death in individuals up to 45 years of age. Alterations in platelet function are a critical component of trauma-induced coagulopathy (TIC), yet these changes and the potential resulting dysfunction is incompletely understood. The lack of clinical assays available to explore platelet function in this patient population has hindered detailed understanding of the role of platelets in TIC. The objective of this study was to assess trauma patient ex vivo flow-dependent platelet hemostatic capacity in a microfluidic model. We hypothesized that trauma patients would have flow-regime dependent alterations in platelet function. Blood was collected from trauma patients with level I activations (N = 34) within 60 min of hospital arrival, as well as healthy volunteer controls (N = 10). Samples were perfused through a microfluidic model of injury at venous and arterial shear rates, and a subset of experiments were performed after incubation with fluorescent anti-CD41 to quantify platelets. Complete blood counts were performed as well as plasma-based assays to quantify coagulation times, fibrinogen, and von Willebrand factor (VWF). Exploratory correlation analyses were employed to identify relationships with microfluidic hemostatic parameters. Trauma patients had increased microfluidic bleeding times compared to healthy controls. While trauma patient samples were able to deposit a substantial amount of clot in the model injury site, the platelet contribution to microfluidic hemostasis was attenuated. Trauma patients had largely normal hematology and plasma-based coagulation times, yet had elevated D-Dimer and VWF. Venous microfluidic bleeding time negatively correlated with VWF, D-Dimer, and mean platelet volume (MPV), while arterial microfluidic bleeding time positively correlated with oxygenation. Arterial clot growth rate negatively correlated with red cell count, and positively with mean corpuscular volume (MCV). We observed changes in clot composition in trauma patient samples reflected by significantly diminished platelet contribution, which resulted in reduced hemostatic function in a microfluidic model of vessel injury. We observed a reduction in platelet clot contribution under both venous and arterial flow ex vivo in trauma patient samples. While our population was heterogenous and had relatively mild injury severity, microfluidic hemostatic parameters correlated with different patient-specific data depending on the flow setting, indicating potentially differential mechanistic pathways contributing to platelet hemostatic capacity in the context of TIC. These data were generated with the goal of identifying key features of platelet dysfunction in bleeding trauma patients under conditions of flow and to determine if these features correlate with clinically available metrics, thus providing preliminary surrogate markers of physiological platelet dysfunction to be further studied across larger cohorts. Future studies will continue to explore those relationships and further define mechanisms of TIC and their relationship with patient outcomes.


Assuntos
Plaquetas , Hemostasia , Microfluídica , Ferimentos e Lesões , Humanos , Plaquetas/metabolismo , Masculino , Feminino , Adulto , Ferimentos e Lesões/sangue , Ferimentos e Lesões/complicações , Microfluídica/métodos , Pessoa de Meia-Idade , Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/sangue , Fator de von Willebrand/metabolismo , Fibrinogênio/metabolismo , Estudos de Casos e Controles , Tempo de Sangramento
3.
Cell Biochem Funct ; 42(5): e4085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951992

RESUMO

This review rigorously investigates the early cerebral changes associated with Alzheimer's disease, which manifest long before clinical symptoms arise. It presents evidence that the dysregulation of calcium (Ca2+) homeostasis, along with mitochondrial dysfunction and aberrant autophagic processes, may drive the disease's progression during its asymptomatic, preclinical stage. Understanding the intricate molecular interplay that unfolds during this critical period offers a window into identifying novel therapeutic targets, thereby advancing the treatment of neurodegenerative disorders. The review delves into both established and emerging insights into the molecular alterations precipitated by the disruption of Ca2+ balance, setting the stage for cognitive decline and neurodegeneration.


Assuntos
Doença de Alzheimer , Autofagia , Cálcio , Mitocôndrias , Mitofagia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Cálcio/metabolismo , Animais , Hemostasia , Homeostase
4.
Molecules ; 29(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998951

RESUMO

In our search for a biocompatible composite hemostatic dressing, we focused on the design of a novel biomaterial composed of two natural biological components, collagen and sodium alginate (SA), cross-linked using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) and oxidized sodium alginate (OSA). We conducted a series of tests to evaluate the physicochemical properties, acute systemic toxicity, skin irritation, intradermal reaction, sensitization, cytotoxicity, and in vivo femoral artery hemorrhage model. The results demonstrated the excellent biocompatibility of the collagen/sodium alginate (C/SA)-based dressings before and after crosslinking. Specifically, the femoral artery hemorrhage model revealed a significantly shortened hemostasis time of 132.5 ± 12.82 s for the EDC/NHS cross-linked dressings compared to the gauze in the blank group (hemostasis time of 251.43 ± 10.69 s). These findings indicated that C/SA-based dressings exhibited both good biocompatibility and a significant hemostatic effect, making them suitable for biomedical applications.


Assuntos
Alginatos , Bandagens , Colágeno , Hemostáticos , Alginatos/química , Alginatos/farmacologia , Animais , Colágeno/química , Colágeno/farmacologia , Hemostáticos/química , Hemostáticos/farmacologia , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Hemorragia/tratamento farmacológico , Masculino , Ratos , Hemostasia/efeitos dos fármacos , Artéria Femoral
5.
Nutrients ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999733

RESUMO

Natural and synthetic colorants present in food can modulate hemostasis, which includes the coagulation process and blood platelet activation. Some colorants have cardioprotective activity as well. However, the effect of genipin (a natural blue colorant) and synthetic blue colorants (including patent blue V and brilliant blue FCF) on hemostasis is not clear. In this study, we aimed to investigate the effects of three blue colorants-genipin, patent blue V, and brilliant blue FCF-on selected parameters of hemostasis in vitro. The anti- or pro-coagulant potential was assessed in human plasma by measuring the following coagulation times: thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (APTT). Moreover, we used the Total Thrombus formation Analysis System (T-TAS, PL-chip) to evaluate the anti-platelet potential of the colorants in whole blood. We also measured their effect on the adhesion of washed blood platelets to fibrinogen and collagen. Lastly, the cytotoxicity of the colorants against blood platelets was assessed based on the activity of extracellular lactate dehydrogenase (LDH). We observed that genipin (at all concentrations (1-200 µM)) did not have a significant effect on the coagulation times (PT, APTT, and TT). However, genipin at the highest concentration (200 µM) and patent blue V at the concentrations of 1 and 10 µM significantly prolonged the time of occlusion measured using the T-TAS, which demonstrated their anti-platelet activity. We also observed that genipin decreased the adhesion of platelets to fibrinogen and collagen. Only patent blue V and brilliant blue FCF significantly shortened the APTT (at the concentration of 10 µM) and TT (at concentrations of 1 and 10 µM), demonstrating pro-coagulant activity. These synthetic blue colorants also modulated the process of human blood platelet adhesion, stimulating the adhesion to fibrinogen and inhibiting the adhesion to collagen. The results demonstrate that genipin is not toxic. In addition, because of its ability to reduce blood platelet activation, genipin holds promise as a novel and valuable agent that improves the health of the cardiovascular system and reduces the risk of cardiovascular diseases. However, the mechanism of its anti-platelet activity remains unclear and requires further studies. Its in vivo activity and interaction with various anti-coagulant and anti-thrombotic drugs, including aspirin and its derivatives, should be examined as well.


Assuntos
Coagulação Sanguínea , Plaquetas , Corantes de Alimentos , Iridoides , Humanos , Iridoides/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Corantes de Alimentos/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Hemostasia/efeitos dos fármacos , Tempo de Tromboplastina Parcial , Adesividade Plaquetária/efeitos dos fármacos , Fibrinogênio/metabolismo , Benzenossulfonatos/farmacologia , Tempo de Protrombina , Corantes de Rosanilina/farmacologia , Hemostáticos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Tempo de Trombina
6.
Nat Cell Biol ; 26(7): 1110-1123, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997457

RESUMO

Migrasomes are organelles that are generated by migrating cells. Here we report the key role of neutrophil-derived migrasomes in haemostasis. We found that a large number of neutrophil-derived migrasomes exist in the blood of mice and humans. Compared with neutrophil cell bodies and platelets, these migrasomes adsorb and enrich coagulation factors on the surface. Moreover, they are highly enriched with adhesion molecules, which enable them to preferentially accumulate at sites of injury, where they trigger platelet activation and clot formation. Depletion of neutrophils, or genetic reduction of the number of these migrasomes, significantly decreases platelet plug formation and impairs coagulation. These defects can be rescued by intravenous injection of purified neutrophil-derived migrasomes. Our study reveals neutrophil-derived migrasomes as a previously unrecognized essential component of the haemostasis system, which may shed light on the cause of various coagulation disorders and open therapeutic possibilities.


Assuntos
Coagulação Sanguínea , Plaquetas , Camundongos Endogâmicos C57BL , Neutrófilos , Neutrófilos/metabolismo , Animais , Humanos , Plaquetas/metabolismo , Camundongos , Hemostasia , Movimento Celular , Ativação Plaquetária , Masculino , Fatores de Coagulação Sanguínea/metabolismo , Fatores de Coagulação Sanguínea/genética
7.
Clin Appl Thromb Hemost ; 30: 10760296241255959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831596

RESUMO

The purpose of the study was to investigate baseline inflammatory, hemostatic indicators and new-onset deep vein thrombosis (DVT) with the risk of mortality in COVID-19 inpatients. In this single-center study, a total of 401 COVID-19 patients hospitalized in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine were enrolled from December 1, 2022 to January 31, 2023. The basic information, first laboratory examination results, imaging examination, and outcome-related indicators were compared between patients in the moderate and severe subgroups. We found that baseline D-dimer and baseline absolute neutrophil count (ANC) levels were associated with new-onset DVT and death in severe hospitalized patients with COVID-19. The odds ratio (OR) of baseline D-dimer and baseline ANC with mortality was 1.18 (95% confidence interval [CI], 1.08-1.28; P < .001) and 1.13 (95% CI, 1.06-1.21; P < .001). Baseline ANC was associated with the risk of death in severe hospitalized COVID-19 patients, irrespective of the DVT status. In addition, a significantly higher serum neutrophil activity was observed in severe COVID-19 inpatients with DVT or those deceased during hospital stay. New-onset DVT partially mediated the association between baseline D-dimer (indirect effect: 0.011, estimated mediating proportion: 67.0%), baseline ANC (indirect effect: 0.006, estimated mediating proportion: 48.7%), and mortality in severe hospitalized patients with COVID-19. In summary, baseline D-dimer and baseline absolute neutrophil count (ANC) levels were associated with the mortality in severe hospitalized patients with COVID-19, especially DVT inpatients. New-onset DVT partially mediated the association between baseline D-dimer, baseline ANC, and mortality in severe hospitalized patients with COVID-19.


Assuntos
COVID-19 , Produtos de Degradação da Fibrina e do Fibrinogênio , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/sangue , COVID-19/complicações , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Idoso , Neutrófilos , Trombose Venosa/sangue , Trombose Venosa/mortalidade , Inflamação/sangue , Fatores de Risco , Índice de Gravidade de Doença , Hemostasia , Pacientes Internados/estatística & dados numéricos , Contagem de Leucócitos , Adulto , China/epidemiologia
9.
J Vis Exp ; (207)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856226

RESUMO

Hemostasis, the process of normal physiological control of vascular damage, is fundamental to human life. We all suffer minor cuts and puncture wounds from time to time. In hemostasis, self-limiting platelet aggregation leads to the formation of a structured thrombus in which bleeding cessation comes from capping the hole from the outside. Detailed characterization of this structure could lead to distinctions between hemostasis and thrombosis, a case of excessive platelet aggregation leading to occlusive clotting. An imaging-based approach to puncture wound thrombus structure is presented here that draws upon the ability of thin-section electron microscopy to visualize the interior of hemostatic thrombi. The most basic step in any imaging-based experimental protocol is good sample preparation. The protocol provides detailed procedures for preparing puncture wounds and platelet-rich thrombi in mice for subsequent electron microscopy. A detailed procedure is given for in situ fixation of the forming puncture wound thrombus and its subsequent processing for staining and embedding for electron microscopy. Electron microscopy is presented as the end imaging technique because of its ability, when combined with sequential sectioning, to visualize the details of the thrombus interior at high resolution. As an imaging method, electron microscopy gives unbiased sampling and an experimental output that scales from nanometer to millimeters in 2 or 3 dimensions. Appropriate freeware electron microscopy software is cited that will support wide-area electron microscopy in which hundreds of frames can be blended to give nanometer-scale imaging of entire puncture wound thrombi cross-sections. Hence, any subregion of the image file can be placed easily into the context of the full cross-section.


Assuntos
Microscopia Eletrônica , Trombose , Animais , Camundongos , Microscopia Eletrônica/métodos , Trombose/patologia , Hemostasia , Punções/métodos
10.
Int J Biol Macromol ; 272(Pt 2): 132930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848843

RESUMO

The rapid absorption of water from the blood to concentrate erythrocytes and platelets, thus triggering quick closure, is important for hemostasis. Herein, expansion-clotting chitosan fabrics are designed and fabricated by ring spinning of polylactic acid (PLA) filaments as the core layer and highly hydrophilic carboxyethyl chitosan (CECS) fibers as the sheath layer, and subsequent knitting of obtained PLA@CECS core spun yarns. Due to the unidirectional fast-absorption capacity of CECS fibers, the chitosan fabrics can achieve erythrocytes and platelets aggregate quickly by concentrating blood, thus promoting the formation of blood clots. Furthermore, the loop structure of coils formed in the knitted fabric can help them to expand by absorbing water to close their pores, providing effective sealing for bleeding. Besides, They have enough mechanical properties, anti-penetrating ability, and good tissue-adhesion ability in wet conditions, which can form a physical barrier to resist blood pressure during hemostasis and prevent them from falling off the wound, thus enhancing hemostasis synergistically. Therefore, the fabrics exhibit superior hemostatic performance in the rabbit liver, spleen, and femoral artery puncture injury model compared to the gauze group. This chitosan fabric is a promising hemostatic material for hemorrhage control.


Assuntos
Quitosana , Hemorragia , Hemostáticos , Quitosana/química , Animais , Hemorragia/tratamento farmacológico , Hemorragia/prevenção & controle , Coelhos , Hemostáticos/química , Hemostáticos/farmacologia , Poliésteres/química , Têxteis , Coagulação Sanguínea/efeitos dos fármacos , Hemostasia/efeitos dos fármacos
11.
Nat Commun ; 15(1): 5460, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937462

RESUMO

Developing superporous hemostatic sponges with simultaneously enhanced permeability and mechanical properties remains challenging but highly desirable to achieve rapid hemostasis for non-compressible hemorrhage. Typical approaches to improve the permeability of hemostatic sponges by increasing porosity sacrifice mechanical properties and yield limited pore interconnectivity, thereby undermining the hemostatic efficacy and subsequent tissue regeneration. Herein, we propose a temperature-assisted secondary network compaction strategy following the phase separation-induced primary compaction to fabricate the superporous chitosan sponge with highly-interconnected porous structure, enhanced blood absorption rate and capacity, and fatigue resistance. The superporous chitosan sponge exhibits rapid shape recovery after absorbing blood and maintains sufficient pressure on wounds to build a robust physical barrier to greatly improve hemostatic efficiency. Furthermore, the superporous chitosan sponge outperforms commercial gauze, gelatin sponges, and chitosan powder by enhancing hemostatic efficiency, cell infiltration, vascular regeneration, and in-situ tissue regeneration in non-compressible organ injury models, respectively. We believe the proposed secondary network compaction strategy provides a simple yet effective method to fabricate superporous hemostatic sponges for diverse clinical applications.


Assuntos
Quitosana , Hemostasia , Hemostáticos , Permeabilidade , Animais , Porosidade , Quitosana/química , Hemostáticos/química , Hemostáticos/farmacologia , Suínos , Hemostasia/fisiologia , Hemorragia/terapia , Masculino
12.
Adv Gerontol ; 37(1-2): 149-152, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38944786

RESUMO

In the treatment of coronavirus infections, it is important not only to understand the course of the disease, but also to understand what is happening in the human body, especially in the circulatory system, that is, which disorders lead to deterioration and further complications. Hemostasis disorder in COVID-19 plays an important role in the etiology and clinical manifestations of the disease. The ability to identify factors and risk groups for the development of thrombotic complications, the ability to dynamically interpret peripheral blood parameters and coagulograms, knowledge of diagnostic criteria for possible hemostasis disorders (for example, DIC syndrome, sepsis-associated coagulopathy, antiphospholipids, hemophagocytosis and hypercoagulation syndrome) are necessary to determine the indications for the test. Differentiated prescribing of clinically justified therapy (including anticoagulants and blood components) is important, which determines the complexity of treatment and prognosis for patients with COVID-19. This article is a review of the literature on the topic of hemostasis disorders in elderly and senile patients with mesenteric thrombosis in COVID 19 over the past few years.


Assuntos
COVID-19 , SARS-CoV-2 , Trombose , Humanos , COVID-19/complicações , COVID-19/fisiopatologia , Idoso , Trombose/etiologia , Trombose/diagnóstico , Trombose/sangue , Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/diagnóstico , Transtornos da Coagulação Sanguínea/sangue , Hemostasia/fisiologia , Anticoagulantes/uso terapêutico , Anticoagulantes/administração & dosagem
13.
Int J Biol Macromol ; 273(Pt 1): 133075, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866274

RESUMO

Hemostatic materials play a crucial role in trauma medicine. However, existing materials have poor hemostatic efficacy and a tendency to adhere to the wound surface, limiting their clinical effectiveness. Herein, a drug-loaded, superhydrophilic/superhydrophobic laminated material (DSLM), consisting of a superhydrophobic inner layer with a micropore array, a superhydrophilic chitosan-based sponge layer loaded with hemostatic/antimicrobial drugs, and a superhydrophobic outer layer, was developed. Furthermore, the DSLM allows unidirectional flow of blood and exudates from the wound bed through the superhydrophobic inner layer while facilitating efficient drug delivery. In addition, it possesses excellent biocompatibility and antiadhesion properties, as confirmed by in vivo and in vitro experiments. Compared with traditional hemostatic materials, the DSLM remarkably increased the survival time by over threefold in the acute femoral transaction wound bleeding model, and simultaneously prevented secondary wound damage by reducing peeling force to one-eighth incomparison to pristine gauze. The DSLM holds promise as a versatile clinical biomaterial for prehospital acute trauma treatment, with its simple structure facilitating manufacturing and expanding applications in biomedicine.


Assuntos
Quitosana , Hemostasia , Hemostáticos , Interações Hidrofóbicas e Hidrofílicas , Quitosana/química , Hemostasia/efeitos dos fármacos , Animais , Hemostáticos/química , Hemostáticos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hemorragia/tratamento farmacológico , Hemorragia/prevenção & controle , Ratos , Camundongos , Cicatrização/efeitos dos fármacos , Masculino , Humanos
14.
Thromb Res ; 240: 109045, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834002

RESUMO

INTRODUCTION: Thrombin generation assays (TGAs) assess the overall functionality of the hemostatic system and thereby provide a reflection of the hemostatic capacity of patients with disorders in this system. Currently, four (semi-)automated TGA platforms are available: the Calibrated Automated Thrombogram, Nijmegen Hemostasis Assay, ST Genesia and Ceveron s100. In this study, we compared their performance for detecting patients with congenital single coagulation factor deficiencies. MATERIALS AND METHODS: Pooled patient samples, healthy control samples and normal pooled plasma were tested on all four platforms, using the available reagents that vary in tissue factor and phospholipid concentrations. The TGA parameters selected for analysis were peak height and thrombin potential. Results were normalized by using the calculated mean of healthy controls and a correction for between-run variation. Outcomes were presented as relative values, with the mean of healthy controls standardized to 100 %. RESULTS: Across all platforms and reagents used, thrombin potentials and peak heights of samples with coagulation factor deficiencies were lower than those of healthy controls. Reagents designed for bleeding tendencies yielded the lowest values on all platforms (relative median peak height 19-32 %, relative median thrombin potential 19-45 %). Samples representing more severe coagulation factor deficiencies generally exhibited lower relative peak heights and thrombin potentials. CONCLUSIONS: Thrombin generation assays prove effective in differentiating single coagulation factor deficient samples from healthy controls, with modest discrepancies observed between the platforms. Reagents designed for assessing bleeding tendencies, featuring the lowest tissue factor and phospholipid concentrations, emerged as the most suitable option for detecting coagulation factor deficiencies.


Assuntos
Trombina , Humanos , Trombina/metabolismo , Trombina/análise , Trombina/biossíntese , Testes de Coagulação Sanguínea/métodos , Transtornos de Proteínas de Coagulação/sangue , Transtornos de Proteínas de Coagulação/diagnóstico , Hemostasia
15.
Biomolecules ; 14(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927117

RESUMO

The crucial role of platelets in hemostasis and their broad implications under various physiological conditions underscore the importance of accurate platelet-function testing. Platelets are key to clotting blood and healing wounds. Therefore, accurate diagnosis and management of platelet disorders are vital for patient care. This review outlines the significant advancements in platelet-function testing technologies, focusing on their working principles and the shift from traditional diagnostic methods to more innovative approaches. These improvements have deepened our understanding of platelet-related disorders and ushered in personalized treatment options. Despite challenges such as interpretation of complex data and the costs of new technologies, the potential for artificial-intelligence integration and the creation of wearable monitoring devices offers exciting future possibilities. This review underscores how these technological advances have enhanced the landscape of precision medicine and provided better diagnostic and treatment options for platelet-function disorders.


Assuntos
Transtornos Plaquetários , Plaquetas , Testes de Função Plaquetária , Humanos , Plaquetas/metabolismo , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/terapia , Transtornos Plaquetários/sangue , Testes de Função Plaquetária/métodos , Medicina de Precisão/métodos , Hemostasia
19.
Biomater Adv ; 162: 213932, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917648

RESUMO

Clay minerals have attracted wide attention as biomedical materials due to the unique crystal structure, abundant morphology and good biocompatibility. However, the relevant studies on the abundant natural mixed clay deposits were scarcely reported. Herein, the hemostatic performance of natural mixed-dimensional attapulgite clay (MDAPT) composed of one-dimensional attapulgite and multiple two-dimensional clay were systematically investigated based on the structural evolution using oxalic acid for different time. The results of hemostatic evaluation showed that MDAPT leached by oxalic acid with 1 h presented the shortest clotting time (134 ± 12.17 s), a 15.09 % and 41.74 % reduction of relative hemoglobin absorbance at 180 s and 120 s when compared with the control group, respectively, and an increase of 19.45 % of the blood clotting index in vitro, as well as MDAPT obtained the shortest bleeding time (158.5 ± 6.9 s), nearly 66 % and 31 % reduction blood loss as compared to the blank group and the YNBY group in vivo. This improvement was primarily ascribed to the synergistic effect of lamellar non-expandable illite, and nano rod-like attapulgite. Furthermore, the rapid hemostasis of MDAPT was also due to the joint effect of superhydrophobic property toward blood, minimizing blood loss, surface negative charge, metal ions from MDAPT structural skeleton, promoting an average increase of 21 % for platelet activation. The results suggested that MDAPT could be served as a promising efficient inorganic hemostatic materials, which provided a feasible strategy to realize the high-valued utilization of natural mixed clay resources.


Assuntos
Argila , Compostos de Magnésio , Compostos de Silício , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Argila/química , Animais , Compostos de Silício/química , Hemostáticos/farmacologia , Hemostáticos/química , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Hemostasia/efeitos dos fármacos , Hemostasia/fisiologia , Silicatos de Alumínio/química , Humanos
20.
Expert Rev Hematol ; 17(7): 391-403, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889268

RESUMO

BACKGROUND: Platelet storage is complicated by deleterious changes, among which reduction of ristocetin-induced platelet aggregation (RIPA) has a poorly understood mechanism. The study elucidates the mechanistic roles of all the possible players in this process. RESEARCH DESIGN AND METHODS: PRP-platelet concentrates were subjected to RIPA, collagen-induced platelet aggregation (CIPA), and flowcytometric analysis of GPIbα and PAC-1 binding from days 0 to 5 of storage. Platelet-poor plasma was subjected to colorimetric assays for glucose/LDH evaluation and automatic analyzer to examine VWF antigen and activity. RESULTS: From day three of platelet storage, reducing CIPA but not RIPA was correlated with the reduction of both metabolic state and integrin activity. RIPA reduction was directly related to the decreased levels of total-content/expression of GPIbα, and inversely related to its shedding levels during storage. Re-suspension of 5-day stored platelet in fresh plasma compensated CIPA, but not RIPA. VWF concentration and its activity did not change during storage while they had no correlation with RIPA. CONCLUSIONS: This study identified the irreversible loss of platelet GPIbα, but not VWF status, as the primary cause of the storage-dependent decrease of RIPA. Unlike CIPA, this observation was not compensated by plasma refreshment, suggesting that some evidence of PSL may not be recovered after transfusion.


Assuntos
Plaquetas , Preservação de Sangue , Agregação Plaquetária , Complexo Glicoproteico GPIb-IX de Plaquetas , Ristocetina , Fator de von Willebrand , Humanos , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Ristocetina/farmacologia , Plaquetas/metabolismo , Preservação de Sangue/métodos , Fator de von Willebrand/metabolismo , Hemostasia/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...